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Abstract

This paper discusses robust stochastic stability and stabilization of time-delay discrete
Markovian jump singular systems with parameter uncertainties. Based on the restricted
system equivalent (RES) transformation, a delay-dependent linear matrix inequalities con-
dition for time-delay discrete-time Markovian jump singular systems to be regular, causal
and stochastically stable is established. With this condition, problems of robust stochastic
stability and stabilization are solved, and delay-dependent linear matrix inequalities are
obtained. A numerical example is also given to illustrate the effectiveness of this method.
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1. Introduction

In practice, many dynamical systems cannot be represented by linear time-invariant
models since the dynamics of some features of these systems, such as for example,
abrupt changes, breakdowns of components, changes in the interconnections of sub-
systems, etc., are random. Such classes of dynamical systems fall into the category of
stochastic hybrid systems. A special class of hybrid systems referred to as Markovian
jump systems, which exhibit random structures, has attracted much interest among
researchers and many important problems involving these systems have been inves-
tigated, such as stability, stabilization and H∞ control problems, see [4, 5, 6, 8, 18]
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and the references therein. On the other hand, time delay is commonly encountered
in various engineering systems and is frequently a source of instability and poor per-
formance. In general, the approaches to studing time-delay systems can be classified
into two types: delay-dependent conditions, which include information on the length
of delays [3, 4, 7, 8, 10, 11, 12, 13, 19, 20], and delay-independent conditions, which
are applicable to delays of arbitrary length [5, 6, 18]. Since the stability of systems
depends explicitly on their time delays, a delay-independent condition is often con-
servative, especially for small delays, while a delay-dependent condition is usually
less conservative.

Singular systems, which are also referred to as implicit systems, or descriptor sys-
tems, have extensive applications in many practical systems, such as circuit boundary
control systems, chemical processes, economy systems, and other areas, see [1, 9].
So a great number of fundamental notions and results in control and system theory
based on standard state-space systems have been extended successfully to singular
systems [1, 2, 9, 14, 15, 17] and [21]–[24]. In recent years, much attention has been
focused on robust stability, robust stabilization and H∞ control problems for singular
systems [2, 14, 15, 17] and [21]–[24]. Xu and Lam [22] and Ma and Cheng [14]
gave some results on robust stability and robust stabilization for discrete singular
systems. The H∞ control problem for time-delay continuous-time singular systems
was investigated in [17, 21, 24]. For time-delay discrete singular systems, Xu, Lam
and Yang [23] solved robust stabilization and H∞ control problems based on a delay-
independent non-strict linear matrix inequality condition, Ma and Cheng [15] solved
a robust stabilization problem based on a transformation of state-control pairs and a
delay-dependent LMI (linear matrix inequality). For Markovian jump singular sys-
tems, Boukas [2] discussed output feedback control for continuous-time Markovian
jump singular systems. To the best of our knowledge, delay-dependent conditions for
robust stochastic stability and robust stochastic stabilization problems for time-delay
discrete Markovian jump singular systems have not been investigated in the literature.

The objective of this paper is to study robust stochastic stability and stabilization for
time-delay discrete Markovian jump singular systems with parameter uncertainties.
Based on the restricted system equivalent (RES) transformation and by introducing
new state vectors, we shall transform the singular system into a time-delay discrete
Markovian jump standard linear system, and then obtain some delay-dependent LMIs
for the time-delay discrete Markovian jump singular systems to be regular, causal and
stochastically stable. With this condition, we shall establish some criteria on robust
stochastic stability and stabilization in terms of some delay-dependent LMIs. The rest
of the paper is organized as follows. In Section 2, we shall formulate the problem and
introduce some preliminaries. We then state and prove our main results in Section 3.
Finally, we give, in Section 4, a numerical example to illustrate the effectiveness of
the method, and some conclusive remarks in Section 5.
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2. Description of problem and preliminaries

Throughout this paper, for real symmetric matrices X and Y , the notation X ≥ Y
(respectively, X > Y ) means that the matrix X − Y is semipositive definite (respec-
tively, positive definite). Here I is the identity matrix with appropriate dimensions,
the superscript “T ” represents the transpose, and diag{· · · } denotes a block-diagonal
matrix. Also ‖x‖ refers to the Euclidean norm of the vector x , that is, ‖x‖2 = xT x .
Finally, � denotes the set integers, E{·} denotes the expectation and ∗ denotes the
matrix entries implied by the symmetry of a matrix.

The system considered in this paper is assumed to be a state-space model as follows:{
Exk+1 = A.k; rk/xk + Ad.k; rk/xk−d + B.k; rk/uk;

xk = �.k/;
k = −d; : : : ;−1; 0; (2.1)

where k ∈ � , xk ∈ Rn is the system state, uk ∈ R p is the control input, d is an
unknown constant integer time delay, and 0 < d ≤ d̄, where d̄ > 0 is a known integer
and �.k/ is the initial value at k. Here {rk; k ∈ � } is a Markov chain taking values in
finite space ' = {1; 2; · · · ; N }, with transition probability from mode i at time k to
mode j at time k + 1 given by

pi j = Pr{rk+1 = j |rk = i}
with pi j ≥ 0 for i; j ∈ ', and

∑N
j=1 pi j = 1. The matrix E ∈ Rn×n is singular, and

rankE = r < n. For each i ∈ ', we have

A.k; i/ = A.i/+ ŽA.k; i/; Ad.k; i/ = Ad.i/+ ŽAd.k; i/;

B.k; i/ = B.i/+ ŽB.k; i/

where A.i/, Ad.i/ and B.i/ are known constant matrices with appropriate dimensions.
Here ŽA.k; i/ and ŽAd.k; i/, ŽB.k; i/ are unknown matrices, denoting the uncertainties
in System (2.1). In this paper, the uncertainties are assumed to be of the following
form:[

ŽA.k; i/ ŽAd.k; i/ ŽB.k; i/
] = E1.i/1.k; i/

[
F1.i/ F2.i/ F3.i/

]
(2.2)

where E1.i/, F1.i/, F2.i/ and F3.i/ are known constant matrices with appropriate
dimensions and1.k; i/ ∈ Rq×s are unknown time-varying matrix functions satisfying

1T .k; i/1.k; i/ ≤ I: (2.3)

REMARK 1. The uncertainties ŽA.k; i/, ŽAd.k; i/ and ŽB.k; i/ are the so-called
“norm-bounded uncertainties” and are considered frequently in robust control, see for
example [5, 8, 18] and the references therein.
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DEFINITION 2.1. Consider system (2.1) with ŽA.k; rk/ = 0, ŽAd.k; rk/ = 0 and
uk = 0.

(i) [9] For a given rk = i , i ∈ ', the pair .E; A.i// is said to be regular if
det.zE − A.i// 	≡ 0.

(ii) [9] For a given rk = i , i ∈ ', the pair .E; A.i// is said to be causal if it is
regular and degree .det.zE − A.i/// = rank.E/.

(iii) System (2.1) with ŽA.k; rk/ = 0; ŽAd.k; rk/ = 0 and uk = 0 is said to be
regular and causal if every pair .E; A.i// is regular and causal, for all i ∈ '.

DEFINITION 2.2. (i) System (2.1) with ŽA.k; rk/ = 0; ŽAd.k; rk/ = 0 and
uk = 0 is said to be stochastically stable, if for every initial state .�; r0/, the condition

E

{ ∞∑
k=0

‖xk.�; r0/‖2
∣∣�; r0

}
< ∞

is satisfied.
(ii) System (2.1) with uk = 0 is said to be robust stochastically stable if it is

stochastically stable for all uncertainties satisfying (2.2) and (2.3).
(iii) System (2.1) is said to be robust stochastically stabilizable if there exists a

state feedback controller

uk = K .rk/xk (2.4)

with K .i/, when rk = i , a constant matrix such that the resulting closed-loop system
is robust stochastically stable.

REMARK 2. (i) If System (2.1) with ŽA.k; rk/ = 0, ŽAd.k; rk/ = 0 and uk = 0
is regular and causal, then for any initial value �.k/, there exists a unique solution of
System (2.1) for each rk = i , i ∈ '.
In fact, since rankE = r < n, there exist two nonsingular matrices M; N ∈ Rn×n such
that M E N = [

Ir 0
0 0

]
and we write

M A.i/N =
[

A1.i/ A2.i/
A3.i/ A4.i/

]
; M Ad.i/N =

[
Ad1.i/ Ad2.i/
Ad3.i/ Ad4.i/

]
and xk = N

[
x1k

x2k

]
:

Then System (2.1) with ŽA.k; rk/ = 0, ŽAd.k; rk/ = 0 and uk = 0 is RSE to the
following system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1.k+1/ = A1.i/x1k + A2.i/x2k + Ad1.i/x1.k−d/ + Ad2.i/x2.k−d/;

0 = A3.i/x1k + A4.i/x2k + Ad3.i/x1.k−d/ + Ad4.i/x2.k−d/;[
x1k

x2k

]
=

[
�1.k/
�2.k/

]
:

k = −d; : : : ; 0
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Definition 2.1 and System (2.1) being regular and causal mean that the matrix A4.i/
is nonsingular [9] for each mode i ∈ '. Then it follows that

x1.k+1/ = (
A1.i/− A2.i/A

−1
4 .i/A3.i/

)
x1k + (

Ad1.i/− A2.i/A
−1
4 .i/Ad3.i/

)
x1.k−d/

+ (
Ad2.i/− A2.i/A

−1
4 .i/Ad4.i/

)
x2.k−d/;

x2k = −A−1
4 .i/

(
A3.i/x1k + Ad3.i/x1.k−d/ + Ad4.i/x2.k−d/

)
;

which indicates that a unique solution of System (2.1) exists for each i ∈ '.
(ii) By Definitions 2.1 and 2.2, one can see that regularity, causality and stochastic

stability are preserved under an RES transformation.
(iii) When E is nonsingular, System (2.1) can be transformed to a class of time-

delay discrete Markovian jump standard linear systems. The problems of stochastic
stability and stochastic stabilization for such systems have been solved in the literature
[4, 6, 18].

The purpose of this paper is to develop delay-dependent LMI conditions such that
System (2.1) with uk = 0 is regular, causal and robust stochastically stable, and to
design a state feedback controller of the form (2.4) such that the resulting closed-
loop system is regular, causal and robust stochastically stable for all uncertainties
satisfying (2.2) and (2.3).

The following lemma will be used in the proof of the main results.

LEMMA 2.3 ([16]). Given a symmetric matrix� and matrices 0 and4 with appro-
priate dimensions, then

�+ 014+4T1T0T < 0

for all 1 satisfying 1T1 ≤ I , if and only if there exists a scalar ž > 0 such that

�+ ž00T + ž−14T4 < 0:

3. Main results

In this section, first of all, we consider the regularity, causality and robust stochastic
stability of System (2.1) with uk = 0. Since rankE = r < n, there exist two
nonsingular matrices M and N ∈ Rn×n such that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M E N =
[

Ir 0
0 0

]
; M A.i/N =

[
A1.i/ A2.i/
A3.i/ A4.i/

]
;

M Ad.i/N =
[

Ad1.i/ Ad2.i/
Ad3.i/ Ad4.i/

]
; M E1.i/ =

[
E11.i/
E12.i/

]
; xk = N

[
x1k

x2k

]
;

F1.i/N = [
F11.i/ F12.i/

]
; F2.i/N = [

F21.i/ F22.i/
]
;

(3.1)
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where x1k ∈ Rr , x2k ∈ Rn−r ,

A1.i/; Ad1.i/ ∈ Rr×r ; A2.i/; Ad2.i/ ∈ Rr×.n−r/; A3.i/; Ad3.i/ ∈ R.n−r/×r;

A4.i/; Ad4.i/ ∈ R.n−r/×.n−r/; E11.i/ ∈ Rr×q; E12.i/ ∈ R.n−r/×q;

F11.i/; F21.i/ ∈ Rs×r and F12.i/; F22.i/ ∈ Rs×.n−r/:

So System (2.1) with uk = 0 is RES to the following system for each mode i ∈ ':⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1.k+1/=
(
A1.i/+ E11.i/1.k; i/F11.i/

)
x1k +

(
Ad1.i/+ E11.i/1.k; i/F21.i/

)
x1.k−d/

+(
A2.i/+ E11.i/1.k; i/F12.i/

)
x2k +

(
Ad2.i/+ E11.i/1.k; i/F22.i/

)
x2.k−d/;

0 = (
A3.i/+ E12.i/1.k; i/F11.i/

)
x1k +

(
Ad3.i/+ E12.i/1.k; i/F21.i/

)
x1.k−d/

+(
A4.i/+ E12.i/1.k; i/F12.i/

)
x2k +

(
Ad4.i/+ E12.i/1.k; i/F22.i/

)
x2.k−d/:

(3.2)

By introducing new state vectors as

x̂k = [
xT

1k; xT
2.k−1/; xT

1.k−1/; xT
2.k−2/

]T
; (3.3)

then System (3.2) can be rewritten as(
Ê.rk/+ Ž Ê.k; rk/

)
x̂k+1 =

(
Â.rk/+ Ž Â.k; rk/

)
x̂k +

(
Âd.rk/+ Ž Âd.k; rk/

)
x̂k−d+1;

(3.4)

where for rk = i , i ∈ '⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ê.i/ =

⎡
⎢⎢⎣

Ir −A2.i/ 0 0
0 −A4.i/ 0 0
0 0 Ir 0
0 0 0 In−r

⎤
⎥⎥⎦ ; Â.i/ =

⎡
⎢⎢⎣

A1.i/ 0 0 0
A3.i/ 0 0 0

Ir 0 0 0
0 In−r 0 0

⎤
⎥⎥⎦ ;

Âd.i/ =

⎡
⎢⎢⎣

0 Ad2.i/ Ad1.i/ 0
0 Ad4.i/ Ad3.i/ 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ; Ẽ.i/ =

⎡
⎢⎢⎣

E11.i/
E12.i/

0
0

⎤
⎥⎥⎦ ;

Ž Ê.k; i/ = Ẽ.i/1.k; i/F̃1.i/; Ž Â.k; i/ = Ẽ.i/1.k; i/F̃2.i/;

Ž Âd.k; i/ = Ẽ.i/1.k; i/F̃d.i/; F̃1.i/ = [
0 −F12.i/ 0 0

]
;

F̃2.i/ = [
F11.i/ 0 0 0

]
and F̃d.i/ = [

0 F22.i/ F21.i/ 0
]
:

(3.5)

When 1.k; i/ = 0 in (3.4), System (2.1) with ŽA.k; rk/ = 0, ŽAd.k; rk/ = 0 and
uk = 0 can be written as

Ê.rk/x̂k+1 = Â.rk/x̂k + Âd.rk/x̂k−d+1: (3.6)
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For the relation between System (2.1) with ŽA.k; rk/ = 0; ŽAd.k; rk/ = 0 and uk = 0
and System (3.6), we have the following result.

LEMMA 3.1. System (2.1) with ŽA.k; rk/ = 0, ŽAd.k; rk/ = 0 and uk = 0 is regular,
causal and stochastically stable, if System (3.6) is a Markovian jump standard linear
system (that is, the matrix Ê.i/ is nonsingular for each mode i ∈ ') and stochastically
stable.

PROOF. First, consider the regularity and causality of System (2.1) which has
ŽA.k; rk/ = 0, ŽAd.k; rk/ = 0 and uk = 0. If System (3.6) is a Markovian jump
standard linear system, from (3.5) it follows that A4.i/ is nonsingular [9]. Then, from
Definition 2.1, System (2.1) with ŽA.k; rk/ = 0, ŽAd.k; rk/ = 0 and uk = 0 is regular
and causal.

Next, consider the stochastic stability of System (2.1) with ŽA.k; rk/ = 0,
ŽAd.k; rk/ = 0 and uk = 0. Since System (3.6) is stochastically stable, Definition 2.2
yields

E

{ ∞∑
k=0

∥∥∥x̂k.�̂; r0/

∥∥∥2
∣∣∣∣∣ �̂; r0

}
< ∞

for every initial state .�̂; r0/, where �̂.k/ = [�T
1 .k/ �

T
2 .k −1/ �T

1 .k −1/ �T
2 .k −2/]T

and �.k/ = N
[
�1.k/
�2.k/

]
. It follows that

E

{ ∞∑
k=0

(‖x1k.�1; �2; r0/‖2 + ‖x2k.�1; �2; r0/‖2
)∣∣ �1; �2; r0

}
< ∞:

Therefore, from Remark 2, System (2.1) with ŽA.k; rk/ = 0; ŽAd.k; rk/ = 0 and
uk = 0 is stochastically stable. The proof is completed.

REMARK 3. Based on the transformations (3.1) and (3.3), System (2.1) with uk = 0
is transformed into System (3.4) with delay d−1, and System (2.1) with ŽA.k; rk/ = 0,
ŽAd.k; rk/ = 0 and uk = 0 is transformed into System (3.6) with delay d − 1. Based
on Lemma 3.1, the regularity, causality and stochastic stability of System (2.1) with
ŽA.k; rk/ = 0, ŽAd.k; rk/ = 0 and uk = 0 and the robust stochastic stability of
System (2.1) with uk = 0 can be solved by solving the stochastic stability of the
standard linear system (3.6) and the robust stochastic stability of the uncertain standard
linear system (3.4).

THEOREM 3.2. System (2.1) with ŽA.k; rk/ = 0, ŽAd.k; rk/ = 0 and uk = 0 is
regular, causal and stochastically stable, if for each mode i ∈ ', there exist matrices
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Xi > 0, Z > 0, U > 0, Ni1, Ni2, Ni3, Si1, Si2 and Si3, satisfying the following LMI:

8i =

⎡
⎢⎢⎣
8i11 8i12 8i13 .d̄ − 1/Ni1

∗ 8i22 8i23 .d̄ − 1/Ni2

∗ ∗ 8i33 .d̄ − 1/Ni3

∗ ∗ ∗ −.d̄ − 1/Z

⎤
⎥⎥⎦ < 0; where (3.7)

8i11 =
N∑

j=1

pi j X j − Xi + U + Ni1 + N T
i1 + Si1

(
Â.i/− Ê.i/

) + (
Â.i/− Ê.i/

)T
ST

i1;

8i12 = (
Â.i/− Ê.i/

)T
ST

i2 − Ni1 + N T
i2 + Si1 Âd.i/;

8i13 =
N∑

j=1

pi j X j + N T
i3 − Si1 Ê.i/+ (

Â.i/− Ê.i/
)T

ST
i3;

8i22 = Si2 Âd.i/+ ÂT
d .i/S

T
i2 − Ni2 − N T

i2 − U;

8i23 = ÂT
d .i/S

T
i3 − Si2 Ê.i/− N T

i3 and

8i33 =
N∑

j=1

pi j X j + .d̄ − 1/Z − Si3 Ê.i/− ÊT .i/ST
i3:

PROOF. Based on Lemma 3.1, to prove that System (2.1) with ŽA.k; rk/ = 0;
ŽAd.k; rk/ = 0 and uk = 0 is regular, causal and stochastically stable, it suffices to
prove that the matrix Ê.i/ is nonsingular for each mode i ∈ ' and System (3.6) is
stochastically stable. First, we prove that the matrix Ê.i/ is nonsingular for each
mode i ∈ '. From (3.7) it follows that 8i33 < 0. Since Xi > 0, Z > 0 and d̄ ≥ 1, we
obtain that −Si3 Ê.i/− ÊT .i/ST

i3 < 0. Then Ê.i/ is nonsingular for each mode i ∈ '.
Next, we prove that System (3.6) is stochastically stable. Rewrite System (3.6) as

x̂k+1 = x̂k + ŷk;

0 = −Ê.rk/ŷk +
(

Â.rk/− Ê.rk/
)

x̂k + Âd.rk/x̂k−d+1:
(3.8)

Let X̂k = .x̂k; x̂k−1; · · · ; x̂k−d+1/ and Ŷk = .ŷk−1; · · · ; ŷk−d+1/. We may then construct
a stochastic Lyapunov functional as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

V
(

X̂k; Ŷk; k; rk

)
= V1

(
X̂k; Ŷk; k; rk

)
+ V2

(
X̂k; Ŷk; k; rk

)
+ V3

(
X̂k; Ŷk; k; rk

)
;

V1

(
X̂k; Ŷk; k; rk

)
= x̂ T

k Xrk x̂k; V2

(
X̂k; Ŷk; k; rk

)
=

k−1∑
l=k−d+1

x̂ T
l U x̂l;

V3

(
X̂k; Ŷk; k; rk

)
=

0∑
�=−d+2

k−1∑
l=k−1+�

ŷT
l Z ŷl;
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where the matrices Xrk > 0, U > 0 and Z > 0. Let the mode at time k be i , that is,
rk = i . Recall that at time k + 1, the system may jump to any mode rk+1 = j . One
can then obtain that

E
[

V1

(
X̂k+1; Ŷk+1; k + 1; rk+1

)∣∣∣ X̂k; Ŷk; rk = i
]

− V1

(
X̂k; Ŷk; k; i

)
= E

[
x̂ T

k+1 Xrk+1 x̂k+1

∣∣ X̂k; Ŷk; rk = i
]

− x̂ T
k Xi x̂k

= E
[(

x̂k + ŷk

)T
Xrk+1

(
x̂k + ŷk

)∣∣∣ X̂k; Ŷk; rk = i
]

− x̂ T
k Xi x̂k

=
N∑

j=1

pi j

(
x̂k + ŷk

)T
X j

(
x̂k + ŷk

) − x̂ T
k Xi x̂k; (3.9)

E
[

V2

(
X̂k+1; Ŷk+1; k + 1; rk+1

)∣∣∣ X̂k; Ŷk; rk = i
]

− V2

(
X̂k; Ŷk; k; i

)

= E

[
k∑

l=k−d+2

x̂ T
l U x̂l

∣∣∣∣∣ X̂k; Ŷk; rk = i

]
−

k−1∑
l=k−d+1

x̂ T
l U x̂l

= x̂ T
k U x̂k − x̂ T

k−d+1U x̂k−d+1 and (3.10)

E
[

V3

(
X̂k+1; Ŷk+1; k + 1; rk+1

)∣∣∣ X̂k; Ŷk; rk = i
]

− V3

(
X̂k; Ŷk; k; i

)

= E

[
0∑

�=−d+2

k∑
l=k+�

ŷT
l Z ŷl

∣∣∣∣∣ X̂k; Ŷk; rk = i

]
−

0∑
�=−d+2

k−1∑
l=k−1+�

ŷT
l Z ŷl

= .d − 1/ ŷT
k Z ŷk −

k−1∑
l=k−d+1

ŷT
l Z ŷl : (3.11)

From (3.9)–(3.11), it follows that

E
[

V
(

X̂k+1; Ŷk+1; k + 1; rk+1

)∣∣∣ X̂k; Ŷk; rk = i
]

− V
(

X̂k; Ŷk; k; i
)

≤
N∑

j=1

pi j

(
x̂k + ŷk

)T
X j

(
x̂k + ŷk

) − x̂ T
k Xi x̂k + x̂ T

k U x̂k − x̂ T
k−d+1U x̂k−d+1

+ (
d̄ − 1

)
ŷT

k Z ŷk −
k−1∑

l=k−d+1

ŷT
l Z ŷl : (3.12)

From the first equation in (3.8), for any appropriate dimensions Ni1, Ni2 and Ni3, the
following equation holds:

2
(
x̂ T

k Ni1 + x̂ T
k−d+1 Ni2 + ŷT

k Ni3

) (
x̂k − x̂k−d+1 −

k−1∑
l=k−d+1

ŷl

)
= 0: (3.13)
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And from the second formula of (3.8), for any appropriate dimensions Si1, Si2 and Si3,
the following equation is also true for rk = i :

2
(
x̂ T

k Si1 + x̂ T
k−d+1Si2 + ŷT

k Si3

) (−Ê.i/ŷk +
(

Â.i/− Ê.i/
)

x̂k + Âd.i/x̂k−d+1

)
= 0:

(3.14)

For a semi-positive definite matrix Qi , the following holds:

.d̄ − 1/

⎡
⎣ x̂k

x̂k−d+1

ŷk

⎤
⎦

T

Qi

⎡
⎣ x̂k

x̂k−d+1

ŷk

⎤
⎦ −

k−1∑
l=k−d+1

⎡
⎣ x̂k

x̂k−d+1

ŷk

⎤
⎦

T

Qi

⎡
⎣ x̂k

x̂k−d+1

ŷk

⎤
⎦ ≥ 0: (3.15)

Then, adding the terms on the left of (3.13)–(3.15) to (3.12), it is obtained that

E
[

V
(

X̂k+1; Ŷk+1; k + 1; rk+1

)∣∣∣ X̂k; Ŷk; rk = i
]

− V
(

X̂k; Ŷk; k; i
)

≤ [
x̂ T

k x̂ T
k−d+1 ŷT

k

] (
3i + (

d̄ − 1
)

Qi

) [
x̂ T

k x̂ T
k−d+1 ŷT

k

]T

−
k−1∑

l=k−d+1

[
x̂ T

k x̂ T
k−d+1 ŷT

k ŷT
l

]
5i

[
x̂ T

k x̂ T
k−d+1 ŷT

k ŷT
l

]T
; (3.16)

where

3i =
⎡
⎣8i11 8i12 8i13

∗ 8i22 8i23

∗ ∗ 8i33

⎤
⎦ and 5i =

⎡
⎢⎢⎢⎢⎣

Qi

Ni1

Ni2

Ni3

N T
i1 N T

i2 N T
i3 Z

⎤
⎥⎥⎥⎥⎦ :

If we let Qi =
[ Ni1

Ni2
Ni3

]
Z−1 [ N T

i1 N T
i2 N T

i3 ], then Qi ≥ 0 and 5i ≥ 0. In this case,

the inequality (3.7) is equivalent to 3i + .d̄ − 1/Qi < 0, according to the Schur
complement. Let Þ0 = ½min{−.3i + .d̄ − 1/Qi /; i ∈ '}, then Þ0 > 0. From (3.16),
we obtain that for any k ≥ 0

E
[
V
(

X̂k+1; Ŷk+1; k + 1; rk+1

)∣∣∣ X̂k; Ŷk; rk = i
]

≤ V
(

X̂k; Ŷk; k; rk

)
− Þ0 x̂ T

k x̂k: (3.17)

Setting k = 0 and k = 1 in (3.17) yields

E
[
V
(

X̂1; Ŷ1; 1; r1

)∣∣∣ X̂0; Ŷ0; r0

]
≤ V

(
X̂0; Ŷ0; 0; r0

)
− Þ0 x̂ T

0 x̂0 (3.18)

and

E
[

V
(

X̂2; Ŷ2; 2; r2

)∣∣∣ X̂1; Ŷ1; r1

]
≤ V

(
X̂1; Ŷ1; 1; r1

)
− Þ0 x̂ T

1 x̂1: (3.19)
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Taking the expectation E[·|X̂0; Ŷ0; r0] on both sides of (3.18) with the aid of (3.19),
leads to

E
[

V
(

X̂2; Ŷ2; 2; r2

)∣∣∣ X̂0; Ŷ0; r0

]
≤ V

(
X̂0; Ŷ0; 0; r0

)
− Þ0

1∑
l=0

E
[
x̂ T

l x̂l

∣∣∣X̂0; Ŷ0; r0

]
:

Then, one can continue the iterative procedure (3.17) to obtain

E
[

V
(

X̂T+1; ŶT +1; T + 1; rT +1

)∣∣∣ X̂0; Ŷ0; r0

]

≤ V
(

X̂0; Ŷ0; 0; r0

)
− Þ0

T∑
l=0

E
[

x̂ T
l x̂l

∣∣ X̂0; Ŷ0; r0

]
;

implying that
∞∑

l=0

E
[

x̂ T
l x̂l

∣∣ X̂0; Ŷ0; r0

]
≤ 1

Þ0
V
(

X̂0; Ŷ0; 0; r0

)
< ∞:

This indicates that System (3.6) is stochastically stable. The proof is completed.

Considering the regularity, causality and robust stochastic stability of System (2.1)
with uk = 0 for all uncertainties satisfying (2.2) and (2.3), the following theorem is
given.

THEOREM 3.3. System (2.1) with uk = 0 is regular, causal and stochastically stable
for all uncertainties satisfying (2.2) and (2.3), if for each mode i ∈ ', there exist
matrices Xi > 0, Z > 0, U > 0, Ni1, Ni2, Ni3, Si1, Si2 and Si3, and scalars ½i > 0
satisfying the following LMI:⎡

⎣8i 5ia ½i5
T
ib

∗ −½i I 0
∗ ∗ −½i I

⎤
⎦ < 0; (3.20)

where

5ia =
[(

Si1 Ẽ.i/
)T (

Si2 Ẽ.i/
)T (

Si3 Ẽ.i/
)T

0
]T

and

5ib = [
F̃2.i/− F̃1.i/ F̃d.i/ −F̃1.i/ 0

]
:

PROOF. From Theorem 3.2, replacing Ê.i/, Â.i/ and Âd.i/ in (3.7) with
Ê.i/ + Ž Ê.k; i/, Â.i/ + Ž Â.k; i/ and Âd.i/ + Ž Âd.k; i/, respectively, then Sys-
tem (2.1) with uk = 0 is regular, causal and stochastically stable for all uncertainties
satisfying (2.2) and (2.3). According to (3.5), the inequality (3.7) can be written as

8i +5ia1.k; i/5ib + (
5ia1.k; i/5ib

)T
< 0: (3.21)
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By Lemma 2.3, a sufficient condition for (3.21) is that there exists a scalar ½i > 0
such that

8i + ½−1
i 5ia5

T
ia + ½i5

T
ib5ib < 0: (3.22)

Applying the Schur complement shows that (3.22) is equivalent to (3.20). The proof
is completed.

In the following, we design a robust state feedback controller in the form of (2.4) for
System (2.1) such that the resulting closed-loop system is regular, causal and robust
stochastically stable for all uncertainties satisfying (2.2) and (2.3). The closed-loop
system formed by System (2.1) and the state feedback control law uk = K .rk/xk is

Exk+1 = (
A.k; rk/+ B.k; rk/K .rk/

)
xk + Ad.k; rk/xk−d: (3.23)

By the transformation (3.1), for rk = i , i ∈ ', the closed-loop system (3.23) is RES
to the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1.k+1/=
(
A1K .i/+ E11.i/1.k; i/F1K .i/

)
x1k + (

A2K .i/+ E11.i/1.k; i/F2K .i/
)
x2k

+ (
Ad1.i/+ E11.i/1.k; i/F21.i/

)
x1.k−d/

+ (
Ad2.i/+ E11.i/1.k; i/F22.i/

)
x2.k−d/;

0= (
A3K .i/+ E12.i/1.k; i/F1K .i/

)
x1k + (

A4K .i/+ E12.i/1.k; i/F2K .i/
)
x2k

+ (
Ad3.i/+ E12.i/1.k; i/F21.i/

)
x1.k−d/

+ (
Ad4.i/+ E12.i/1.k; i/F22.i/

)
x2.k−d/;

(3.24)

where

A1K .i/ = A1.i/+ B1.i/K1.i/; A2K .i/ = A2.i/+ B1.i/K2.i/;

A3K .i/ = A3.i/+ B2.i/K1.i/; A4K .i/ = A4.i/+ B2.i/K2.i/;

F1K .i/ = F11.i/+ F3.i/K1.i/; F2K .i/ = F12.i/+ F3.i/K2.i/;

M B.i/ =
[

B1.i/
B2.i/

]
; K .i/N = [

K1.i/ K2.i/
]
;

and B1.i/ ∈ Rr×p, B2.i/ ∈ R.n−r/×p, K1.i/ ∈ R p×r and K2.i/ ∈ R p×.n−r/. From (3.3),
System (3.24) is rewritten as

(
ÊK .rk/+Ž ÊK .k; rk/

)
x̂k+1 = (

ÂK .rk/+Ž ÂK .k; rk/
)
x̂k +

(
Âd.rk/+Ž Âd.k; rk/

)
x̂k−d+1;
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where, for any rk = i , i ∈ ',

ÊK .i/ = Ê.i/− B̂.i/K̂2.i/; ÂK .i/ = Â.i/+ B̂.i/K̂1.i/;

Ž ÊK .k; i/ = Ẽ.i/1.k; i/F̃1K .i/; Ž ÂK .k; i/ = Ẽ.i/1.k; i/F̃2K .i/;

F̃1K .i/ = F̃1.i/− F3.i/K̂2.i/; F̃2K .i/ = F̃2.i/+ F3.i/K̂1.i/;

B̂.i/ = [
BT

1 .i/ BT
2 .i/ 0 0

]T
; K̂1.i/ = [

K1.i/ 0 0 0
]
;

K̂2.i/ = [
0 K2.i/ 0 0

]
;

and Ê.i/, Â.i/, F̃1.i/, F̃2.i/, Ẽ.i/, Âd.i/ and Ž Âd.k; i/ are shown as in (3.5).

THEOREM 3.4. If for each i ∈ ', and given scalars ti1, ti2, ti3, there exist matrices
X̄i > 0, Z̄ > 0, Ū > 0, N̄i1, N̄i2, N̄i3, K̄1.i/, K̄2.i/ and R = diag{R11; R22; R2},
R11 ∈ Rr×r , R22 ∈ R.n−r/×.n−r/ is nonsingular, R2 ∈ Rn×n, and scalar ži > 0 satisfying
the following LMI:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

9i11 9i12 9i13 .d̄ − 1/N̄i1 ži ti1 Ẽ.i/
(
9 f 2.i/−9 f 1.i/

)T

∗ 9i22 9i23 .d̄ − 1/N̄i2 ži ti2 Ẽ.i/
(
F̃d.i/R

)T

∗ ∗ 9i33 .d̄ − 1/N̄i3 ži ti3 Ẽ.i/ −9T
f 1.i/

∗ ∗ ∗ −.d̄ − 1/Z̄ 0 0
∗ ∗ ∗ ∗ −ži I 0
∗ ∗ ∗ ∗ ∗ −ži I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
< 0; (3.25)

where

9i11 =
N∑

j=1

pi j X̄ j − X̄i +Ū + N̄i1 + N̄ T
i1 + ti1

(
9a.i/−9e.i/

)+ ti1

(
9a.i/−9e.i/

)T
;

9i12 = ti2

(
9a.i/−9e.i/

)T − N̄i1 + N̄ T
i2 + ti1 Âd.i/R;

9i13 =
N∑

j=1

pi j X̄ j + N̄ T
i3 − ti19e.i/+ ti3

(
9a.i/−9e.i/

)T
;

9i22 = ti2 Âd.i/R + ti2 RT ÂT
d .i/− N̄i2 − N̄ T

i2 − Ū ;

9i23 = ti3 RT ÂT
d .i/− ti29e.i/− N̄ T

i3;

9i33 =
N∑

j=1

pi j X̄ j + .d̄ − 1/Z̄ − ti39e.i/− ti39
T
e .i/;

9e.i/ = Ê.i/R − B̂.i/
[
0 K̄2.i/ 0 0

]
;

9a.i/ = Â.i/R + B̂.i/
[
K̄1.i/ 0 0 0

]
;

9 f 1.i/ = F̃1.i/R − F3.i/
[
0 K̄2.i/ 0 0

]
and

9 f 2.i/ = F̃2.i/R + F3.i/
[
K̄1.i/ 0 0 0

]
;



124 Shuping Ma, Xinzhi Liu and Chenghui Zhang [14]

then there exists a robust state feedback controller for System (2.1) such that the
resulting closed-loop system is regular, causal and robust stochastically stable for all
uncertainties satisfying (2.2) and (2.3), and K .i/ = [K̄1.i/R

−1
11 K̄2.i/R

−1
22 ]N −1.

PROOF. By Theorem 3.3, replacing Ê.i/, Â.i/, F̃1.i/ and F̃2.i/ in (3.20) with
ÊK .i/, ÂK .i/, F̃1K .i/ and F̃2K .i/, respectively, then the closed-loop system (3.23) is
regular, causal and robust stochastically stable for all uncertainties satisfying (2.2) and
(2.3). Setting ST

i1 = ti1 S, ST
i2 = ti2 S and ST

i3 = ti3 S, then from LMI (3.20) it follows
that

N∑
j=1

pi j X j + .d̄ − 1/Z − ti3

(
ÊT

K .i/S + ST ÊK .i/
)
< 0:

Since Xi > 0, Z > 0 and d̄ ≥ 1, the same is true for −ti3

(
ÊT

K .i/S + ST ÊK .i/
)
. So

the matrix S is nonsingular. We set

T = diag
{

S−T ; S−T ; S−T ; S−T ; ½−1
i I; ½−1

i I
}
:

Pre- and post-multipling the inequality (3.20) by T and T T , respectively, and setting

S−T U S−1 = Ū ; S−T Z S−1 = Z̄; S−T Xi S
−1 = X̄i ; S−T Ni1 S−1 = N̄i1;

S−T Ni2 S−1 = N̄i2; S−T Ni3 S−1 = N̄i3; S−1 = R and ½−1
i = ži ;

(3.26)

and taking R = diag{R11; R22; R2}, R11 ∈ Rr×r , R22 ∈ R.n−r/×.n−r/, R2 ∈ Rn×n, and
setting K̄1.i/ = K1.i/R11 and K̄2.i/ = K2.i/R22, then LMI (3.25) is obtained.

Obviously, from (3.26), the matrix R in (3.25) should be nonsingular. The non-
singularity of R can be obtained by the following discussion. Since 9i33 < 0 in
(3.25), the same is true for −ti3.9e.i/ + 9T

e .i//. So R11 and R2 are nonsingular,
and K1.i/ = K̄1.i/R

−1
11 . Since R22 is nonsingular, K2.i/ = K̄2.i/R

−1
22 . Thus R is

nonsingular, and from (3.1), it follows that K .i/ = [K̄1.i/R
−1
11 K̄2.i/R

−1
22 ]N −1. The

proof is completed.

REMARK 4. The conditions (3.7), (3.20) and (3.25) given in Theorems 3.2, 3.3
and 3.4, respectively are LMIs and delay dependent. From the proof of Theorem 3.2,
it is known that if the LMIs (3.7), (3.20) and (3.25) hold for d̄, then they hold for any
d ∈ .0; d̄]. Generally, in delay-dependent LMI conditions, d̄ is not very large, and the
size of d̄ can be obtained by using a numerical optimization algorithm. If the delay d
is known, then d̄ in LMIs (3.7), (3.20) and (3.25) can be changed to d , directly.

REMARK 5. The optimal values of the tuning parameters ti1, ti2 and ti3, that were
introduced in Theorem 3.4, can be found by the approach stated in [11, Remark 5]. A
numerical solution to this problem can be obtained by using a numerical optimization
algorithm, such as fminsearch in the Optimization Toolbox version 2.2 of Matlab 6.5.
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4. Example

Consider the following uncertain time-delay discrete-time singular system:

E =
[

1 0
0 0

]
; A.1/ =

[
2 1
2 3

]
; Ad.1/ =

[
0:1 −0:5
0:3 0:1

]
; B.1/ =

[−2
−5

]
;

E1.1/ =
[

0:02
0:01

]
; F1.1/ = [

0:01 0:01
]
; F2.1/ = [

0:01 0:02
]
; F3.1/ = 0:01;

A.2/ =
[

0 2
−2 −2

]
; Ad.2/ =

[
0:1 −0:1
0 −0:1

]
; B.2/ =

[
0
1

]
;

E1.2/ =
[

0
−0:02

]
; F1.2/ = [

0:005 0:01
]
; F2.2/ = [

0 −0:01
]

and

F3.2/ = 0:01:

Let p11 = 0:6, p12 = 0:4, p21 = 0:1 and p22 = 0:9. Also let d̄ = 2, t11 = 0:2,
t12 = −0:005, t13 = 4, t21 = 0:08, t22 = −0:002 and t23 = 4. Solving the LMI (3.25),
we find that the LMI is feasible with the following results:

X̄.1/ = 103 ×

⎡
⎢⎢⎣

0:3106 0:7862 −0:3578 −0:0665
0:7862 2:5743 −0:1292 0:1660

−0:3578 −0:1292 2:6592 0:5720
−0:0665 0:1660 0:5720 2:9200

⎤
⎥⎥⎦ ;

X̄.2/ = 103 ×

⎡
⎢⎢⎣

0:3168 0:8177 −0:2841 −0:0292
0:8177 2:7065 0:0255 0:2522

−0:2841 0:0255 2:3174 0:3934
−0:0292 0:2522 0:3934 2:9071

⎤
⎥⎥⎦ ;

Z̄ = 103 ×

⎡
⎢⎢⎣

0:1417 0:1335 0:2628 0:0131
0:1335 1:0908 −0:0967 −0:1284
0:2628 −0:0967 2:0468 0:3167
0:0131 −0:1284 0:3167 1:2122

⎤
⎥⎥⎦ ;

Ū =

⎡
⎢⎢⎣

30:8316 79:8609 1:9475 −2:1030
79:8609 256:1200 −13:4121 −1:6061
1:9475 −13:4121 51:5632 −4:6103

−2:1030 −1:6061 −4:6103 167:8996

⎤
⎥⎥⎦ ;
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N̄11 = 103 ×

⎡
⎢⎢⎣

−0:0855 0:0974 −0:5162 −0:0899
−0:1381 −0:7574 −0:3033 −0:0464
0:2079 0:7889 −1:2318 −0:2018
0:0643 0:1667 −0:1063 −0:2469

⎤
⎥⎥⎦ ;

N̄12 = 103 ×

⎡
⎢⎢⎣

0:0796 −0:1110 0:6021 0:1035
0:1314 0:7398 0:5585 0:0870

−0:1788 −0:8147 1:3272 0:2512
−0:0510 −0:1611 0:1448 0:2321

⎤
⎥⎥⎦ ;

N̄13 =

⎡
⎢⎢⎣

63:1533 96:7806 233:2663 31:0404
82:3140 234:4307 335:9226 −38:4231
−0:2822 40:9476 11:0330 −25:2583
1:3931 139:5422 45:4164 70:2487

⎤
⎥⎥⎦ ;

N̄21 =

⎡
⎢⎢⎣

−82:8138 −42:1154 −24:5453 4:8740
−33:5148 −300:7799 14:5256 11:7652
−24:7109 12:8396 −254:0699 −4:1169

3:3901 9:9484 −2:9763 −271:5547

⎤
⎥⎥⎦ ;

N̄22 =

⎡
⎢⎢⎣

73:3869 −6:4080 23:9660 −0:1047
7:7969 145:9444 1:3366 1:3191
23:8032 3:1923 236:1654 7:1016
−0:6818 0:2924 4:3697 185:9904

⎤
⎥⎥⎦ ;

N̄23 =

⎡
⎢⎢⎣

31:6346 39:6644 227:6621 35:7815
1:3799 23:9879 −9:0751 −95:7348
2:2760 −6:3680 46:0983 7:4269
17:0508 74:9889 55:9022 43:6824

⎤
⎥⎥⎦ ;

R =

⎡
⎢⎢⎣

79:5754 0 0 0
0 −110:9884 0 0
0 0 602:1076 103:4690
0 0 131:4476 739:8340

⎤
⎥⎥⎦ ;

ž1 = 918:5972; ž2 = 1:1066 × 103; K̄1.1/ = 76:1471;

K̄2.1/ = 70:3455; K̄1.2/ = −36:2810 and K̄2.2/ = −885:4138:
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Then K1.1/ = 0:9569, K2.1/ = −0:6338, K1.2/ = −0:4559 and K2.2/ = 7:9775.
Thus

K .1/ = [
0:9569 −0:6338

]
and K .2/ = [−0:4559 7:9775

]
:

Figure 1 gives the simulation result of the closed-loop system. The initial function
is �.k/ = [ 2 −2 ]T , with k = −2;−1; 0: From Figure 1 we can see that the closed-loop
system is stable.
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FIGURE 1. The state trajectories of the closed-loop system.

5. Conclusions

In this paper, we have investigated robust stochastic stability and stabilization via
state feedback for time-delay discrete-time Markovian jump singular systems with
parameter uncertainties. Based on the RES transformation and by introducing new
state vectors, we have transformed the singular system into a time-delay discrete
Markovian jump standard linear system, and then established some delay-dependent
LMI conditions for time-delay discrete-time Markovian jump singular systems to be
regular, causal and stochastically stable. This condition has solved the problems of
robust stochastic stability and stabilization in terms of delay-dependent LMIs. We
have also illustrated the effectiveness of our results by a numerical example. The
results obtained in this paper may be extended and generalized to a large class of
quasilinear and nonlinear problems.
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In this paper, we have only discussed the case of the singular matrix E having no
jump mode. If E also has a jump mode, then E is changed to Ei . In this case, the
transformation matrices in (3.1) become Mi and Ni , and we have

Mi Ei Ni =
[

Ii 0
0 0

]
and xk = Ni

[
x1ki

x2ki

]
;

and the state of the transformed system becomes
[ x1ki

x2ki

]
, which is rather complicated

to discuss. Hence, some assumptions for the matrix Ei should be given so that the
matrix Ni remains the same, and the method given in this paper is invalid. Nonetheless,
the case with E having a jump mode is an interesting problem for future investigation
via other methods.
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