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Abstract

Interior-Point Methods (IPMs) are not only very effective in practice for solving linear
optimization problems but also have polynomial-time complexity. Despite the practical
efficiency of large-update algorithms, from a theoretical point of view, these algorithms
have a weaker iteration bound with respect to small-update algorithms. In fact, there is a
significant gap between theory and practice for large-update algorithms. By introducing
self-regular barrier functions, Peng, Roos and Terlaky improved this gap up to a factor of
log n. However, checking these self-regular functions is not simple and proofs of theorems
involving these functions are very complicated. Roos et al. by presenting a new class of
barrier functions which are not necessarily self-regular, achieved very good results through
some much simpler theorems. In this paper we introduce a new kernel function in this class
which yields the best known complexity bound, both for large-update and small-update
methods.
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1. Introduction

We deal with the standard linear optimization problem

min
{
c�x : Ax = b; x ≥ 0

}
(1.1)

where A ∈ Rm×n is a real m × n matrix with rank.A/ = m, b ∈ Rm and c ∈ Rn. The
dual problem of (1.1) is given by

max
{
b�y : A�y + s = c; s ≥ 0

}
: (1.2)
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Kernel functions play an important role in defining new search directions in primal-
dual interior point algorithms for solving linear optimization problems. A kernel
function is a univariate strictly convex function which is defined for all positive reals t
and is minimal at t = 1 where the minimal value equals zero. In other words
 .t/ : D → R+ with R++ ⊆ D, is a kernel function when it satisfies

 ′.1/ =  .1/ = 0;  ′′.t/ > 0:

Moreover,  .t/ has the barrier property, that is,  .t/ goes to infinity if either t → 0
or t → ∞. Note that the above properties imply that  .t/ is completely determined
by its second derivative

 .t/ =
∫ t

1

∫ ¾

1

 ′′.� /d�d¾:

This kernel function may be extended to a positive n-dimensional vector ¼ by

9.¹/ =
n∑

i=1

 .¹i/; (1.3)

yielding the scaled barrier function 9.¹/. Note that the barrier function 9.¹/ is
nonnegative, and zero if and only if ¹ is a vector of ones. Therefore, the value of
the barrier function can be considered as a measure for the closeness of x and .y; s/
to the ¼-centres of (1.1) and (1.2). Hence some authors also call 9.¹/ a proximity
function. In the next section we briefly describe how any such barrier function defines
a primal-dual interior-point method. The iteration bound for so-called large-update
methods is obtained by showing that each iteration decreases 9.¹/ by a sufficient
amount. Table 1 gives some examples of kernel functions that have been analyzed so
far, and the complexity results for the corresponding algorithms.

Note that all kernel functions in this table depend on a parameter and the mentioned
iteration bounds in the table occur by choosing this parameter as indicated in the third
column of the table. The first kernel function, the so-called self-regular function,
was introduced and analyzed by Peng et al. Also the second kernel function is self
regular and is the special case of the self regular function �p;q.t/, for p = 1. The
third function is not self regular and has been proposed and analyzed by Bai et al.
A surprising feature of this kernel function is that it is finite for t = 0, a property
which separates it from self-regular functions, because self-regular functions become
unbounded when t approaches zero. Also Bai et al. introduced the following kernel
function in [2]:

t2 − 1

2
+ e1=t − e

e
:
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TABLE 1. Kernel functions with the best known iteration bound for large-update methods. The iteration
bound for all kernel functions is O.

√
n log n/ log.n=ž/.

Kernel function Parameter References

t2 − 1

2
+ t1−q − 1

q − 1
, q > 1

q = 1

2
log n [5, 6]

t2 − 1

2
+ t1−q − 1

q.q − 1/
− q − 1

q
.t − 1/, q > 1

t2 − 1

2
+ 1

¦

(
e¦.1−t/ − 1

)
; ¦ > 0 ¦ = O.log n/ [1]

t2 − 1

2
+
∫ t

1

eq.1=¾−1/d¾ , q ≥ 1 q = O.log.1 + n// [3]

They showed that the iteration bound for the corresponding algorithm is
O
(√

n.log n/2 log.n=ž/
)
. This bound is a factor log n worse than the bound in Table 1.

In this paper we introduce a new kernel function as follows:

 .t/ = t2 − 1

2
+ eq.1=t−1/ − 1

q
; q ≥ 1: (1.4)

We show that this kernel function yields the best-known iteration bound for large-
update methods, that is, O.

√
n log n/ log.n=ž/. Figure 1 depicts the graph of  .t/.
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FIGURE 1. The graph of  for q = 4.

The paper is organized as follows. In Section 2, we briefly recall how a given kernel
function defines a primal-dual interior-point algorithm. In Section 3, we describe the
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simple conditions on the kernel function that define a general class of kernel functions
introduced by Bai et al. in [2]. Then we show that the new kernel function introduced
in (1.4) satisfies these conditions. In what follows, we use the general scheme for
analyzing the generic algorithm, as presented in [2]. We obtain the iteration bounds
for both large-update and small-update methods based on a new kernel function in
Section 4 and finally, Section 5 contains some concluding remarks.

2. The generic primal-dual interior-point algorithm

It is well known that finding an optimal solution of (1.1) and (1.2) is equivalent to
solving the following system:

⎧⎪⎨
⎪⎩

Ax = b; x ≥ 0;

A�y + s = c; s ≥ 0;

xs = 0:

The basic idea of the primal-dual IPMs is to replace the third equation, the so-
called complementarity condition, by the parameterized equation xs = ¼e, with
¼ > 0. Thus we consider the following system:

⎧⎪⎨
⎪⎩

Ax = b; x ≥ 0;

A�y + s = c; s ≥ 0;

xs = ¼e:

We assume that the primal and dual problem in (1.1) and (1.2) satisfies the interior-
point condition (IPC), that is, there exists .x0; s0; y0/ such that

Ax0 = b; x0 > 0; A�y0 + s0 = c; s0 > 0:

It is well known that the IPC can be assumed without loss of generality. By using the
self-dual embedding model, we will assume that x0 = s0 = e [4, 7]. If rank.A/ = m
and the IPC holds, then for each ¼ > 0 the above parameterized system has a unique
solution. We denote this solution as

(
x.¼/; y.¼/; s.¼/

)
and call x.¼/ the ¼-centre

of (1.1) and
(
y.¼/; s.¼/

)
the ¼-centre of (1.2). The set of ¼-centres (with ¼ running

through all positive real numbers) gives a homotopy path, which is called the central
path of (1.1) and (1.2). If ¼ → 0 then the limit of the central path exists and since
the limit point satisfies the complementarity condition, the limit yields to optimal
solutions for (1.1) and (1.2). If

(
x.¼/; y.¼/; s.¼/

)
is known for some positive ¼, then

we decrease ¼ to ¼ := .1 − �/¼, for some fixed � ∈ .0; 1/ and solve the following
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system: ⎧⎪⎨
⎪⎩

A1x = 0;

A�1y +1s = 0;

s1x + x1s = ¼e − xs:

(2.1)

This system uniquely defines a search direction .1x; 1s; 1y/. This direction
approximates the next¼-centre. Hence all IPMs follow the central path approximately.
Now we define

¹ =
√

xs

¼
:

One can easily check that System (2.1) which defines the search direction can be
rewritten as follows: ⎧⎪⎨

⎪⎩
Ādx = 0;

Ā�1y + ds = 0;

dx + ds = ¹−1 − ¹;

(2.2)

where dx = ¹1x=x , ds = ¹1s=s and Ā = AV −1 X , with V = diag.¹/ and X =
diag.x/. The third equation in (2.2) is called the scaled centring equation. The
right-hand side in the scaled centring equation equals minus the gradient of the basic
logarithmic barrier function, that is,

9c.¹/ =
n∑

i=1

(
v2

i − 1

2
− log vi

)
:

The basic idea in IPMs is to replace the scaled barrier function9c.¹/ by an arbitrary
strictly convex function 9.¹/, such that 9.¹/ is minimal at ¹ = e with 9.e/ = 0.
Thus System (2.2) converts to⎧⎪⎨

⎪⎩
Ādx = 0;

Ā�1y + ds = 0;

dx + ds = −19.¹/:

Since the vectors dx and ds belong to the null and row spaces of the matrix Ā,
these vectors are orthogonal. By taking a suitable step size Þ ∈ .0; 1/, these search
directions construct a new triple .x+; y+; s+/ with

x+ = x + Þ1x; y+ = y + Þ1y; s+ = s + Þ1s:
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We repeat the procedure until we find an iterate in a certain neighbourhood of(
x.¼/; y.¼/; s.¼/

)
. Then ¼ is again reduced by the factor 1 − � and we apply

Newton’s method targeting the new ¼-centres, and so on. This process is repeated
until ¼ is small enough and at this stage we have found an ž-solution of the problems
(1.1) and (1.2). The generic form of the algorithm is shown in Figure 2.

Input:
A threshold parameter − > 0;
An accuracy parameter ž > 0;
A fixed barrier update parameter �; 0 < � < 1;
begin

x := e; s := e; ¼ := 1;
while n¼ > ž do

begin
¼ := .1 − �/¼;
while 9.¹/ > − do

begin
x+ := x + Þ1x ;
y+ := y + Þ1y;

¹ :=
√

xs
¼

;

end
end

end

FIGURE 2. A generic primal-dual algorithm for Lo

3. A general class of the kernel functions

In [2] Bai, El Ghami and Roos introduced a general class of kernel functions by
using the following conditions:

t ′′.t/+  ′.t/ > 0; t < 1; (3.1)

t ′′.t/−  ′.t/ > 0; t > 1; (3.2)

 ′′′.t/ < 0; t > 0; (3.3)

2 ′′.t/2 −  ′.t/ ′′′.t/ > 0; t < 1; (3.4)

 ′′.t/ ′.þt/− þ ′.t/ ′′′.þt/ > 0; t > 1; þ > 1: (3.5)

The kernel function  .t/ is called eligible if it satisfies (3.1) and (3.3) to (3.5).
It was shown in [2] that (3.2) and (3.3) imply (3.5). So a kernel function  .t/ is
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eligible if it satisfies conditions (3.1) to (3.4). First we show that the kernel function
introduced in (1.4) satisfies these conditions. The first three derivatives of  .t/ are
shown in the following table:

TABLE 2.  and its derivatives.

 .t/
t2 − 1

2
+ eq=t − eq

qeq

 ′.t/ t − eq.1=t−1/

t2

 ′′.t/ 1 + q + 2t

t4
eq.1=t−1/

 ′′′.t/ −q2 + 6qt + 6t2

t6
eq.1=t−1/

Since for 0 < t < 1 and q ≥ 1

t ′′.t/+  ′.t/ = 2t +
[

q + 2t

t3
− 1

t2

]
eq.1=t−1/ = 2t +

(
q + t

t3

)
eq.1=t−1/ > 0;

Condition (3.1) is satisfied. Furthermore, for t > 1

t ′′.t/−  ′.t/ = q + 3t

t3
eq.1=t−1/ > 0:

So (3.2) is satisfied as well. Also from Table 2 it is obvious that (3.3) is satisfied.
Finally for satisfying (3.4), it is seen that

2 ′′.t/2 −  ′.t/ ′′′.t/

= 2
[
t4 + .q + 2t/eq.1=t−1/

]2 + eq.1=t−1/.q2 + 6qt + 6t2/
(
t3 − eq.1=t−1/

)
t8

:

If we set A = eq.1=t−1/, after some elementary reduction we have

2 ′′.t/2 −  ′.t/ ′′′.t/ = A2
[
2t2 + 2qt + q2

]+ A
[
14t2 + 10qt + q2t3

]+ 2t8

t8
:

On the other hand, because 0 < t < 1, it follows that 1=t − 1 > 0 and for q ≥ 1 we
have

A = eq.1=t−1/ > 1:
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So we have 2 ′′.t/2 −  ′.t/ ′′′.t/ > 0 and hence condition (3.4) holds. Therefore
 .t/ lies in the general class introduced in [2]. Having such a kernel function, we can
now construct the barrier function 9.¹/ by (1.3). The function 9.¹/ not only serves
to define a search direction, but also as a measure of closeness of the current iterates
to the ¼-centre. We use the norm-based proximity measure Ž.¹/ defined by

Ž.¹/ = 1

2
‖∇9.¹/‖ = 1

2

√√√√ n∑
i=1

. ′.¹i//:

Since 9.¹/ is strictly convex and minimal at ¹ = e we have

9.¹/ = 0 ⇐⇒ Ž.¹/ = 0 ⇐⇒ ¹ = e:

In other words, the proximity measure Ž.¹/ is zero if and only if the current iterates
are the ¼-centres. For any kernel function in the mentioned class, iteration bounds for
both small-update and large-update methods can be obtained by using the following
scheme:

Step 1. Solve the equation − ′.t/=2 = s to get ².s/, the inverse function of
− ′.t/=2, t ∈ .0; 1]. If the equation is hard to solve, derive a lower bound for
².s/.

Step 2. Calculate the decrease of 9.¹/ in terms of Ž for the default step size
Þ̃ = 1= ".².2Ž// from f .Þ̃/ = Ž2= ".².2Ž//.

Step 3. Solve the equation  .t/ = s to get Q.s/, the inverse function of  .t/, t ≥ 1.
If the equation is hard to solve, derive lower and upper bound for Q.s/.

Step 4. Derive a lower bound for Ž in term of9.¹/ by using Ž.¹/ ≥  ′(Q.9.¹//)=2.

Step 5. Using the result of Steps 3 and 4 find positive constants � and � , with
� ∈ .0; 1], such that f .Þ̃/ ≤ −�9.¹/1−� .

Step 6. Calculate the upper bound for 90 from

90 ≤ L .n; �; − / = n 

(
Q.−=n/√

1 − �

)
:

Step 7. Derive an upper bound for the total number of iterations from

9
�

0

��

1

�
log

n

ž
:

Step 8. To calculate a complexity bound for large-update algorithms set − = O.n/
and � = 2.1/ and for small-update method algorithms set − = O.1/ and
� = 2.1=

√
n/.

In the next section, we apply this scheme to obtain an iteration bound for the
algorithm generated by the kernel function introduced in (1.4).
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4. Iteration bounds of the algorithm

Since we are unable to get explicit expressions for the inverse functions ² and Q
in the above steps, we recall two lemmas from [2].

LEMMA 4.1. Let Q : [0;∞] → [1;∞] be the inverse function of  .t/ for t ≥ 1.
Then we have

√
1 + 2s ≤ Q.s/ ≤ 1 + √

2s; s ≥ 0:

LEMMA 4.2. Let  b.t/ be the barrier term of  .t/ ( .t/ = .t2 − 1/=2 +  b.t/)
and let ² : [0;∞/ → .0; 1] be the inverse function of the restriction of − ′

b.t/ to the
interval .0; 1]. Then one has

².s/ ≥ ².1 + 2s/:

Now by using these two lemmas, we derive some bounds for ² and Q.

Step 1. From the equation − ′
b.t/ = s we have

− ′
b.t/ = eq.1=t−1/

t2
= s;

eq.1=t−1/ = st2 ⇐⇒ q

(
1

t
− 1

)
= log s + 2 log t:

From 0 < t ≤ 1 we find that log t and as a result

q

(
1

t
− 1

)
≤ log s ⇐⇒ t = ².s/ ≥ 1

1 + q−1 log s
:

Now by using Lemma 4.2, since ².s/ ≥ ².1 + 2s/, we derive a lower bound for ².s/
as follows:

².s/ ≥ 1

1 + q−1 log.1 + 2s/
; s ≥ 0: (4.1)

Step 2. The function  ′′.t/ is monotonically decreasing, hence

f .Þ̃/ ≤ − Ž2

 ′′.².2Ž//
≤ − Ž2

 ′′.².1 + 4Ž//
:

Putting t = ².1 + 4Ž/, we have t ≤ 1 and can write

f .Þ̃/ ≤ − Ž2

 ′′.t/
≤ − Ž2

1 + .q + 2t/t−4eq.1=t−1/
: (4.2)
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Note that

t = ².1 + 4Ž/ ⇐⇒ .1 + 4Ž/ = − ′
b.t/ = eq.1=t−1/

t2
:

Substituting this equation in (4.2), we have

f .Þ̃/ ≤ − Ž2

1 + .q + 2t/t−2.1 + 4Ž/
≤ − Ž2

1 + 3qt−2.1 + 4Ž/
:

On the other hand,
1

t2
= 1

².1 + 4Ž/2
≤ 1

².2Ž/2
≤ (1 + q−1 log.1 + 4Ž/

)2
:

So

f .Þ̃/ ≤ − Ž2

1 + 3q.1 + 4Ž/ .1 + q−1 log.1 + 4Ž//2
: (4.3)

Step 3. By Lemma 4.1 the inverse function of  .t/ for t ∈ [1;∞/ satisfies√
1 + 2 .t/ ≤ Q. .t// ≤ 1 +√2 .t/: (4.4)

Step 4. Using Ž.¹/ ≥  ′(Q.9.¹//)=2, we have

Ž ≥  ′(Q.9.¹//)
2

≥ 1

2

(√
1 + 29 − eq.1=

√
1+29−1/

.1 + 29/2

)
: (4.5)

Note that 9 ≥ 1, so .1 + 29/3=2 ≥ eq.1=
√

1+29−1/ and
√

1 + 29 ≤ √
39 . So we can

write

Ž ≥ 1

2

(√
1 + 29 − 1√

1 + 29

)
= 9√

1 + 29
≥ 9√

39
≥
√
9

3
: (4.6)

Step 5. Let 90 ≥ 9 ≥ − ≥ 3. We deduced that Ž ≥ 1 and
√
9 ≤ √

3Ž ≤ 2Ž. Now
by using (4.3) we have

f .Þ̃/ ≤ − Ž2

16qŽ .1 + q−1 log.1 + 4Ž//2
≤ − Ž

16q .1 + q−1 log.1 + 4Ž//2
;

that is,

f .Þ̃/ ≤ −
√
9

48q
(
1 + q−1 log.1 + √

90/
)2 : (4.7)

Thus it follows that

9k+1 ≤ 9k − �.9k/
1−� ; k = 0; 1; : : : ; K − 1; (4.8)

where � = 1

48q
(
1 + q−1 log.1 + √

90/
)2 ; � = 1

2

and K denotes the number of inner iterations.



[11] A new proximity function 269

Step 6. From Lemma 4.1 we have Q.−=n/ ≤ 1 + √
2−=n. As a consequence

90 ≤ L .n; �; − / = n 

(
Q.−=n/√

1 − �

)
≤ n 

(
1 + √

2−=n√
1 − �

)
:

Since  .t/ ≤ .t2 − 1/=2 for t ≥ 1,

90 ≤ n2

2

√
2−=n + 2−=n

1 − �
= − + √

2n−

1 − �
: (4.9)

Step 7. By inequality (4.8), the number of inner iterations is bounded by

K ≤ 9
�

0

��
= 96q

(
1 + q−1 log

(
1 +√90

))2

9
1=2
0 :

Substituting (4.9) in this inequality gives

K ≤ 96q

⎛
⎝1 + q−1 log

⎛
⎝1 +

√
− + √

2n−

1 − �

⎞
⎠
⎞
⎠

2 (
− + √

2n−

1 − �

)1=2

:

Thus the total number of iterations is bounded above by

K

�
log

n

ž
≤ 96q

⎛
⎝1 + q−1 log

⎛
⎝1 +

√
− + √

2n−

1 − �

⎞
⎠
⎞
⎠

2 (
− + √

2n−

1 − �

)1=2
1

�
log

n

ž
:

(4.10)

Step 8. For large-update methods set − = O.n/ and � = 2.1/. As a consequence,

90 ≤ − + √
2n−

1 − �
= O.n/:

By choosing

q = log

⎛
⎝1 +

√
− + √

2n−

1 − �

⎞
⎠ = O.log n/

the total iteration bound in (4.10) becomes

O
(√

n.log n/
)

log
n

ž
:

Setting − = O.1/ and � = 2.1=
√

n/ for small-update methods, we can obtain the
best known bound as follows.
By Lemma 2.4 in [2], we have  .t/ <  ′′.1/.t − 1/2=2, t > 1. Since  ′′.1/ = q + 3,
we achieve an upper bound for 90 of

90 = n ′′.1/
2

(
1 + √

2−=n√
1 − �

− 1

)2

≤ n ′′.1/
2

(
� + √

2−=n√
1 − �

)2

= q + 3

2

(√
2− + �

√
n
)2

1 − �
;
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where we also use that 1 − √
1 − � ≤ � . Now 90 = O.q/ and the iteration bound

becomes

O
(
q
√

qn
)

log
n

ž
:

By choosing the parameter q as a constant which is independent of n, this is the best
bound for small-update methods.

5. Concluding remarks

In this paper, we introduced a new kernel function and showed that it generates the
best possible iteration bounds, both for small-update and for large-update methods.
This paper was inspired as a result of the work on primal-dual interior-point methods
(IPMs) for linear optimization based on kernel functions and the scheme for analyzing
such methods. The new kernel function is a parameterized version of a kernel function
introduced in [2].
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