
ANZIAM J. 49(2007), 259–270

A NEW PROXIMITY FUNCTION GENERATING THE BEST
KNOWN ITERATION BOUNDS FOR BOTH LARGE-UPDATE AND

SMALL-UPDATE INTERIOR-POINT METHODS

KEYVAN AMINI 1 and ARASH HASELI2

(Received 16 December, 2006; revised 6 August, 2007)

Abstract

Interior-Point Methods (IPMs) are not only very effective in practice for solving linear
optimization problems but also have polynomial-time complexity. Despite the practical
efficiency of large-update algorithms, from a theoretical point of view, these algorithms
have a weaker iteration bound with respect to small-update algorithms. In fact, there is a
significant gap between theory and practice for large-update algorithms. By introducing
self-regular barrier functions, Peng, Roos and Terlaky improved this gap up to a factor of
log n. However, checking these self-regular functions is not simple and proofs of theorems
involving these functions are very complicated. Roos et al. by presenting a new class of
barrier functions which are not necessarily self-regular, achieved very good results through
some much simpler theorems. In this paper we introduce a new kernel function in this class
which yields the best known complexity bound, both for large-update and small-update
methods.

2000 Mathematics subject classification: primary 90C05; secondary 90C51.
Keywords and phrases: linear optimization, interior-point method, primal-dual method,
kernel function, large-update, small-update, polynomial complexity.

1. Introduction

We deal with the standard linear optimization problem

min
{
c�x : Ax = b; x ≥ 0

}
(1.1)

where A ∈ Rm×n is a real m × n matrix with rank.A/ = m, b ∈ Rm and c ∈ Rn. The
dual problem of (1.1) is given by

max
{
b�y : A�y + s = c; s ≥ 0

}
: (1.2)

1Department of Sciences, Razi University, Kermanshah, Iran; email: keyvanamini1353@yahoo.com or
kamini@razi.ac.ir.
2Islamic Azad University, Kermanshah branch, Kermanshah, Iran; email: arhaseli@yahoo.com.
c© Australian Mathematical Society 2007, Serial-fee code 1446-8735/07

259

http://www.austms.org.au/Publ/ANZIAM/V49P2/2533.html
mailto:keyvanamini1353@yahoo.com
mailto:kamini@razi.ac.ir
mailto:arhaseli@yahoo.com

260 Keyvan Amini and Arash Haseli [2]

Kernel functions play an important role in defining new search directions in primal-
dual interior point algorithms for solving linear optimization problems. A kernel
function is a univariate strictly convex function which is defined for all positive reals t
and is minimal at t = 1 where the minimal value equals zero. In other words
 .t/ : D → R+ with R++ ⊆ D, is a kernel function when it satisfies

 ′.1/ = .1/ = 0; ′′.t/ > 0:

Moreover, .t/ has the barrier property, that is, .t/ goes to infinity if either t → 0
or t → ∞. Note that the above properties imply that .t/ is completely determined
by its second derivative

 .t/ =
∫ t

1

∫ ¾

1

 ′′.� /d�d¾:

This kernel function may be extended to a positive n-dimensional vector ¼ by

9.¹/ =
n∑

i=1

 .¹i/; (1.3)

yielding the scaled barrier function 9.¹/. Note that the barrier function 9.¹/ is
nonnegative, and zero if and only if ¹ is a vector of ones. Therefore, the value of
the barrier function can be considered as a measure for the closeness of x and .y; s/
to the ¼-centres of (1.1) and (1.2). Hence some authors also call 9.¹/ a proximity
function. In the next section we briefly describe how any such barrier function defines
a primal-dual interior-point method. The iteration bound for so-called large-update
methods is obtained by showing that each iteration decreases 9.¹/ by a sufficient
amount. Table 1 gives some examples of kernel functions that have been analyzed so
far, and the complexity results for the corresponding algorithms.

Note that all kernel functions in this table depend on a parameter and the mentioned
iteration bounds in the table occur by choosing this parameter as indicated in the third
column of the table. The first kernel function, the so-called self-regular function,
was introduced and analyzed by Peng et al. Also the second kernel function is self
regular and is the special case of the self regular function �p;q.t/, for p = 1. The
third function is not self regular and has been proposed and analyzed by Bai et al.
A surprising feature of this kernel function is that it is finite for t = 0, a property
which separates it from self-regular functions, because self-regular functions become
unbounded when t approaches zero. Also Bai et al. introduced the following kernel
function in [2]:

t2 − 1

2
+ e1=t − e

e
:

[3] A new proximity function 261

TABLE 1. Kernel functions with the best known iteration bound for large-update methods. The iteration
bound for all kernel functions is O.

√
n log n/ log.n=ž/.

Kernel function Parameter References

t2 − 1

2
+ t1−q − 1

q − 1
, q > 1

q = 1

2
log n [5, 6]

t2 − 1

2
+ t1−q − 1

q.q − 1/
− q − 1

q
.t − 1/, q > 1

t2 − 1

2
+ 1

¦

(
e¦.1−t/ − 1

)
; ¦ > 0 ¦ = O.log n/ [1]

t2 − 1

2
+
∫ t

1

eq.1=¾−1/d¾ , q ≥ 1 q = O.log.1 + n// [3]

They showed that the iteration bound for the corresponding algorithm is
O
(√

n.log n/2 log.n=ž/
)
. This bound is a factor log n worse than the bound in Table 1.

In this paper we introduce a new kernel function as follows:

 .t/ = t2 − 1

2
+ eq.1=t−1/ − 1

q
; q ≥ 1: (1.4)

We show that this kernel function yields the best-known iteration bound for large-
update methods, that is, O.

√
n log n/ log.n=ž/. Figure 1 depicts the graph of .t/.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

FIGURE 1. The graph of for q = 4.

The paper is organized as follows. In Section 2, we briefly recall how a given kernel
function defines a primal-dual interior-point algorithm. In Section 3, we describe the

262 Keyvan Amini and Arash Haseli [4]

simple conditions on the kernel function that define a general class of kernel functions
introduced by Bai et al. in [2]. Then we show that the new kernel function introduced
in (1.4) satisfies these conditions. In what follows, we use the general scheme for
analyzing the generic algorithm, as presented in [2]. We obtain the iteration bounds
for both large-update and small-update methods based on a new kernel function in
Section 4 and finally, Section 5 contains some concluding remarks.

2. The generic primal-dual interior-point algorithm

It is well known that finding an optimal solution of (1.1) and (1.2) is equivalent to
solving the following system:

⎧⎪⎨
⎪⎩

Ax = b; x ≥ 0;

A�y + s = c; s ≥ 0;

xs = 0:

The basic idea of the primal-dual IPMs is to replace the third equation, the so-
called complementarity condition, by the parameterized equation xs = ¼e, with
¼ > 0. Thus we consider the following system:

⎧⎪⎨
⎪⎩

Ax = b; x ≥ 0;

A�y + s = c; s ≥ 0;

xs = ¼e:

We assume that the primal and dual problem in (1.1) and (1.2) satisfies the interior-
point condition (IPC), that is, there exists .x0; s0; y0/ such that

Ax0 = b; x0 > 0; A�y0 + s0 = c; s0 > 0:

It is well known that the IPC can be assumed without loss of generality. By using the
self-dual embedding model, we will assume that x0 = s0 = e [4, 7]. If rank.A/ = m
and the IPC holds, then for each ¼ > 0 the above parameterized system has a unique
solution. We denote this solution as

(
x.¼/; y.¼/; s.¼/

)
and call x.¼/ the ¼-centre

of (1.1) and
(
y.¼/; s.¼/

)
the ¼-centre of (1.2). The set of ¼-centres (with ¼ running

through all positive real numbers) gives a homotopy path, which is called the central
path of (1.1) and (1.2). If ¼ → 0 then the limit of the central path exists and since
the limit point satisfies the complementarity condition, the limit yields to optimal
solutions for (1.1) and (1.2). If

(
x.¼/; y.¼/; s.¼/

)
is known for some positive ¼, then

we decrease ¼ to ¼ := .1 − �/¼, for some fixed � ∈ .0; 1/ and solve the following

[5] A new proximity function 263

system: ⎧⎪⎨
⎪⎩

A1x = 0;

A�1y +1s = 0;

s1x + x1s = ¼e − xs:

(2.1)

This system uniquely defines a search direction .1x; 1s; 1y/. This direction
approximates the next¼-centre. Hence all IPMs follow the central path approximately.
Now we define

¹ =
√

xs

¼
:

One can easily check that System (2.1) which defines the search direction can be
rewritten as follows: ⎧⎪⎨

⎪⎩
Ādx = 0;

Ā�1y + ds = 0;

dx + ds = ¹−1 − ¹;

(2.2)

where dx = ¹1x=x , ds = ¹1s=s and Ā = AV −1 X , with V = diag.¹/ and X =
diag.x/. The third equation in (2.2) is called the scaled centring equation. The
right-hand side in the scaled centring equation equals minus the gradient of the basic
logarithmic barrier function, that is,

9c.¹/ =
n∑

i=1

(
v2

i − 1

2
− log vi

)
:

The basic idea in IPMs is to replace the scaled barrier function9c.¹/ by an arbitrary
strictly convex function 9.¹/, such that 9.¹/ is minimal at ¹ = e with 9.e/ = 0.
Thus System (2.2) converts to⎧⎪⎨

⎪⎩
Ādx = 0;

Ā�1y + ds = 0;

dx + ds = −19.¹/:

Since the vectors dx and ds belong to the null and row spaces of the matrix Ā,
these vectors are orthogonal. By taking a suitable step size Þ ∈ .0; 1/, these search
directions construct a new triple .x+; y+; s+/ with

x+ = x + Þ1x; y+ = y + Þ1y; s+ = s + Þ1s:

264 Keyvan Amini and Arash Haseli [6]

We repeat the procedure until we find an iterate in a certain neighbourhood of(
x.¼/; y.¼/; s.¼/

)
. Then ¼ is again reduced by the factor 1 − � and we apply

Newton’s method targeting the new ¼-centres, and so on. This process is repeated
until ¼ is small enough and at this stage we have found an ž-solution of the problems
(1.1) and (1.2). The generic form of the algorithm is shown in Figure 2.

Input:
A threshold parameter − > 0;
An accuracy parameter ž > 0;
A fixed barrier update parameter �; 0 < � < 1;
begin

x := e; s := e; ¼ := 1;
while n¼ > ž do

begin
¼ := .1 − �/¼;
while 9.¹/ > − do

begin
x+ := x + Þ1x ;
y+ := y + Þ1y;

¹ :=
√

xs
¼

;

end
end

end

FIGURE 2. A generic primal-dual algorithm for Lo

3. A general class of the kernel functions

In [2] Bai, El Ghami and Roos introduced a general class of kernel functions by
using the following conditions:

t ′′.t/+ ′.t/ > 0; t < 1; (3.1)

t ′′.t/− ′.t/ > 0; t > 1; (3.2)

 ′′′.t/ < 0; t > 0; (3.3)

2 ′′.t/2 − ′.t/ ′′′.t/ > 0; t < 1; (3.4)

 ′′.t/ ′.þt/− þ ′.t/ ′′′.þt/ > 0; t > 1; þ > 1: (3.5)

The kernel function .t/ is called eligible if it satisfies (3.1) and (3.3) to (3.5).
It was shown in [2] that (3.2) and (3.3) imply (3.5). So a kernel function .t/ is

[7] A new proximity function 265

eligible if it satisfies conditions (3.1) to (3.4). First we show that the kernel function
introduced in (1.4) satisfies these conditions. The first three derivatives of .t/ are
shown in the following table:

TABLE 2. and its derivatives.

 .t/
t2 − 1

2
+ eq=t − eq

qeq

 ′.t/ t − eq.1=t−1/

t2

 ′′.t/ 1 + q + 2t

t4
eq.1=t−1/

 ′′′.t/ −q2 + 6qt + 6t2

t6
eq.1=t−1/

Since for 0 < t < 1 and q ≥ 1

t ′′.t/+ ′.t/ = 2t +
[

q + 2t

t3
− 1

t2

]
eq.1=t−1/ = 2t +

(
q + t

t3

)
eq.1=t−1/ > 0;

Condition (3.1) is satisfied. Furthermore, for t > 1

t ′′.t/− ′.t/ = q + 3t

t3
eq.1=t−1/ > 0:

So (3.2) is satisfied as well. Also from Table 2 it is obvious that (3.3) is satisfied.
Finally for satisfying (3.4), it is seen that

2 ′′.t/2 − ′.t/ ′′′.t/

= 2
[
t4 + .q + 2t/eq.1=t−1/

]2 + eq.1=t−1/.q2 + 6qt + 6t2/
(
t3 − eq.1=t−1/

)
t8

:

If we set A = eq.1=t−1/, after some elementary reduction we have

2 ′′.t/2 − ′.t/ ′′′.t/ = A2
[
2t2 + 2qt + q2

]+ A
[
14t2 + 10qt + q2t3

]+ 2t8

t8
:

On the other hand, because 0 < t < 1, it follows that 1=t − 1 > 0 and for q ≥ 1 we
have

A = eq.1=t−1/ > 1:

266 Keyvan Amini and Arash Haseli [8]

So we have 2 ′′.t/2 − ′.t/ ′′′.t/ > 0 and hence condition (3.4) holds. Therefore
 .t/ lies in the general class introduced in [2]. Having such a kernel function, we can
now construct the barrier function 9.¹/ by (1.3). The function 9.¹/ not only serves
to define a search direction, but also as a measure of closeness of the current iterates
to the ¼-centre. We use the norm-based proximity measure Ž.¹/ defined by

Ž.¹/ = 1

2
‖∇9.¹/‖ = 1

2

√√√√ n∑
i=1

. ′.¹i//:

Since 9.¹/ is strictly convex and minimal at ¹ = e we have

9.¹/ = 0 ⇐⇒ Ž.¹/ = 0 ⇐⇒ ¹ = e:

In other words, the proximity measure Ž.¹/ is zero if and only if the current iterates
are the ¼-centres. For any kernel function in the mentioned class, iteration bounds for
both small-update and large-update methods can be obtained by using the following
scheme:

Step 1. Solve the equation − ′.t/=2 = s to get ².s/, the inverse function of
− ′.t/=2, t ∈ .0; 1]. If the equation is hard to solve, derive a lower bound for
².s/.

Step 2. Calculate the decrease of 9.¹/ in terms of Ž for the default step size
Þ̃ = 1= ".².2Ž// from f .Þ̃/ = Ž2= ".².2Ž//.

Step 3. Solve the equation .t/ = s to get Q.s/, the inverse function of .t/, t ≥ 1.
If the equation is hard to solve, derive lower and upper bound for Q.s/.

Step 4. Derive a lower bound for Ž in term of9.¹/ by using Ž.¹/ ≥ ′(Q.9.¹//)=2.

Step 5. Using the result of Steps 3 and 4 find positive constants � and � , with
� ∈ .0; 1], such that f .Þ̃/ ≤ −�9.¹/1−� .

Step 6. Calculate the upper bound for 90 from

90 ≤ L .n; �; − / = n

(
Q.−=n/√

1 − �

)
:

Step 7. Derive an upper bound for the total number of iterations from

9
�

0

��

1

�
log

n

ž
:

Step 8. To calculate a complexity bound for large-update algorithms set − = O.n/
and � = 2.1/ and for small-update method algorithms set − = O.1/ and
� = 2.1=

√
n/.

In the next section, we apply this scheme to obtain an iteration bound for the
algorithm generated by the kernel function introduced in (1.4).

[9] A new proximity function 267

4. Iteration bounds of the algorithm

Since we are unable to get explicit expressions for the inverse functions ² and Q
in the above steps, we recall two lemmas from [2].

LEMMA 4.1. Let Q : [0;∞] → [1;∞] be the inverse function of .t/ for t ≥ 1.
Then we have

√
1 + 2s ≤ Q.s/ ≤ 1 + √

2s; s ≥ 0:

LEMMA 4.2. Let b.t/ be the barrier term of .t/ (.t/ = .t2 − 1/=2 + b.t/)
and let ² : [0;∞/ → .0; 1] be the inverse function of the restriction of − ′

b.t/ to the
interval .0; 1]. Then one has

².s/ ≥ ².1 + 2s/:

Now by using these two lemmas, we derive some bounds for ² and Q.

Step 1. From the equation − ′
b.t/ = s we have

− ′
b.t/ = eq.1=t−1/

t2
= s;

eq.1=t−1/ = st2 ⇐⇒ q

(
1

t
− 1

)
= log s + 2 log t:

From 0 < t ≤ 1 we find that log t and as a result

q

(
1

t
− 1

)
≤ log s ⇐⇒ t = ².s/ ≥ 1

1 + q−1 log s
:

Now by using Lemma 4.2, since ².s/ ≥ ².1 + 2s/, we derive a lower bound for ².s/
as follows:

².s/ ≥ 1

1 + q−1 log.1 + 2s/
; s ≥ 0: (4.1)

Step 2. The function ′′.t/ is monotonically decreasing, hence

f .Þ̃/ ≤ − Ž2

 ′′.².2Ž//
≤ − Ž2

 ′′.².1 + 4Ž//
:

Putting t = ².1 + 4Ž/, we have t ≤ 1 and can write

f .Þ̃/ ≤ − Ž2

 ′′.t/
≤ − Ž2

1 + .q + 2t/t−4eq.1=t−1/
: (4.2)

268 Keyvan Amini and Arash Haseli [10]

Note that

t = ².1 + 4Ž/ ⇐⇒ .1 + 4Ž/ = − ′
b.t/ = eq.1=t−1/

t2
:

Substituting this equation in (4.2), we have

f .Þ̃/ ≤ − Ž2

1 + .q + 2t/t−2.1 + 4Ž/
≤ − Ž2

1 + 3qt−2.1 + 4Ž/
:

On the other hand,
1

t2
= 1

².1 + 4Ž/2
≤ 1

².2Ž/2
≤ (1 + q−1 log.1 + 4Ž/

)2
:

So

f .Þ̃/ ≤ − Ž2

1 + 3q.1 + 4Ž/ .1 + q−1 log.1 + 4Ž//2
: (4.3)

Step 3. By Lemma 4.1 the inverse function of .t/ for t ∈ [1;∞/ satisfies√
1 + 2 .t/ ≤ Q. .t// ≤ 1 +√2 .t/: (4.4)

Step 4. Using Ž.¹/ ≥ ′(Q.9.¹//)=2, we have

Ž ≥ ′(Q.9.¹//)
2

≥ 1

2

(√
1 + 29 − eq.1=

√
1+29−1/

.1 + 29/2

)
: (4.5)

Note that 9 ≥ 1, so .1 + 29/3=2 ≥ eq.1=
√

1+29−1/ and
√

1 + 29 ≤ √
39 . So we can

write

Ž ≥ 1

2

(√
1 + 29 − 1√

1 + 29

)
= 9√

1 + 29
≥ 9√

39
≥
√
9

3
: (4.6)

Step 5. Let 90 ≥ 9 ≥ − ≥ 3. We deduced that Ž ≥ 1 and
√
9 ≤ √

3Ž ≤ 2Ž. Now
by using (4.3) we have

f .Þ̃/ ≤ − Ž2

16qŽ .1 + q−1 log.1 + 4Ž//2
≤ − Ž

16q .1 + q−1 log.1 + 4Ž//2
;

that is,

f .Þ̃/ ≤ −
√
9

48q
(
1 + q−1 log.1 + √

90/
)2 : (4.7)

Thus it follows that

9k+1 ≤ 9k − �.9k/
1−� ; k = 0; 1; : : : ; K − 1; (4.8)

where � = 1

48q
(
1 + q−1 log.1 + √

90/
)2 ; � = 1

2

and K denotes the number of inner iterations.

[11] A new proximity function 269

Step 6. From Lemma 4.1 we have Q.−=n/ ≤ 1 + √
2−=n. As a consequence

90 ≤ L .n; �; − / = n

(
Q.−=n/√

1 − �

)
≤ n

(
1 + √

2−=n√
1 − �

)
:

Since .t/ ≤ .t2 − 1/=2 for t ≥ 1,

90 ≤ n2

2

√
2−=n + 2−=n

1 − �
= − + √

2n−

1 − �
: (4.9)

Step 7. By inequality (4.8), the number of inner iterations is bounded by

K ≤ 9
�

0

��
= 96q

(
1 + q−1 log

(
1 +√90

))2

9
1=2
0 :

Substituting (4.9) in this inequality gives

K ≤ 96q

⎛
⎝1 + q−1 log

⎛
⎝1 +

√
− + √

2n−

1 − �

⎞
⎠
⎞
⎠

2 (
− + √

2n−

1 − �

)1=2

:

Thus the total number of iterations is bounded above by

K

�
log

n

ž
≤ 96q

⎛
⎝1 + q−1 log

⎛
⎝1 +

√
− + √

2n−

1 − �

⎞
⎠
⎞
⎠

2 (
− + √

2n−

1 − �

)1=2
1

�
log

n

ž
:

(4.10)

Step 8. For large-update methods set − = O.n/ and � = 2.1/. As a consequence,

90 ≤ − + √
2n−

1 − �
= O.n/:

By choosing

q = log

⎛
⎝1 +

√
− + √

2n−

1 − �

⎞
⎠ = O.log n/

the total iteration bound in (4.10) becomes

O
(√

n.log n/
)

log
n

ž
:

Setting − = O.1/ and � = 2.1=
√

n/ for small-update methods, we can obtain the
best known bound as follows.
By Lemma 2.4 in [2], we have .t/ < ′′.1/.t − 1/2=2, t > 1. Since ′′.1/ = q + 3,
we achieve an upper bound for 90 of

90 = n ′′.1/
2

(
1 + √

2−=n√
1 − �

− 1

)2

≤ n ′′.1/
2

(
� + √

2−=n√
1 − �

)2

= q + 3

2

(√
2− + �

√
n
)2

1 − �
;

270 Keyvan Amini and Arash Haseli [12]

where we also use that 1 − √
1 − � ≤ � . Now 90 = O.q/ and the iteration bound

becomes

O
(
q
√

qn
)

log
n

ž
:

By choosing the parameter q as a constant which is independent of n, this is the best
bound for small-update methods.

5. Concluding remarks

In this paper, we introduced a new kernel function and showed that it generates the
best possible iteration bounds, both for small-update and for large-update methods.
This paper was inspired as a result of the work on primal-dual interior-point methods
(IPMs) for linear optimization based on kernel functions and the scheme for analyzing
such methods. The new kernel function is a parameterized version of a kernel function
introduced in [2].

References

[1] Y. Q. Bai, M. El Ghami and C. Roos, “A new efficient large-update primal-dual interior-point method
based on a finite barrier”, SIAM J. Optim. 13 (2003) 766–782 (electronic).

[2] Y. Q. Bai, M. El Ghami and C. Roos, “A comparative study of new barrier functions for primal-dual
interior-point algorithms in linear optimization”, SIAM J. Optim. 15 (2004) 101–128.

[3] Y. Q. Bai, J. Guo and C. Roos, “A new kernel function yielding the best known iter-
ation bounds for primal-dual interior-point algorithms”, 2006, working paper, available at
http://www.isa.ewi.tudelft.nl/~roos/wpapers.html .

[4] N. Megiddo, “Pathways to the optimal set in linear programming”, in Progress in Mathematical
Programming: Interior Point and Related Methods (ed. N. Megiddo), Identical version in: Proceed-
ings of the 6th Mathematical Programming Symposium of Japan, Nagoya, Japan, pages 1-35, 1986,
(Springer Verlag, New York, 1989), 131–158.

[5] J. Peng, C. Roos and T. Terlaky, “Self-regular functions and new search directions for linear and
semidefinite optimization”, Math. Program. 93 (2002) 129–171.

[6] J. Peng, C. Roos and T. Terlaky, Self-Regularity. A New Paradigm for Primal-Dual Interior-Point
Algorithms (Princeton University Press, Princeton, New Jersey, 2002).

[7] C. Roos, T. Terlaky and J.-Ph. Vial, Theory and Algorithms for Linear Optimization. An Interior
Point Approach (John Wiley & Sons, Chichester, 1997).

mailto:http://www.isa.ewi.tudelft.nl/~roos/wpapers.html

