Bull. Austral. Math. Soc. 72(1) pp.53--65, 2005.

A new variational method for the p(x)-Laplacian equation

Marek Galewski

Received: 9th February, 2005

.

Abstract

Using a dual variational method we shall show the existence of solutions to the Dirichlet problem
  -div$\displaystyle \Bigl ($$\displaystyle \bigl \vert $$\displaystyle \nabla $u(x)$\displaystyle \bigr \vert ^{{p( x) -2}}_{}$$\displaystyle \nabla $u(x)$\displaystyle \Bigr )$ = Fu $\displaystyle \bigl ($x, u(x)$\displaystyle \bigr )$, u $\displaystyle \in $ W01, p(x)($\displaystyle \Omega $)
(1) x(y)|$\scriptstyle \partial $$\scriptstyle \Omega $ = 0.

without assuming Palais-Smale condition.

Click to download PDF of this article (free access until July 2006)

or get the no-frills version

[an error occurred while processing this directive]
(Metadata: XML, RSS, BibTeX) MathSciNet: MR2162294 Z'blatt-MATH: 02212186

References

  1. G. Dinca and P. Jeblean;
    Some existence results for a class of nonlinear equations involving a duality mapping,
    Nonlinear Anal. 46 (2001), pp. 347--363. MR1851857
  2. I. Ekeland and R. Temam;
    Convex analysis and variational problems (North-Holland, Amsterdam, 1976). MR463994
  3. X.L. Fan and D. Zhao;
    Sobolev embedding theorems for spaces Wk,p ( x) ( Ω) ,
    J. Math. Anal. Appl. 262 (2001), pp. 749--760. MR1859337
  4. X.L. Fan and D. Zhao;
    Existence of solutions for p(x)- Lapacian Dirichlet problem,
    Nonlinear Anal. 52 (2003), pp. 1843--1852. MR1954585
  5. X.L. Fan and D. Zhao;
    On the spaces Lp ( x ) ( Ω) and Wk,p ( x ) ( Ω) ,
    J. Math. Anal. Appl. 263 (2001), pp. 424--446. MR1866056
  6. A. El Hamidi;
    Existence results to elliptic systems with nonstandart growth conditions,
    J. Math. Anal. Appl. 300 (2004), pp. 30--42. MR2100236
  7. Ch.B. Morrey;
    Multiple integrals in the calculus of variations (Springer--Verlag, Berlin, 1966). MR202511
  8. A. Nowakowski and A. Rogowski;
    On the new variational principles and duality for periodic solutions of Lagrange equations with superlinear nonlinearities,
    J. Math. Anal. Appl. 264 (2001), pp. 168--181. MR1868335
  9. M. Ruzicka;
    Electrorheological fluids: Modelling and mathematical theory,
    Lecture Notes in Mathematics 1748 (Springer-Verlag, Berlin, 2000). MR1810360
  10. V.V. Zhikov;
    Averaging of functionals of the calculus of variations and elasticity theory,
    Math. USSR-Izv. 29 (1987), pp. 33--66. MR864171

ISSN 0004-9727