Bull. Austral. Math. Soc. 72(1) pp.67--85, 2005.

Boundary unique continuation theorems under zero Neumann boundary conditions

Xiangxing Tao

Songyan Zhang

Received: 9th February, 2005

The work of the first author is supported by National Nature Science Foundation of China (No. 10471069), and Zhejiang Provincial Natural Science Foundation of China (No. 102066).
The second author is supported by Scientific Research Fund of Zhejiang Provincial Education Department (No. 20040962) and Doctoral Foundation of Ningbo City (No. 2004A610003).

Abstract

Let u be a solution to a second order elliptic equation with singular potentials belonging to the Kato-Fefferman-Phong's class in Lipschitz domains. We prove the boundary unique continuation theorems and the doubling properties for u2 near the boundary under the zero Neumann boundary condition.

Click to download PDF of this article (free access until July 2006)

or get the no-frills version

[an error occurred while processing this directive]
(Metadata: XML, RSS, BibTeX) MathSciNet: MR2162295 Z'blatt-MATH: 02212187

References

  1. V. Adolfsson and L. Escauriaza;
    C1,α domains and unique continuation at the boundary,
    Comm. Pure Appl. Math. 50 (1997), pp. 935--969. MR1466583
  2. V. Adolfsson, L. Escauriaza and C. Kenig;
    Convex domains and unique continuation at the boundary,
    Rev. Mat. Iberoamericana 11 (1995), pp. 513-1525. MR1363203
  3. M. Aizenman and B. Simon;
    Brownian motion and Harnack's inequality for Schrödinger operators,
    Comm. pure Appl. Math. 35 (1982), pp. 209--273. MR644024
  4. F. Chiarenza, E. B. Fabes and N. Garofalo;
    Harnack's inequality for Schrödinger operators and the continuity of solutions,
    Proc. Amer. Soc. 98 (1986), pp. 415--425. MR857933
  5. E. Fabes, N. Garofalo and F-H. Lin;
    A partial answer to a conjecture of B. Simon concerning unique continuation,
    J. Funct. Anal. 88 (1990), pp. 194--210. MR1033920
  6. N. Garofalo and F-H. Lin;
    Monotonicity properties of variational integrals, Ap weights and unique continuation,
    Indiana Univ. Math. J. 35 (1986), pp. 245--268. MR833393
  7. N. Garofalo and F-H. Lin;
    Unique continuation for elliptic operators: a geometric-variational approach,
    Comm. Pure Appl. Math. 40 (1987), pp. 347--366. MR882069
  8. C.E. Kenig;
    Harmonic analysis techniques for second order elliptic boundary value problems,
    CBMS Regional Conference Series in Mathematics 83 (Amercan Mathematical Society, Providence R.I., 1994). MR1282720
  9. K. Kurata;
    A unique continuation theorem for uniformly elliptic equations with strongly singular potentials,
    Comm. Partial Differential Equations 18 (993), pp. 1161--1189. MR1233189
  10. K. Kurata;
    A unique continuation theorem for the Schrödinger equation with singular magnetic field,
    Proc. Amer. Soc. Math. 125 (1997), pp. 853--860. MR1363173
  11. B. Simon;
    Schrödinger semigroups,
    Bull. Amer. Math. Soc. 7 (1982), pp. 447--521. MR670130
  12. X.X. Tao;
    Doubling properties and unique continuation at the boundary for elliptic operators with singular magnetic fields,
    Studia Math. 151 (2002), pp. 31--48. MR1891539
  13. G. Verchota;
    Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains,
    J. Funct. Anal. 59 (1984), pp. 572--611. MR769382

ISSN 0004-9727