Bull. Austral. Math. Soc. 72(1) pp.161--172, 2005.
Implicit vector equilibrium problems via nonlinear scalarisation
Jun Li |
Nan-jing Huang |
The first author was supported by the Youth Foundation of Sichuan Education Department of China, the National Natural Science Foundation of Sichuan Education Department of China (2004C018), the Foundation of Sichuan Science and Technology Department of China and the second author was supported by the National Natural Science Foundation of China.
Abstract
The purpose of this paper is to introduce a nonlinear scalarisation function for solving a class of implicit vector equilibrium problems. We prove a scalarisation lemma to show the relation between the implicit vector equilibrium problem and the nonlinear scalarisation function. Then we derive some new existence theorems for solutions of implicit vector equilibrium problems, using the scalarisation lemma and the FKKM theorem.
Click to download PDF of this article (free access until July 2006)
or get the no-frills version
[an error occurred while processing this directive](Metadata: XML, RSS, BibTeX) | MathSciNet: MR2162302 | Z'blatt-MATH: 02212194 |
References
- Q.H. Ansari, S. Schaible and J.C. Yao;
The system of generalized vector equilibrium problems with applications,
J. Global Optim. 22 (2002), pp. 3--16. MR1878132 - Q.H. Ansari and J.C. Yao;
An existence result for generalized vector equilibrium problem,
Appl. Math. Lett. 12 (1999), pp. 53--56. MR1751352 - A. Behera and L. Nayak;
On nonlinear variational-type inequality problem,
Indian J. Pure Appl. Math. 30 (1999), pp. 911--923. MR1712434 - M. Bianchi, N. Hadjisavvas and S. Schaible;
Vector equilibrium problems with generalized monotone bifunctions,
J. Optim. Theory Appl. 92 (1997), pp. 527--542. MR1432608 - M. Bianchi and S. Schaible;
Generalized monotone bifunctions and equilibrium problems,
J. Optim. Theory Appl. 90 (1996), pp. 31--42. MR1397644 - E. Blum and W. Oettli;
From optimization and variational inequalities to equilibrium problems,
The Math. Student 63 (1994), pp. 123--145. MR1292380 - G.Y. Chen and G.M. Chen;
Vector variational inequality and vector optimization,
Lecture Notes in Econ. and Math. Systems 285 (Springer-Verlag, Berlin, Heidelberg, New York, 1987), pp. 408--416. - G.Y. Chen and B.D. Craven;
Approximate dual and approximate vector variational inequality for multiobjective optimization,
J. Austral. Math. Soc. Ser. A 47 (1989), pp. 418--423. MR1018968 - G.Y. Chen and S.H. Hou;
Existence of solution for vector variational inequalities,
in Vector Variational Inequalities and Vector Equilibria,
(F. Giannessi, Editor),
Nonconvex Optim. Appl. 38 (Kluwer Academic Publishers, Dordrecht, 2000), pp. 73--86. MR1789114 - G.Y. Chen and Y.Q. Yang;
Characterizations of variable domination structures via nonlinear scalarization,
J. Optim. Theory Appl. 112 (2002), pp. 97--110. MR1881691 - K. Fan;
A generalization of Tychonoff's fixed point theorem,
Math. Ann. 142 (1961), pp. 305--310. MR131268 - C. Gerth and P. Weidner;
Nonconvex separation theorems and some applications in vector optimization,
J. Optim. Theory Appl. 67 (1990), pp. 297--320. MR1080138 - F. Giannessi (Editor);
Vector variational inequalities and vector equilibria,
Nonconvex Optimization and its Applications 38 (Kluwer Academic Publishers, Dordrecht, 2000). MR1789109 - C.J. Goh and Y.Q. Yang;
Scalarization methods for vector variational inequality,
in Vector Variational Inequalities and Vector Equilibria,
(F. Giannessi, Editor),
Nonconvex Optim. Appl. 38 (Kluwer Academic Publishers, Dordrecht, 2000), pp. 217--232. MR1789121 - X.H. Gong;
Efficiency and Henig efficiency for vector equilibrium problems,
J. Optim. Theory Appl. 108 (2001), pp. 139--154. MR1823568 - A. Göpfert, H. Riahi, Chr. Tammer and C. Zalinescu;
Variational methods in partially ordered spaces (Springer-Verlag, New York, 2003). MR1994718 - N. Hadjisavvas and S. Schaible;
From scalar to vector equilibrium problems in the quasimonotone case,
J. Optim. Theory Appl. 96 (1998), pp. 297--309. MR1610229 - N.J. Huang, J. Li and H.B. Thompson;
Implicit vector equilibrium problems with applications Math. Comput. Modelling {37}(2003), 1343-1356. MR1996042 - I. V. Konnov and S. Schaible, Duality for equilibrium problems
under generalized monotonicity,;
,
J. Optim. Theory Appl. 104 (2000), pp. 395--408. MR1752324 - I.V. Konnov and J.C. Yao;
Existence of solutions for generalized vector equilibrium problems,
J. Math. Anal. Appl. 233 (1999), pp. 328--335. MR1684390 - J. Li, N.J. Huang and J.K. Kim;
On implicit vector equilibrium problems,
J. Math. Anal. Appl. 283 (2003), pp. 501--512. MR1991824 - A.H. Siddiqi, Q.H. Ansari and A. Khaliq;
On vector variational inequalities,
J. Optim. Theory Appl. 84 (1995), pp. 171--180. MR1312968 - Y.N. Wu;
Existence and convergence of solutions for vector equilibrium problems,
Adv. Nonlinear Var. Inequal. 6 (2003), pp. 49--58. MR1943923
ISSN 0004-9727