Bull. Austral. Math. Soc. 72(1) pp.161--172, 2005.

Implicit vector equilibrium problems via nonlinear scalarisation

Jun Li

Nan-jing Huang

Received: 3rd May, 2005

The first author was supported by the Youth Foundation of Sichuan Education Department of China, the National Natural Science Foundation of Sichuan Education Department of China (2004C018), the Foundation of Sichuan Science and Technology Department of China and the second author was supported by the National Natural Science Foundation of China.

Abstract

The purpose of this paper is to introduce a nonlinear scalarisation function for solving a class of implicit vector equilibrium problems. We prove a scalarisation lemma to show the relation between the implicit vector equilibrium problem and the nonlinear scalarisation function. Then we derive some new existence theorems for solutions of implicit vector equilibrium problems, using the scalarisation lemma and the FKKM theorem.

Click to download PDF of this article (free access until July 2006)

or get the no-frills version

[an error occurred while processing this directive]
(Metadata: XML, RSS, BibTeX) MathSciNet: MR2162302 Z'blatt-MATH: 02212194

References

  1. Q.H. Ansari, S. Schaible and J.C. Yao;
    The system of generalized vector equilibrium problems with applications,
    J. Global Optim. 22 (2002), pp. 3--16. MR1878132
  2. Q.H. Ansari and J.C. Yao;
    An existence result for generalized vector equilibrium problem,
    Appl. Math. Lett. 12 (1999), pp. 53--56. MR1751352
  3. A. Behera and L. Nayak;
    On nonlinear variational-type inequality problem,
    Indian J. Pure Appl. Math. 30 (1999), pp. 911--923. MR1712434
  4. M. Bianchi, N. Hadjisavvas and S. Schaible;
    Vector equilibrium problems with generalized monotone bifunctions,
    J. Optim. Theory Appl. 92 (1997), pp. 527--542. MR1432608
  5. M. Bianchi and S. Schaible;
    Generalized monotone bifunctions and equilibrium problems,
    J. Optim. Theory Appl. 90 (1996), pp. 31--42. MR1397644
  6. E. Blum and W. Oettli;
    From optimization and variational inequalities to equilibrium problems,
    The Math. Student 63 (1994), pp. 123--145. MR1292380
  7. G.Y. Chen and G.M. Chen;
    Vector variational inequality and vector optimization,
    Lecture Notes in Econ. and Math. Systems 285 (Springer-Verlag, Berlin, Heidelberg, New York, 1987), pp. 408--416.
  8. G.Y. Chen and B.D. Craven;
    Approximate dual and approximate vector variational inequality for multiobjective optimization,
    J. Austral. Math. Soc. Ser. A 47 (1989), pp. 418--423. MR1018968
  9. G.Y. Chen and S.H. Hou;
    Existence of solution for vector variational inequalities,
    in Vector Variational Inequalities and Vector Equilibria,
    (F. Giannessi, Editor),
    Nonconvex Optim. Appl. 38 (Kluwer Academic Publishers, Dordrecht, 2000), pp. 73--86. MR1789114
  10. G.Y. Chen and Y.Q. Yang;
    Characterizations of variable domination structures via nonlinear scalarization,
    J. Optim. Theory Appl. 112 (2002), pp. 97--110. MR1881691
  11. K. Fan;
    A generalization of Tychonoff's fixed point theorem,
    Math. Ann. 142 (1961), pp. 305--310. MR131268
  12. C. Gerth and P. Weidner;
    Nonconvex separation theorems and some applications in vector optimization,
    J. Optim. Theory Appl. 67 (1990), pp. 297--320. MR1080138
  13. F. Giannessi (Editor);
    Vector variational inequalities and vector equilibria,
    Nonconvex Optimization and its Applications 38 (Kluwer Academic Publishers, Dordrecht, 2000). MR1789109
  14. C.J. Goh and Y.Q. Yang;
    Scalarization methods for vector variational inequality,
    in Vector Variational Inequalities and Vector Equilibria,
    (F. Giannessi, Editor),
    Nonconvex Optim. Appl. 38 (Kluwer Academic Publishers, Dordrecht, 2000), pp. 217--232. MR1789121
  15. X.H. Gong;
    Efficiency and Henig efficiency for vector equilibrium problems,
    J. Optim. Theory Appl. 108 (2001), pp. 139--154. MR1823568
  16. A. Göpfert, H. Riahi, Chr. Tammer and C. Zalinescu;
    Variational methods in partially ordered spaces (Springer-Verlag, New York, 2003). MR1994718
  17. N. Hadjisavvas and S. Schaible;
    From scalar to vector equilibrium problems in the quasimonotone case,
    J. Optim. Theory Appl. 96 (1998), pp. 297--309. MR1610229
  18. N.J. Huang, J. Li and H.B. Thompson;
    Implicit vector equilibrium problems with applications Math. Comput. Modelling {37}(2003), 1343-1356. MR1996042
  19. I. V. Konnov and S. Schaible, Duality for equilibrium problems under generalized monotonicity,;
    ,
    J. Optim. Theory Appl. 104 (2000), pp. 395--408. MR1752324
  20. I.V. Konnov and J.C. Yao;
    Existence of solutions for generalized vector equilibrium problems,
    J. Math. Anal. Appl. 233 (1999), pp. 328--335. MR1684390
  21. J. Li, N.J. Huang and J.K. Kim;
    On implicit vector equilibrium problems,
    J. Math. Anal. Appl. 283 (2003), pp. 501--512. MR1991824
  22. A.H. Siddiqi, Q.H. Ansari and A. Khaliq;
    On vector variational inequalities,
    J. Optim. Theory Appl. 84 (1995), pp. 171--180. MR1312968
  23. Y.N. Wu;
    Existence and convergence of solutions for vector equilibrium problems,
    Adv. Nonlinear Var. Inequal. 6 (2003), pp. 49--58. MR1943923

ISSN 0004-9727