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LINEAR GEOMETRIES ON THE MOEBIUS STRIP:

A THEOREM OF SKORNYAKOV TYPE

Rainer Löwen and Burkard Polster

We show that the continuity properties of a stable plane are automatically satisfied

if we have a linear space with point set a Moebius strip, provided that the lines

are closed subsets homeomorphic to the real line or to the circle. In other words,

existence of a unique line joining two distinct points implies continuity of join and

intersection. For linear spaces with an open disk as point set, the same result was

proved by Skornyakov.

Introduction

A flat stable plane (E,L) consists of a point space E, which is a surface (topological 2-

manifold), and a system L of lines, which are closed subsets of E, such that any two

points are joined by a unique line and that the operations of join and intersection are

continuous. Moreover, it is required that intersection is stable, that is, the set of pairs

of distinct intersecting lines is open. For a comprehensive introduction to general stable

planes (not only flat ones), see [6].

The lines of a flat stable plane are 1-manifolds ([10]), and if they are connected, then

the point surface E is either a topological open disk D, or the compact nonorientable

surface P of genus 1 (the real projective plane), or an open (that is, boundaryless)

Moebius strip M , see [8, 11]. The flat stable planes with E = P and lines homeomorphic

to the circle are of particular importance and are called flat projective planes.

Conversely, if (E,L) is a linear space (that is, two points are joined by a unique line)

and lines are connected 1-manifolds and closed subsets of E, then it has been proved

by Skornyakov for E = D and by Salzmann for E = P (see [10, 2.5] and [12, 32.5]),

that (E,L) is a flat stable plane, that is, that join and intersection are automatically

continuous. Here we prove a similar result for E = M :

Theorem. Let M be an open Moebius strip and suppose we are given a system L

of closed subsets L ⊆ M , called lines, such that lines are connected 1-manifolds, and such

that any two points are joined by a unique line.
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Then one may define a topology on L such that (M,L) becomes a flat stable plane,

that is, the operations of join and intersection of point and line pairs, respectively, are

continuous and intersection is stable.

Similar characterisations have been derived for circle planes on surfaces in which any

three points in ‘general position’ are connected by a unique circle, see [4, 5, 13, 16].

Flat stable planes with point set M and connected 1-manifolds as lines have been

investigated by Betten [2], who completely determined the most homogeneous ones among

them. Examples of such flat stable planes arise from flat projective planes (E = P ) in

two ways: either by deleting a single point from P or by deleting a closed disk which

is convex in the sense that it intersects every line in an interval. This disk could be

a conic together with its interior points in the real projective plane, yielding the most

homogeneous example. The two constructions produce planes with slightly different

behaviour. In the first case, every point is incident with a unique noncompact line, and

the missing point of the original projective plane can be restituted in a unique way. Such

planes were called pointwise coaffine in [7]. In the other case, every point is incident with

infinitely many compact and noncompact lines, and it is not clear that all examples arise

from projective planes by deletion of disks. The problem of embedding such planes into

projective ones amounts to constructing an ideal boundary and pasting a compact disk

in the sense of Stroppel [15] to this boundary; this has to be done in a way compatible

with the line system. We suspect that this is not always possible.

The proof of our theorem uses the theorem of Skornyakov for the disk. Our strategy

is to locate enough subplanes with point set homeomorphic to D ≈ R
2 and lines home-

omorphic to R (so-called (R2, R)-planes) within the given plane, to apply Skornyakov’s

result to them and to derive our result.

We would like to prove a Skornyakov type theorem in full generality: The point set

would be an an arbitrary surface, and the lines would be closed subsets which are 1-

manifolds, connected or not. We roughly got as far as showing that every point is on the

boundary of some (R2, R)-subplane, but we would need that every point actually belongs

to such a subplane.

Proof of the Theorem

We think of the point set M as the real projective plane P minus one point ∞, even

if our geometry is not pointwise coaffine. We depict P as a circular disk, whose boundary

points are identified in antipodal pairs, that is, |x| 6 1 holds for all points, and x = −x

if |x| = 1. The point ∞ will always be represented by the pair
{
(0, 1), (0,−1)

}
, as in

Figure 1.

Since lines are closed subsets L ⊆ M , their closure L in the one-point compactifica-

tion P will always be homeomorphic to a circle. This circle contains the point ∞ if and

only if L is not compact.
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Figure 1: The Moebius strip.

Consider the two-sheeted covering π : S2 → P and the inverse image π−1(L) of

one of these circles. This set is a covering of L, and there are two possibilities: either

π−1(L) consists of two disjoint circles C,−C which are interchanged by the antipodal

map, or π−1(L) is a single circle C = −C, and π restricted to C is the unique two-fold

connected covering of L.

Consider the case C = −C. Applying the theorem of Schoenflies [9] to each of the

two closed disks in S2 having C = −C as their boundary, we obtain a homeomorphism

of each disk onto a disk defined by the equator of the sphere. The two homeomorphisms

may be adjusted (for example, using polar coordinates) such that they agree on C and are

compatible with the antipodal map, which shows that the pair (P, L) is homeomorphic

to the pair formed by the real projective plane and one of its lines. In this case, the line L

will be called essential. The complement P \ L is an open disk.

A similar procedure (needing extra corrections on the annulus defined by C and −C)

may be applied in the case of two disjoint circles and results in a proof that (P, L) then

is homeomorphic to the pair formed by the real projective plane with a conic. In this

case, the line L will be called inessential. The complement of L in P is a disjoint union

of an open disk and an open Moebius strip in this case. Our first aim is to show that

inessential lines do not occur (Proposition 5).

Each of the two cases splits into subcases depending on the position of ∞ relative

to L: whether ∞ is in L or not in L, and in the latter case, which of the complementary

components of L contains ∞. The resulting five possibilities are depicted in Figures 2

through 6.

The figures also show the connected components of the complement of a line relative

to M . Essential lines do not separate the point set M ; their complement is a punctured

disk or an intact disk depending on whether the line is compact or not. An inessential

line L separates M into two components. If L is noncompact, then one complementary

component is a disk and the other is a Moebius strip. If L is compact, then one of these

components is punctured.
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Proposition 1. There are no compact inessential lines.

Proof: Such a line L would bound a subset D ⊆ M homeomorphic to a compact

disk or to a compact Moebius strip, and the line u∨ v joining an interior point u ∈ D to

a point v outside D would intersect the boundary ∂D twice (remember that the closure

of u ∨ v in P is a topological circle). This is a contradiction.

Proposition 2. The geometry induced on the open disk bounded by a non-

compact inessential line is an (R2, R)-plane. According to Skornyakov’s Theorem, it is a

stable plane.

Remember that our aim is to exclude this particular type of lines. The proposition

is merely a step towards this goal, it cannot contribute to our construction of a topology

on L.

Figure 2: Two noncompact essential lines.

Figure 3: Two noncompact inessential lines.

Figure 4: A compact essential line.



[5] Linear geometries 21

Figure 5: Two compact inessential lines of first type.

Figure 6: A compact inessential line of second type.

Proof: Let D ≈ R
2 be this disk and L the bounding line. We have to show that

each line intersects D either in an open interval or in the empty set. A compact line

entirely contained in the closure D would be inessential, contrary to Proposition 1. A

compact line intersecting D nontrivially would have to meet the boundary L of D twice,

again a contradiction.

The only remaining problem concerns a noncompact line, K, which meets L (in a

single point, x) and is entirely contained in the closure D = D ∪ L. Such a line would

have a disconnected intersection with D. As indicated in Figure 7, the complement D\K

then has two connected components whose boundaries meet both K and L, and whose

only common boundary point is x. The line joining two points u, v, one in each of these

components, has to pass through x, or else it would meet one of the lines K, L twice.

Therefore, the line u∨x = u∨ v has to contain all points of the component containing v,

a contradiction.

Proposition 3. If x is a point in the open disk D bounded by a noncompact

inessential line, then there is an essential line passing through x.

Proof: In view of Proposition 1, we have to exclude the possibility that all lines

passing through x are noncompact inessential. So assume that this is the case. Near x

we are in a stable plane (with point set D), and we topologise the pencil L+
x of oriented

lines as prescribed by this stable plane. An oriented line L in this pencil separates M into

a component L+ which lies to the right of L and a component L−. One of L+, L− is a

disk and the other, a Moebius strip. For L with opposite orientation, the complementary

components are switched, hence we have lines where L+ is a disk and others where L− is
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Figure 7:

a disk. Possibly after exchanging ‘right’ and ‘left’, we find a convergent sequence Ln → L

in L+
x such that L+ and all L−

n are disks. The intersection L+∩L−

n is a half plane in both

of the stable planes L+ and L−

n , and it follows that the union L+ ∪ L−

n is again a disk.

(Observe that lines intersect transversally at x since we are in a stable plane.) We may

assume that the sequence Ln is monotone in some order of a small neighbourhood of L

in L+
x compatible with the topology.

Figure 8 shows the situation within D: as n increases, the union L+ ∪ L−

n becomes

Figure 8:

larger, and its complement Xn in M becomes smaller. This remains true even outside

the depicted neighbourhood D, because L+, for example, is the union of all half lines

with end point x that meet D ∩ L+. In fact, the intersection of all Xn is the positive

half line X of L. The complement M \X thus is the union of an increasing sequence of

open disks, hence it is an open disk by the following lemma. On the other hand, a look

at Figure 3 shows that the complement in M of a half line of L is still a Moebius strip.

This contradiction proves our claim.

Lemma 4. Let D be a set of open 2-disks in some surface S and suppose that D

is totally ordered with respect to inclusion. Then the union D = ∪D is a 2-disk.

We remark that there is a far more general result due to Brown, see [3].

Proof: Every loop in D is covered by finitely many X ∈ D, hence it is contained in

the largest one among them and can be contracted therein, hence D is simply connected.

The only simply connected surfaces are R
2 and the sphere S2, see [1]. If D were compact,

then the empty set D\D would be the intersection of the nonempty compact complements
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D \ X, X ∈ D, a contradiction because any finite number of those complements has a

nonempty intersection.

Proposition 5. In a geometry on the Moebius strip, as considered here, all

lines are essential.

Proof: As we have ruled out compact inessential lines (Proposition 1), the existence

of an inessential line provides us with an open disk D on which a stable (R2, R)-plane

is induced (Proposition 2). A point x ∈ D is incident with some essential line L by

Proposition 3. All lines containing x are noncompact, because a compact line would have

to meet the bounding line of D twice by Proposition 1. In particular, L is noncompact

essential and can be represented as the boundary of the disk which yields M upon an-

tipodal identification. We split all lines passing through x up into half lines with end

point x. Figure 9 represents these half lines.

Figure 9:

Each of them connects x with ∞. Observe that it makes no difference to us whether

these half lines come from essential or inessential lines (this concerns only the way lines

are combined from two halves).

In our disk model P̃ of the projective plane, we have obtained four bundles of half

lines; for example, we let B(−x, +∞) denote the bundle of half lines joining the left copy

of x to the upper copy of ∞; some of these bundles may be empty, however. Moreover,

we let B± be the set of all half lines with end point ±x. On B± there is a natural order,

obtained as follows. Every half line H separates the disk P̃ into an upper disk H+ and

a lower disk H−, and we say that H1 6 H2 if H−

1 ⊆ H−

2 .

Since x is a point of a stable plane, there are convex neighbourhoods U of x, see [12,

31.22]. Here, convex means that the intersection of any line with U is connected. This

implies that the set of points covered by B± is a neighbourhood of ±x in the disk P̃ . It

further implies that the order on B± has no gaps, that is, between any two half lines with

end point ±x there lies another one having the same end point ±x. Finally, we see that

the two bundles B± are both nonempty.

If one of the two bundles B(±x,−∞) has a largest element H , then we replace the

disk P̃ by the upper closed disk H+. Similarly, if B(±x, +∞) has a smallest element H ,
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we pass to H−. Note that at most two times among the four bundles a largest or smallest

element can occur, because B± has no gaps as we have seen.

The set of points in the interior of the remaining disk is completely covered by the

remaining arcs. Because the order of B± has no gaps, this set can be described as the

total union of at least two totally ordered families of open disks (the interiors of suitable

disks H±). By Proposition 4, the resulting set is a disjoint union of at least two disjoint

open disks. On the other hand, it is itself a connected open disk. The contradiction

shows that there can be no inessential lines.

Our next aim is to determine the possible positions of pairs of lines, up to homeo-

morphism of M . First consider the case where two lines K, L are given and one of them

is compact. As both lines are essential, their closures in P are covered by two circles CK

and CL in S2 which are invariant under the antipodal map. The two circles have at

most one antipodal pair of common points x,−x. None of the circles can be contained

in one of the two complementary disks defined by the other, because the antipodal map

interchanges those disks. Therefore, the circles must intersect transversally in a pair of

antipodal points, and the configuration in S2 is homeomorphic to a pair of great circles.

The position of ±∞ can be on one of the circles or outside. On the Moebius strip, we

obtain two possible configurations, represented by Figures 10 and 11.

Figure 10: Two intersecting lines, one compact and one noncompact.

Figure 11: Two compact intersecting lines.

What we have proved is the following.
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Proposition 6. Let K, L be two lines and assume that one of them is compact.

Then the lines K, L intersect in M transversally, and the configuration is homeomorphic

to the one represented in Figure 10 or 11. In particular, two compact lines together

bound an open disk in M .

Note that the closure of the open disk bounded by two compact lines is a closed disk

with two boundary points identified.

We turn to pairs of noncompact lines K, L. Here the situation is more complicated

because the two circles CK , CL have the points ∞,−∞ in common and may have one

more antipodal pair of intersection points. We prefer to look at the picture in M , rep-

resenting K as the boundary circle. The case of disjoint lines is easily dealt with (see

Figure 16 below). The case where there is an intersection point x ∈ M splits into four

subcases depending on whether the intersections at x and ∞ are transversal or not. If

both intersections are of the same kind, then we get the configurations in Figures 12

and 13, and we see that L is inessential.

Figure 12: Two noncompact intersecting lines. Both intersections are transversal.

Figure 13: Two noncompact intersecting lines. Both intersections are not transversal.

If the intersection at ∞ is the only transversal one, then the configuration is as in

Figure 14.

The line joining the points u and v has two ends at ±∞ and it must enter the two

disks bounded by K, L and containing u and v, respectively. It cannot be shaped like
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Figure 14: Two noncompact intersecting lines. The intersection at ∞ is transversal, the

one at x is not.

the dotted curve in Figure 14, because this curve is inessential. Hence all lines joining

points in the two disks pass through the point x, and we have a contradiction. The only

remaining possibility is that the lines intersect transversally at x and touch at ∞, as

shown in Figure 15.

Figure 15: Two noncompact intersecting lines. The intersection at x is transversal, the

one at ∞ is not.

We summarise:

Prposition 7. The configuration of two noncompact lines is as shown in Fig-

ure 15 or 16. In particular, if they intersect, they do so transversally.

Remark 8. Ordering a line pencil. Let x be a point and L a noncompact line passing

through x. We want to define an order on the set Lx \ {L} in the same way as we

did in the proof of Proposition 5. In the disk model P̃ with boundary circle L, every

line H ∈ Lx\{L} separates P̃ into an upper part H+ and a lower part H− (the parts may

be disconnected). Since we know from Propositions 6 and 7 that lines always intersect

transversally, it follows that for two such lines, one of the respective lower parts is entirely

contained in the other. We say that H1 6 H2 if H−

1 ⊆ H−

2 , compare Figure 17.

There are no gaps in this order: if H1 6 H2, choose any point y ∈ H−

2 \ H−

1 and

join it to x in order to obtain a line between H1 and H2. We remark that this fact

was obtained in a different way in the proof of Proposition 5. There, we used a stable
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Figure 16: Two noncompact lines that do not intersect in M .

Figure 17: H1 < H2 < H3 < H4 < H5

plane containing x. Here, we used transversality of intersection which we have proved

independently.

Proposition 9. For every point x, the compact lines passing through x form a

nonempty proper subset Cx of the line pencil Lx.

Proof: First we show that there are noncompact lines passing through x. Assume

that this is not the case, and consider three distinct lines in Cx. By Proposition 6, any

two of them together bound an open disk in M . Looking at the corresponding disks in

the sphere covering P , we see that one of the three disks in M contains the other two.

We keep the two lines bounding that disk and add another line not contained in it. This

produces a larger open disk.

Repeating the last argument, we obtain that any two of the disks bounded by pairs

of lines in Cx are contained in another such disk. Inductively, we obtain that any finite

number of these disks is contained in a single one. Therefore, we can apply the proof

of Lemma 4 to the union D of all those disks, and D is a disk. By construction of D,

the complement M \ D is either empty (impossible, since M is not a disk) or a single

compact line. However, the complement of a compact line is an annulus (a punctured

disk), and we have again obtained a contradiction.
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Now suppose that there are no compact lines passing through x. In order to reach

a contradiction, we proceed as in the proof of Proposition 5. Our starting point differs

from Proposition 5 in that we know all lines to be essential, and the nonexistence of

compact lines through x is now an assumption. Since we do not assume the existence

of an inessential line, we do not have a stable plane containing x yielding a convex

neighbourhood of x. We used this in Proposition 5 in order to show that the order

considered there had no gaps. This is now obtained from 8, and the proof of Proposition 5

goes through unchanged.

Proposition 10. For every point x ∈ M , the compact lines passing through x

form a convex subset Cx 6= ∅ of the ordered set Lx \ {L} introduced in 8, and this set

has no smallest or largest element. In particular, there are infinitely many compact lines

containing x.

Proof: Given C1, C2 ∈ Cx, C1 < C2, we have to show that every line C ∈ Lx such

that C1 < C < C2 is compact. Now C is contained in the compact closure of the open

disk bounded by C1 and C2, hence it is indeed compact.

If there is a largest compact line C ∈ Cx, for example, then we may repeat the

exhaustion arguments indicated in the proofs of Propositions 5 and 9 on the disk C+,

where we are considering M in the disk model with boundary L. Again, this leads to a

contradiction.

Proposition 11. Let K, L ∈ L be two compact lines. On the open disk

D = DK,L bounded by these lines, (M,L) induces a (stable) (R2, R)-plane.

Proof: That two compact lines together bound a disk was shown in Proposition 6.

A line G meeting this disk D may be contained in its closure. Then G is compact and

intersects K and L transversally. This can happen only at the point x = K ∧ L, and

then G∩D = G\{x} ≈ R. A line meeting D and passing through x is entirely contained

in the closure of D, because lines intersect transversally. Therefore, a line H meeting

both the disk D and the complement of its closure has to meet the boundary K ∪ L at

least twice, in points distinct from x. Since there can be at most one point of intersection

with each of the lines K, L, we have that H ∩ D ≈ R. Thus, the induced structure is

an (R2, R)-plane; it is stable by [12, 31.22].

Proposition 12. Given a compact proper subset A of a line H , we can always

find two compact lines K, L such that A is contained in the open disk DK,L bounded

by K and L.

Proof: If H is noncompact, we may simply choose two points u, v on H such that A

is contained in the open interval I ⊆ L between these points, and take arbitrary compact

lines K and L containing u and v, respectively. Then I must be contained in the bounded

complementary component of K ∪ L, which is DK,L.

If H is compact, then we choose a point x ∈ H \A and a noncompact line G passing

through x. We order Lx \ {G} according to 8 and choose K, L ∈ Cx such that H lies
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between them in that order; this is possible by Proposition 10. Then DK,L contains

H \ {x}.

Definition 13. We are now in position to define a topology on the line set L.

Let L ∈ L be a line and let H1, H2 be lines meeting L in distinct points xi = L ∧ Hi.

Let Ai be a neighbourhood of xi in Hi, i ∈ {1, 2}. If A1 ∩A2 = ∅, then the set

A1 ∨ A2 = {u1 ∨ u2; ui ∈ Ai} ⊆ L

will be called an (H1, H2)-neighbourhood of L.

By Propositions 11 and 12, there is an (R2, R)-subplane of (M,L) containing the

points x1, x2, and A1 ∨ A2 is an open set in the line space of that subplane, provided

that A1 and A2 are small enough. It follows that the sets A1 ∨ A2 form the basis of a

topology on L, which we call the natural topology.

Lemma 14. Given two pairs of distinct lines, (H1, H2) and (H ′

1, H
′

2), meeting the

line L, every (H1, H2)-neighbourhood of L contains an (H ′

1, H
′

2)-neighbourhood.

Proof: Using Proposition 12, we can find an (R2, R)-subplane containing the four

intersection points of L with the given lines, and we may also assume that the linear

neighbourhoods Ai, A
′

i are all contained in this subplane. Then the assertion is a direct

consequence of the continuity of operations in the subplane.

Proposition 15. If (D,D) is an (R2, R)-subplane of (M,L), then D is open

with respect to the natural topology on L, and the topology induced on D by L is the

topology which makes (D,D) a stable plane.

Proof: The topology on D belonging to the stable plane (D,D) is generated by

all (H1, H2)-neighbourhoods of lines L ∈ D such that the intersection points with L and

the defining sets Ai are contained in D. It follows from Proposition 14 that this agrees

with the topology induced by the natural topology on L.

Now it is easy to prove our main result:

Theorem 16. With respect to the natural topology, (M,L) is a stable plane.

Proof: Since any pair of points and any pair of intersecting lines is contained in

some (R2, R)-subplane, which is a stable plane, our assertion is a direct consequence of

Proposition 15.
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