Bull. Austral. Math. Soc. 72(2) pp.177--186, 2005.

Height estimates on cubic twists of the Fermat elliptic curve

Tomasz Jedrzejak

Received: 10th January, 2005

.

Abstract

We give bounds for the canonical height of rational and integral points on cubic twists of the Fermat elliptic curve. As a corollary we prove that there is no integral arithmetic progression on certain curves in this family.

Click to download PDF of this article (free access until July 2006)

or get the no-frills version

[an error occurred while processing this directive]
(Metadata: XML, RSS, BibTeX) MathSciNet: MR2183401 Z'blatt-MATH: 02246382

References

  1. M.A. Bennet;
    On the representation of unity by binary cubic forms,
    (preprint). MR1806730
  2. A. Bremner, J.H. Silverman and N. Tzanakis;
    Integral points in arithmetic progression on y2=x( x2-n2),
    J. Number Theory 80 (2000), pp. 187--208. MR1740510
  3. J.E. Cremona;
    mwrank,
    http://www.maths.nott.ac.uk/personal/jec/ftp/progs.
  4. M. Hindry and J.H. Silverman;
    The cannonical heights and integral points on elliptic curves,
    Invent. Math. 93 (1998), pp. 419--450. MR948108
  5. S. Lang;
    Elliptic curves: Diophantine analysis,
    Grundlehren der Math. Wiss (Springer-Verlag, Berlin, New York, 1978). MR518817
  6. J.H. Silverman;
    Advanced topics in the arithmetic of elliptic curves,
    Graduate Texts in Math. 151 (Springer-Verlag, New York, 1994). MR1312368
  7. J. Tate;
    Algorithm for determining the type of a singular fiber in an elliptic pencil,
    in Modular Functions of One Variable IV,
    Lecture Notes in Math. 476 (Springer-Verlag, Berlin, Heidelberg, New York, 1975). MR393039

ISSN 0004-9727