Bull. Austral. Math. Soc. 72(2) pp.187--196, 2005.
Ascending HNN-extensions and properly 3-realisable groups
Francisco F. Lasheras |
This work was partially supported by the project MTM 2004-01865.
Abstract
In this paper, we show that any ascending
HNN-extension of a finitely presented group is properly
3-realisable. We recall that a finitely presented group
G is said to be properly
3-realisable if there exists a compact 2-polyhedron K with (K)
G and whose universal
cover has the
proper homotopy type of a (PL) 3-manifold (with boundary).
Click to download PDF of this article (free access until July 2006)
or get the no-frills version
[an error occurred while processing this directive](Metadata: XML, RSS, BibTeX) | MathSciNet: MR2183402 | Z'blatt-MATH: 02246383 |
References
- R. Ayala, M. Cárdenas, F.F. Lasheras and A. Quintero;
Properly 3-realizable groups,
Proc. Amer. Math. Soc. 133 (2005), pp. 1527--1535. MR2111954 - H-J. Baues and A. Quintero;
Infinite homotopy theory,
K-monographs in Mathematics 6 (Kluwer Academic Publishers, Dordrecht, 2001). MR1848146 - R. Brown and R. Geoghegan;
An infinite-dimensional torsion-free FP∞ group,
Invent. Math. 77 (1984), pp. 367--381. MR752825 - J.W. Cannon, W.J. Floyd and W.R. Parry;
Introductory notes on Richard Thompson's groups,
Enseig. Math. 42 (1996), pp. 215--256. MR1426438 - M. Cárdenas, F.F. Lasheras, F. Muro and A. Quintero;
Proper L-S category, fundamental pro-groups and 2-dimensional proper co-H-spaces,
Topology Appl. 153 (2005), pp. 580--604. MR2193328 - M. Cárdenas, F.F. Lasheras and R. Roy;
Direct products and properly 3-realisable groups,
Bull. Austral. Math. Soc. 70 (2004), pp. 199--206. MR2094287 - M.J. Dunwoody;
The accessibility of finitely presented groups,
Invent. Math. 81 (1985), pp. 449--457. MR807066 - H. Federer and B. Jonsson;
Some properties of free groups,
Trans. Amer. Math. Soc. 68 (1950), pp. 1--27. MR32643 - R. Geoghegan;
Topological methods in group theory,
(book in preparation). - R. Geoghegan and M. Mihalik;
Free abelian cohomology of groups and ends of universal covers,
J. Pure Appl. Algebra 36 (1985), pp. 123--137. MR787167 - R. Geoghegan and M. Mihalik;
The fundamental group at infinity,
Topology 35 (1996), pp. 655--669. MR1396771 - R.C. Lyndon and P.E. Schupp;
Combinatorial group theory (Berlin, Heidelberg, New York, 1977). MR577064 - S. Mardešic and J. Segal;
Shape theory (North-Holland, Amsterdam, New York, 1982). MR676973 - M. Mihalik;
Ends of groups with the integers as quotient,
J. Pure Appl. Algebra 35 (1985), pp. 305--320. MR777262 - P. Scott and C.T.C. Wall;
Topological methods in group theory,
in Homological group theory,
London Math. Soc. Lecture 36 Notes (Cambridge Univ. Press, Cambridge, 1979), pp. 137--204. MR564422
ISSN 0004-9727