Bull. Austral. Math. Soc. 72(2) pp.187--196, 2005.

Ascending HNN-extensions and properly 3-realisable groups

Francisco F. Lasheras

Received: 28th February, 2005

This work was partially supported by the project MTM 2004-01865.

Abstract

In this paper, we show that any ascending HNN-extension of a finitely presented group is properly 3-realisable. We recall that a finitely presented group G is said to be properly 3-realisable if there exists a compact 2-polyhedron K with $ \pi _{1}^{}$(K) $ \cong $ G and whose universal cover $ \widetilde {{K}}$ has the proper homotopy type of a (PL) 3-manifold (with boundary).

Click to download PDF of this article (free access until July 2006)

or get the no-frills version

[an error occurred while processing this directive]
(Metadata: XML, RSS, BibTeX) MathSciNet: MR2183402 Z'blatt-MATH: 02246383

References

  1. R. Ayala, M. Cárdenas, F.F. Lasheras and A. Quintero;
    Properly 3-realizable groups,
    Proc. Amer. Math. Soc. 133 (2005), pp. 1527--1535. MR2111954
  2. H-J. Baues and A. Quintero;
    Infinite homotopy theory,
    K-monographs in Mathematics 6 (Kluwer Academic Publishers, Dordrecht, 2001). MR1848146
  3. R. Brown and R. Geoghegan;
    An infinite-dimensional torsion-free FP group,
    Invent. Math. 77 (1984), pp. 367--381. MR752825
  4. J.W. Cannon, W.J. Floyd and W.R. Parry;
    Introductory notes on Richard Thompson's groups,
    Enseig. Math. 42 (1996), pp. 215--256. MR1426438
  5. M. Cárdenas, F.F. Lasheras, F. Muro and A. Quintero;
    Proper L-S category, fundamental pro-groups and 2-dimensional proper co-H-spaces,
    Topology Appl. 153 (2005), pp. 580--604. MR2193328
  6. M. Cárdenas, F.F. Lasheras and R. Roy;
    Direct products and properly 3-realisable groups,
    Bull. Austral. Math. Soc. 70 (2004), pp. 199--206. MR2094287
  7. M.J. Dunwoody;
    The accessibility of finitely presented groups,
    Invent. Math. 81 (1985), pp. 449--457. MR807066
  8. H. Federer and B. Jonsson;
    Some properties of free groups,
    Trans. Amer. Math. Soc. 68 (1950), pp. 1--27. MR32643
  9. R. Geoghegan;
    Topological methods in group theory,
    (book in preparation).
  10. R. Geoghegan and M. Mihalik;
    Free abelian cohomology of groups and ends of universal covers,
    J. Pure Appl. Algebra 36 (1985), pp. 123--137. MR787167
  11. R. Geoghegan and M. Mihalik;
    The fundamental group at infinity,
    Topology 35 (1996), pp. 655--669. MR1396771
  12. R.C. Lyndon and P.E. Schupp;
    Combinatorial group theory (Berlin, Heidelberg, New York, 1977). MR577064
  13. S. Mardešic and J. Segal;
    Shape theory (North-Holland, Amsterdam, New York, 1982). MR676973
  14. M. Mihalik;
    Ends of groups with the integers as quotient,
    J. Pure Appl. Algebra 35 (1985), pp. 305--320. MR777262
  15. P. Scott and C.T.C. Wall;
    Topological methods in group theory,
    in Homological group theory,
    London Math. Soc. Lecture 36 Notes (Cambridge Univ. Press, Cambridge, 1979), pp. 137--204. MR564422

ISSN 0004-9727