Bull. Austral. Math. Soc. 72(2) pp.225--250, 2005.

Abstract theory of semiorderings

Thomas C. Craven

Tara L. Smith

Received: 31st March, 2005

.

Abstract

Marshall's abstract theory of spaces of orderings is a powerful tool in the algebraic theory of quadratic forms. We develop an abstract theory for semiorderings, developing a notion of a space of semiorderings which is a prespace of orderings. It is shown how to construct all finitely generated spaces of semiorderings. The morphisms between such spaces are studied, generalising the extension of valuations for fields into this context. An important invariant for studying Witt rings is the covering number of a preordering. Covering numbers are defined for abstract preorderings and related to other invariants of the Witt ring.

Click to download PDF of this article (free access until July 2006)

or get the no-frills version

[an error occurred while processing this directive]
(Metadata: XML, RSS, BibTeX) MathSciNet: MR2183405 Z'blatt-MATH: 02246386

References

  1. C. Andradas, L. Bröcker and J. Ruiz;
    Constructible sets in real geometry (Springer Verlag, Berlin, 1966). MR1393194
  2. R. Baer;
    Linear algebra and projective geometry (Academic Press, New York, 1952). MR52795
  3. E. Becker and E. Köpping;
    Reduzierte quadratische Formen und semiornungen reeller Körpern,
    Abh. Math. Sem. Univ. Hamburg 46 (1977), pp. 143--177. MR506028
  4. L. Bröcker;
    Zur Theorie der quadratischen Formen über formal reellen Körpern,
    Math. Ann. 210 (1974), pp. 233--256. MR354549
  5. P.M. Cohn;
    Skew fields,
    Encyclopedia of Mathematics and its Applications 57 (Cambridge Univ. Press, Cambridge, 1995). MR1349108
  6. T. Craven;
    The Boolean space of orderings of a field,
    Trans. Amer. Math. Soc. 209 (1975), pp. 225--235. MR379448
  7. T. Craven;
    Characterizing reduced Witt rings of fields,
    J. Algebra 53 (1978), pp. 68--77. MR480332
  8. T. Craven;
    An application of Pólya's theory of counting to an enumeration problem arising in quadratic form theory,
    J. Combin. Theory Ser. A 29 (1980), pp. 174--181. MR583956
  9. T. Craven;
    Orderings and valuations on *-fields,
    Rocky Mountain J. Math. 19 (1989), pp. 629--646. MR1043236
  10. T. Craven;
    Witt groups of hermitian forms over *-fields,
    J. Algebra 147 (1992), pp. 96--127. MR1154677
  11. T. Craven;
    *-valuations and hermitian forms on skew fields,
    in Valuation Theory and its Applications 1,
    Fields Inst. Commun. (American Mathematical Society, Providence, RI, 2002). MR1928364
  12. T. Craven and T. Smith;
    Formally real fields from a Galois theoretic perspective,
    J. Pure Appl. Alg. 145 (2000), pp. 19--36. MR1732285
  13. T. Craven and T. Smith;
    Hermitian forms over ordered *-fields,
    J. Algebra 216 (1999), pp. 86--104. MR1694586
  14. T. Craven and T. Smith;
    Semiorderings and Witt rings,
    Bull. Austral. Math. Soc. 67 (2003), pp. 329--341. MR1972722
  15. I. Efrat and D. Haran;
    On Galois groups over pythagorean semi-real closed fields,
    Israel J. Math. 85 (1994), pp. 57--78. MR1264339
  16. T. Jacobi and A. Prestel;
    Distinguished representations of strictly positive polynomials,
    J. Reine Angew. Math. 532 (2001), pp. 223--235. MR1817508
  17. J. Kleinstein and A. Rosenberg;
    Signatures and semisignatures of abstract Witt rings and Witt rings of semilocal rings,
    Canad. J. Math. 30 (1978), pp. 872--895. MR500241
  18. J. Kleinstein and A. Rosenberg;
    Succinct and representational Witt rings,
    Pacific J. Math. 86 (1980), pp. 99--137. MR586872
  19. M. Knebusch;
    Generalization of a theorem of Artin--Pfister to arbitrary semilocal rings, and related topics,
    J. Algebra 36 (1975), pp. 46--67. MR382164
  20. M. Knebusch, A. Rosenberg and R. Ware;
    Structure of Witt rings and quotients of abelian group rings,
    Amer. J. Math. 94 (1972), pp. 119--155. MR296103
  21. T. Y. Lam;
    Orderings, valuations and quadratic forms,
    Conference Board of the Mathematical Sciences 52 (American Mathemtical Society, Providence, RI, 1983). MR714331
  22. M. Marshall;
    Abstract Witt rings Queen's Papers in Pure and Appl. Math. 57 (Queen's University, Kingston, Ontario, 1980). MR674651
  23. M. Marshall;
    Spaces of orderings and abstract real spectra,
    Lecture Notes in Math. 1636 (Springer--Verlag, Berlin, 1996). MR1438785
  24. J. Merzel;
    Quadratic forms over fields with finitely many orderings,
    Contemp. Math. 8 (1982), pp. 185--229. MR653183
  25. A. Prestel;
    Lectures on formally real fields,
    Lecture Notes in Math. 1093 (Springer--Verlag, Berlin, 1984). MR769847
  26. A. Prestel and C. Delzell;
    Positive polynomials: from Hilbert's 17th problem to real algebra,
    London Math. Soc. Note Ser. 36 (Springer--Verlag, Berlin, 2001). MR1829790

ISSN 0004-9727