Bull. Austral. Math. Soc. 72(2) pp.225--250, 2005.
Abstract theory of semiorderings
Thomas C. Craven |
Tara L. Smith |
.
Abstract
Marshall's abstract theory of spaces of orderings is a powerful tool in the algebraic theory of quadratic forms. We develop an abstract theory for semiorderings, developing a notion of a space of semiorderings which is a prespace of orderings. It is shown how to construct all finitely generated spaces of semiorderings. The morphisms between such spaces are studied, generalising the extension of valuations for fields into this context. An important invariant for studying Witt rings is the covering number of a preordering. Covering numbers are defined for abstract preorderings and related to other invariants of the Witt ring.
Click to download PDF of this article (free access until July 2006)
or get the no-frills version
[an error occurred while processing this directive](Metadata: XML, RSS, BibTeX) | MathSciNet: MR2183405 | Z'blatt-MATH: 02246386 |
References
- C. Andradas, L. Bröcker and J. Ruiz;
Constructible sets in real geometry (Springer Verlag, Berlin, 1966). MR1393194 - R. Baer;
Linear algebra and projective geometry (Academic Press, New York, 1952). MR52795 - E. Becker and E. Köpping;
Reduzierte quadratische Formen und semiornungen reeller Körpern,
Abh. Math. Sem. Univ. Hamburg 46 (1977), pp. 143--177. MR506028 - L. Bröcker;
Zur Theorie der quadratischen Formen über formal reellen Körpern,
Math. Ann. 210 (1974), pp. 233--256. MR354549 - P.M. Cohn;
Skew fields,
Encyclopedia of Mathematics and its Applications 57 (Cambridge Univ. Press, Cambridge, 1995). MR1349108 - T. Craven;
The Boolean space of orderings of a field,
Trans. Amer. Math. Soc. 209 (1975), pp. 225--235. MR379448 - T. Craven;
Characterizing reduced Witt rings of fields,
J. Algebra 53 (1978), pp. 68--77. MR480332 - T. Craven;
An application of Pólya's theory of counting to an enumeration problem arising in quadratic form theory,
J. Combin. Theory Ser. A 29 (1980), pp. 174--181. MR583956 - T. Craven;
Orderings and valuations on *-fields,
Rocky Mountain J. Math. 19 (1989), pp. 629--646. MR1043236 - T. Craven;
Witt groups of hermitian forms over *-fields,
J. Algebra 147 (1992), pp. 96--127. MR1154677 - T. Craven;
*-valuations and hermitian forms on skew fields,
in Valuation Theory and its Applications 1,
Fields Inst. Commun. (American Mathematical Society, Providence, RI, 2002). MR1928364 - T. Craven and T. Smith;
Formally real fields from a Galois theoretic perspective,
J. Pure Appl. Alg. 145 (2000), pp. 19--36. MR1732285 - T. Craven and T. Smith;
Hermitian forms over ordered *-fields,
J. Algebra 216 (1999), pp. 86--104. MR1694586 - T. Craven and T. Smith;
Semiorderings and Witt rings,
Bull. Austral. Math. Soc. 67 (2003), pp. 329--341. MR1972722 - I. Efrat and D. Haran;
On Galois groups over pythagorean semi-real closed fields,
Israel J. Math. 85 (1994), pp. 57--78. MR1264339 - T. Jacobi and A. Prestel;
Distinguished representations of strictly positive polynomials,
J. Reine Angew. Math. 532 (2001), pp. 223--235. MR1817508 - J. Kleinstein and A. Rosenberg;
Signatures and semisignatures of abstract Witt rings and Witt rings of semilocal rings,
Canad. J. Math. 30 (1978), pp. 872--895. MR500241 - J. Kleinstein and A. Rosenberg;
Succinct and representational Witt rings,
Pacific J. Math. 86 (1980), pp. 99--137. MR586872 - M. Knebusch;
Generalization of a theorem of Artin--Pfister to arbitrary semilocal rings, and related topics,
J. Algebra 36 (1975), pp. 46--67. MR382164 - M. Knebusch, A. Rosenberg and R. Ware;
Structure of Witt rings and quotients of abelian group rings,
Amer. J. Math. 94 (1972), pp. 119--155. MR296103 - T. Y. Lam;
Orderings, valuations and quadratic forms,
Conference Board of the Mathematical Sciences 52 (American Mathemtical Society, Providence, RI, 1983). MR714331 - M. Marshall;
Abstract Witt rings Queen's Papers in Pure and Appl. Math. 57 (Queen's University, Kingston, Ontario, 1980). MR674651 - M. Marshall;
Spaces of orderings and abstract real spectra,
Lecture Notes in Math. 1636 (Springer--Verlag, Berlin, 1996). MR1438785 - J. Merzel;
Quadratic forms over fields with finitely many orderings,
Contemp. Math. 8 (1982), pp. 185--229. MR653183 - A. Prestel;
Lectures on formally real fields,
Lecture Notes in Math. 1093 (Springer--Verlag, Berlin, 1984). MR769847 - A. Prestel and C. Delzell;
Positive polynomials: from Hilbert's 17th problem to real algebra,
London Math. Soc. Note Ser. 36 (Springer--Verlag, Berlin, 2001). MR1829790
ISSN 0004-9727