Bull. Austral. Math. Soc. 72(2) pp.251--263, 2005.

Finding the group structure of elliptic curves over finite fields

John B. Friedlander

Carl Pomerance

Igor E. Shparlinski

Received: 13th April, 2005

During the preparation of this paper, the first author was supported in part by NSERC grant A5123 and by a Killam Research Fellowship.
The second author was supported in part by NSF grant DMS-0401422 and the third author was supported in part by ARC grant DP0211459.

Abstract

We show that an algorithm of V. Miller to compute the group structure of an elliptic curve over a prime finite field runs in probabilistic polynomial time for almost all curves over the field. Important to our proof are estimates for some divisor sums.

Click to download PDF of this article (free access until July 2006)

or get the no-frills version

[an error occurred while processing this directive]
(Metadata: XML, RSS, BibTeX) MathSciNet: MR2183406 Z'blatt-MATH: 02246387

References

  1. M. Agrawal, N. Kayal and N. Saxena;
    PRIMES is in P,
    Ann. of Math. (2) 60 (2004), pp. 781--793. MR2123939
  2. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen and F. Vercauteren;
    (to appear)Elliptic and hyperelliptic curve crytography: Theory and practice (CRC Press to appear). MR2162716
  3. B.J. Birch;
    How the number of points of an elliptic curve over a fixed prime field varies,
    J. Lond. Math. Soc. 43 (1968), pp. 57--60. MR230682
  4. I. Blake, G. Seroussi and N. Smart;
    Elliptic curves in cryptography,
    London Math. Soc. Lecture Note Series 265 (Cambridge Univ. Press, Cambridge, 1999). MR1771549
  5. D. Coppersmith;
    Modifications to the number field sieve,
    J. Cryptology 6 (1993), pp. 169--180. MR1233462
  6. R. Crandall and C. Pomerance;
    Prime numbers: A computational perspective (Springer-Verlag, Berlin, 2001). MR1821158
  7. H. Davenport;
    Multiplicative number theory,
    2nd edition (Springer-Verlag, New York, 1980). MR606931
  8. M. Deuring;
    Die Typen der Multiplikatorenringe elliptischer Funktionenk{ö}rper,
    Abh. Math. Sem. Hansischen Univ. 14 (1941), pp. 197--272. MR5125
  9. D.R. Kohel and I.E. Shparlinski;
    Exponential sums and group generators for elliptic curves over finite fields,
    Lect. Notes in Comp. Sci. 1838 (Springer-Verlag, Berlin, 2000), pp. 395--404. MR1850620
  10. H.W. Lenstra, Jr.;
    Factoring integers with elliptic curves,
    Annals of Math. 126 (1987), pp. 649--673. MR916721
  11. H.W. Lenstra, Jr., J. Pila and C. Pomerance;
    A hyperelliptic smoothness test, I,
    Philos. Trans. Royal Soc. London, Ser. A. 345 (1993), pp. 397--408. MR1253501
  12. H.W. Lenstra, Jr. and C. Pomerance;
    A rigorous time bound for factoring integers,
    J. Amer. Math. Soc. 5 (1992), pp. 483--516. MR1137100
  13. H.W. Lenstra, Jr. and C. Pomerance;
    Primality testing with Gaussian periods,
    (in preparation).
  14. F. Luca, J. McKee and I.E. Shparlinski;
    Small exponent point groups on elliptic curves,
    J. Th{é}or. Nombres Bordeaux (to appear).
  15. F. Luca and I.E. Shparlinski;
    On the exponent of the group of points on elliptic curves in extension fields,
    Internat. Math. Res, Notices (to appear). MR2152235
  16. V.S. Miller;
    The Weil pairing, and its efficient calculation,
    J. Cryptology 17 (2004), pp. 235--261. MR2090556
  17. C. Pomerance;
    Analysis and comparison of some integer factoring algorithms,
    in Computational Methods in Number Theory, Part I,
    (H.W. Lenstra, Jr. and R. Tijdeman, Editors),
    Math. Centre Tracts 154 (Math Centrum, Amsterdam, 1982), pp. 89--139. MR700260
  18. K. Prachar;
    Primzahlverteilung (Springer-Verlag, Berlin, 1957). MR87685
  19. R. Schoof;
    Elliptic curves over finite fields and the computation of square roots mod p,
    Math. Comp. 44 (1985), pp. 483--494. MR777280
  20. R. Schoof;
    Nonsingular plane cubic curves over finite fields,
    J. Combin. Theory, Ser.A 47 (1987), pp. 183--211. MR914657
  21. R. Schoof;
    The exponents of the group of points on the reduction of an elliptic curve,
    in Arithmetic Algebraic Geometry,
    Progr. Math. 89 (Birkhäuser, Boston, MA, 1991), pp. 325--335. MR1085266
  22. J.H. Silverman;
    The arithmetic of elliptic curves (Springer-Verlag, Berlin, 1995). MR817210
  23. W.C. Waterhouse;
    Abelian varieties over finite fields,
    Ann. Sci. Ecole Norm. Sup. 2 (1969), pp. 521--560. MR265369

ISSN 0004-9727