Bull. Austral. Math. Soc. 72(2) pp.299--315, 2005.

Proper 1-ball contractive retractions in
Banach spaces of measurable functions

D. Caponetti

A. Trombetta

G. Trombetta

Received: 5th May, 2005

.

Abstract

In this paper we consider the Wośko problem of evaluating, in an infinite-dimensional Banach space X, the infimum of all k$ \ge $1 for which there exists a k-ball contractive retraction of the unit ball onto its boundary. We prove that in some classical Banach spaces the best possible value 1 is attained. Moreover we give estimates of the lower H-measure of noncompactness of the retractions we construct.

Click to download PDF of this article (free access until July 2006)

or get the no-frills version

[an error occurred while processing this directive]
(Metadata: XML, RSS, BibTeX) MathSciNet: MR2183411 Z'blatt-MATH: 02246392

References

  1. J. Appell, N.A. Erkazova, S. Falcon Santana and M. Väth;
    On some Banach space constants arising in nonlinear fixed point and eigenvalue theory,
    Fixed Point Theory Appl. 4 (2004), pp. 317--336. MR2129570
  2. J. Appell and P.P. Zabrejko;
    Nonlinear superposition operators (Cambridge University Press, Cambridge, 1990). MR1066204
  3. C. Bennett and R. Sharpley;
    Interpolation of operators,
    Pure and Applied Maths 129 (Boston Academic Press, Boston MA, 1988). MR928802
  4. Y. Benyamini and Y. Sternfeld;
    Spheres in infinite-dimensional normed spaces are Lipschitz contractible,
    Proc. Amer. Math. Soc. 88 (1983), pp. 439--445. MR699410
  5. C. Capone and A. Fiorenza;
    On small Lebesgue spaces,
    J. Funct. Spaces Appl. 3 (2005), pp. 73--89. MR2110048
  6. D. Caponetti and G. Trombetta;
    On proper k-ball contractive retractions in the Banach space BC([0, ∞)),
    Nonlinear Func. Anal. Appl. 10 (2005), pp. 461--467. MR2194609
  7. A. Fiorenza;
    Duality and reflexivity in grand Lebesgue spaces,
    Collect. Math. 51 (2000), pp. 131--148. MR1776829
  8. K. Goebel;
    On the minimal displacement of points under Lipschitzian mappings,
    Pacific J. Math. 45 (1973), pp. 151--163. MR328708
  9. K. Goebel;
    On the problem of retracting balls onto their boundary,
    Abstr. Appl. Anal. 2 (2003), pp. 101--110. MR1960141
  10. K. Goebel and W.A. Kirk;
    Topics in metric fixed point theory (Cambridge, 1990). MR1074005
  11. T. Iwaniec and C. Sbordone;
    On the integrability of the Jacobian under minimal hypotheses,
    Arch. Rational Mech. Anal. 119 (1992), pp. 129--143. MR1176362
  12. G. Lewicki and G. Trombetta;
    Almost contractive retractions in Orlicz spaces,
    Bull. Austral. Math. Soc. 68 (2003), pp. 353--369. MR2027680
  13. B. Nowak;
    On the Lipschitzian retraction of the unit ball in infinite-dimensional Banach spaces onto its boundary,
    Bull. Acad. Polon. Sci. 27 (1979), pp. 861--864. MR616177
  14. M.M. Rao and Z.D. Ren;
    Theory of Orlicz spaces,
    Monographs and Textbooks in Pure and Applied Mathematics 146 (Marcel Dekker, Inc., New York, 1991). MR1113700
  15. W. Rudin;
    Real and complex analysis (McGraw-Hill Book Co., New York, 1987). MR924157
  16. G. Trombetta;
    k-set contractive retractions in spaces of continuous functions,
    Sci. Math. Jpn. 59 (2004), pp. 121--128. MR2027739
  17. A. Trombetta and G. Trombetta;
    On the existence of p) k-set contractive retractions in Lp [0,1] spaces, 1 ≤ p < ∞,
    Sci. Math. Jpn. 56 (2002), pp. 327--335. MR1922796
  18. M. Väth;
    Ideal spaces,
    Lect. Notes in Math. 1664 (Springer-Verlag, Berlin, 1997). MR1463946
  19. M. Väth;
    On the minimal displacement problem of γ-Lipschitz maps and γ-Lipschitz retractions onto the sphere,
    Z. Anal. Anwendungen 21 (2002), pp. 901--914. MR1957304
  20. J. Wośko;
    An example related to the retraction problem,
    Ann. Univ. Mariae Curie-Sk{ł}odowska 45 (1991), pp. 127--130. MR1322147

ISSN 0004-9727