Bull. Austral. Math. Soc. 72(2) pp.299--315, 2005.
Proper 1-ball
contractive retractions in
Banach spaces of measurable functions
D. Caponetti |
A. Trombetta |
G. Trombetta |
.
Abstract
In this paper we consider the Wośko problem
of evaluating, in an infinite-dimensional Banach space X, the infimum of all k1 for which there exists a
k-ball contractive retraction of
the unit ball onto its boundary. We prove that in some classical
Banach spaces the best possible value 1
is attained. Moreover we give estimates of the lower H-measure of
noncompactness of the retractions we construct.
Click to download PDF of this article (free access until July 2006)
or get the no-frills version
[an error occurred while processing this directive](Metadata: XML, RSS, BibTeX) | MathSciNet: MR2183411 | Z'blatt-MATH: 02246392 |
References
- J. Appell, N.A. Erkazova, S. Falcon Santana and M. Väth;
On some Banach space constants arising in nonlinear fixed point and eigenvalue theory,
Fixed Point Theory Appl. 4 (2004), pp. 317--336. MR2129570 - J. Appell and P.P. Zabrejko;
Nonlinear superposition operators (Cambridge University Press, Cambridge, 1990). MR1066204 - C. Bennett and R. Sharpley;
Interpolation of operators,
Pure and Applied Maths 129 (Boston Academic Press, Boston MA, 1988). MR928802 - Y. Benyamini and Y. Sternfeld;
Spheres in infinite-dimensional normed spaces are Lipschitz contractible,
Proc. Amer. Math. Soc. 88 (1983), pp. 439--445. MR699410 - C. Capone and A. Fiorenza;
On small Lebesgue spaces,
J. Funct. Spaces Appl. 3 (2005), pp. 73--89. MR2110048 - D. Caponetti and G. Trombetta;
On proper k-ball contractive retractions in the Banach space BC([0, ∞)),
Nonlinear Func. Anal. Appl. 10 (2005), pp. 461--467. MR2194609 - A. Fiorenza;
Duality and reflexivity in grand Lebesgue spaces,
Collect. Math. 51 (2000), pp. 131--148. MR1776829 - K. Goebel;
On the minimal displacement of points under Lipschitzian mappings,
Pacific J. Math. 45 (1973), pp. 151--163. MR328708 - K. Goebel;
On the problem of retracting balls onto their boundary,
Abstr. Appl. Anal. 2 (2003), pp. 101--110. MR1960141 - K. Goebel and W.A. Kirk;
Topics in metric fixed point theory (Cambridge, 1990). MR1074005 - T. Iwaniec and C. Sbordone;
On the integrability of the Jacobian under minimal hypotheses,
Arch. Rational Mech. Anal. 119 (1992), pp. 129--143. MR1176362 - G. Lewicki and G. Trombetta;
Almost contractive retractions in Orlicz spaces,
Bull. Austral. Math. Soc. 68 (2003), pp. 353--369. MR2027680 - B. Nowak;
On the Lipschitzian retraction of the unit ball in infinite-dimensional Banach spaces onto its boundary,
Bull. Acad. Polon. Sci. 27 (1979), pp. 861--864. MR616177 - M.M. Rao and Z.D. Ren;
Theory of Orlicz spaces,
Monographs and Textbooks in Pure and Applied Mathematics 146 (Marcel Dekker, Inc., New York, 1991). MR1113700 - W. Rudin;
Real and complex analysis (McGraw-Hill Book Co., New York, 1987). MR924157 - G. Trombetta;
k-set contractive retractions in spaces of continuous functions,
Sci. Math. Jpn. 59 (2004), pp. 121--128. MR2027739 - A. Trombetta and G. Trombetta;
On the existence of (γp) k-set contractive retractions in Lp [0,1] spaces, 1 ≤ p < ∞,
Sci. Math. Jpn. 56 (2002), pp. 327--335. MR1922796 - M. Väth;
Ideal spaces,
Lect. Notes in Math. 1664 (Springer-Verlag, Berlin, 1997). MR1463946 - M. Väth;
On the minimal displacement problem of γ-Lipschitz maps and γ-Lipschitz retractions onto the sphere,
Z. Anal. Anwendungen 21 (2002), pp. 901--914. MR1957304 - J. Wośko;
An example related to the retraction problem,
Ann. Univ. Mariae Curie-Sk{ł}odowska 45 (1991), pp. 127--130. MR1322147
ISSN 0004-9727