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ON SECOND-ORDER CONVERSE DUALITY FOR A

NONDIFFERENTIABLE PROGRAMMING PROBLEM

Xin Min Yang and Ping Zhang

Certain shortcomings are described in the second order converse duality results in the
recent work of (J. Zhang and B. Mond, Bull. Austral. Math. Soc. 55(1997) 29-44).
Appropriate modifications are suggested.

1. Introduction

A second-order dual for a nonlinear programming problem was introduced by Man-

gasarian ([1]). Later, Mond [2] proved duality theorems under a condition which is called

“second-order convexity”. This condition is much simpler than that used by Mangasar-

ian. Later, Mond and Weir [3] reformulated the second-order dual.

In [4], Mond considered the class of nondifferentiable mathematical programming

problems

minimize f(x) + (xT Bx)1/2(P)

subject to g(x) > 0,(1)

where x ∈ Rn, f and g are twice differentiable functions from Rn into R and Rm, respec-

tively, and B is an n× n positive semi-definite (symmetric) matrix.

Recently, Zhang and Mond in [5] formulate a general second-order dual model for

nondifferentiable programming problems (P ):

maximize f(u)−
∑
i∈I0

yigi(u) + uT Bw − 1

2
pT

[
∇2f(u)−∇2

∑
i∈I0

yigi(u)

]
p,(GD)

subject to ∇f(u)−+∇
(
yT g(u)

)
+ Bw +∇2f(u)p−∇2yT g(u)p = 0,(2) ∑

i∈Iα

yigi(u)− 1

2
pT∇2

∑
i∈Iα

yigi(u)p 6 0, α = 1, 2, . . . , r,(3)

wT Bw 6 1,(4)

y > 0,(5)
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where u, w, p ∈ Rn, y ∈ Rm, Iα ⊂ M = {1, 2, . . . ,m}, α = 0, 1, 2, . . . , r with
r⋃

α=0

Iα = M

and Iα ∩ Iβ = ∅ if α 6= β.

Zhang and Mond in [5] give weak, strong and converse duality theorems for first

order and second order nondifferentiable dual models under generalised convexity. In

particular, they prove the following second order converse duality Theorem.

Theorem 1. Converse duality (see [5, Theorem 6]). Let (x∗, y∗, w∗, p∗) be an

optimal solution of (GD) at which

(A1) the n × n Hessian matrix ∇
[
∇2f(x∗) − ∇2

(
y∗T g(x∗)

)]
p∗ is positive or negative

definite,

(A2) the vectors{[
∇2f(x∗)−∇2

∑
i∈I0

y∗igi(x
∗)

]
j

,

[
∇2

∑
i∈Iα

y∗igi(x
∗)

]
j

, α = 1, 2, . . . , r, j = 1, 2, . . . , n

}

are linearly independent, where [·]j denotes the jth row.

If for all feasible (x, u, y, w, p), f(·)−
∑
i∈I0

yigi(·)+(·)T Bw is second order pseudoinvex

and
∑
i∈Iα

yigi(·), α = 1, 2, . . . , r is second order quasincave with respect to the same η, then

x∗ is an optimal solution to (P).

We note that the matrix ∇
[
∇2f(x∗)−∇2

(
y∗T g(x∗)

)]
p∗ is positive or negative defi-

nite in the assumption (A1) of Theorem 1, and the result of Theorem 1 implies p∗ = 0, see

[5, proof of Theorem 6]. It is obvious that the assumption and the result are inconsistent.

In this note, we shall give appropriate modifications for the deficiency in Theorem 1.

2. Second order converse duality

In the section, we shall present a second order converse duality theorem which cor-

rects Theorem 1.

Theorem 2. (Converse duality.) Let (x∗, y∗, w∗, p∗) be an optimal solution of

(GD) at which

(A1) for all α = 1, 2, . . . , r, either (a) the n× n Hessian matrix ∇2
∑
i∈Iα

y∗igi(x
∗) is pos-

itive definite and p∗T∇
∑
i∈Iα

y∗igi(x
∗) > 0 or (b) the n×n Hessian matrix ∇2

∑
i∈Iα

y∗igi(x
∗)

is negative definite and p∗T∇
∑
i∈Iα

y∗igi(x
∗) 6 0,

(A2) the vectors{[
∇2f(x∗)−∇2

∑
i∈I0

y∗igi(x
∗)

]
j

,

[
∇2

∑
i∈Iα

y∗igi(x
∗)

]
j

, α = 1, 2, . . . , r, j = 1, 2, . . . , n

}
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are linearly independent, where

(A3) the vectors

{
∇

∑
i∈Iα

y∗igi(x
∗), α = 1, 2, . . . , r

}
are linearly independent.

If, for all feasible (x, u, y, w, p), f(·)−
∑
i∈I0

yigi(·)+(·)T Bw is second order pseudoinvex

and
∑
i∈Iα

yigi(·), α = 1, 2, . . . , r is second order quasincave with respect to the same η, then

x∗ is an optimal solution to (P).

Proof: Since (x∗, y∗, w∗, p∗) is an optimal solution of (GD), by the generalised Fritz

John necessary conditions, there exists, τ0 ∈ R, v ∈ Rn, τα ∈ R, α = 1, 2, . . . , r, β ∈ R,

γ ∈ Rm, such that

τ0

{
−∇f(x∗) +

∑
i∈I0

∇y∗igi(x
∗)−Bw∗ +

1

2
p∗T∇

[
∇2f(x∗)−∇2

∑
i∈I0

y∗igi(x
∗)p∗

]}
+ vT{∇2f(x∗)−∇2y∗T g(x∗) +∇

[
∇2f(x∗)p∗ −∇2y∗T g(x∗)p∗

]
}

+
r∑

α=1

τα

{
∇

∑
i∈Iα

y∗igi(x
∗)− 1

2
p∗T∇

[
∇2

∑
i∈Iα

y∗igi(x
∗)p∗

]}
= 0, y(6)

τ0

{
gi(x

∗)− 1

2
p∗T∇2gi(x

∗)p∗
}
− vT

{
gi(x

∗) +∇2gi(x
∗)p∗

}
− γi = 0, i ∈ I0,(7)

τα

{
gi(x

∗)− 1

2
p∗T∇2gi(x

∗)p∗
}

− vT
{
∇gi(x

∗) +∇2gi(x
∗)p∗

}
− γi = 0, i ∈ Iα, α = 1, 2, . . . , r,(8)

τ0Bx∗ − vT B − 2βT (Bw∗) = 0,(9)

(τ0p
∗ + v)T

{
∇2f(x∗)−∇2

∑
i∈I0

y∗igi(x
∗)

}

−
r∑

α=1

(ταp∗ + v)T

{
∇2

∑
i∈Iα

y∗igi(x
∗)

}
= 0,(10)

τα

{∑
i∈Iα

y∗igi(x
∗)− 1

2
p∗T∇2

∑
i∈Iα

y∗igi(x
∗)p∗

}
= 0, α = 1, 2, . . . , r,(11)

β(w∗Bw∗ − 1) = 0,(12)

γT y∗ = 0,(13)

(τ0, τ1, τ2, . . . , τr, β, γ) > 0,(14)

(τ0, τ1, τ2, . . . , τr, β, γ, v) 6= 0.(15)

Because of Assumption (A2), (10) gives

(16) ταp∗ + v = 0 α = 0, 1, 2, . . . , r.

Multiplying (8) by y∗i, i ∈ Iα, α = 1, 2, . . . , r and using (11), we have
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τα

{
y∗igi(x

∗)− 1

2
p∗T∇2y∗igi(x

∗)p∗
}

− vT
{
∇y∗ig(x∗) +∇2y∗ig(x∗)p∗

}
= 0, i ∈ Iα, α = 1, 2, . . . , r,

thus

τα

{∑
i∈Iα

y∗igi(x
∗)− 1

2
p∗T

∑
i∈Iα

∇2y∗igi(x
∗)p∗

}
− vT

{∑
i∈Iα

∇y∗ig(x∗) +
∑
i∈Iα

∇2y∗ig(x∗)p∗
}

= 0, α = 1, 2, . . . , r.

From (11), it follows that

(17) vT

{∑
i∈Iα

∇y∗ig(x∗) +
∑
i∈Iα

∇2y∗ig(x∗)p∗
}

= 0, α = 1, 2, . . . , r.

Using (2) in (6), we have

(ταp∗ + v)T

{
∇2f(x∗)−∇2

∑
i∈I0

y∗igi(x
∗) +∇

[
∇2f(x∗)−∇2

∑
i∈I0

y∗igi(x
∗)

]
p∗

}

−
r∑

α=1

(ταp∗ + v)T

{
∇2

∑
i∈Iα

y∗igi(x
∗) +∇

[
∇2

∑
i∈Iα

y∗igi(x
∗)

]
p∗

}
−τ0

{
∇

∑
i∈M\I0

y∗igi(x
∗) +∇2

∑
i∈M\I0

y∗igi(x
∗)p∗

}

−1

2
τ0p

∗T

{
∇

[
∇2f(x∗)−∇2

∑
i∈I0

y∗igi(x
∗)

]
p∗

}

+
r∑

α=1

τα

{
∇

∑
i∈Iα

y∗igi(x
∗) +∇2

[∑
i∈Iα

y∗igi(x
∗)

]
p∗

}

+
r∑

α=1

1

2
ταp∗T

{
∇

[
∇2

∑
i∈Iα

y∗igi(x
∗)

]
p∗

}
= 0.

From (16), it follows that

r∑
α=1

(τα − τ0)

{
∇

∑
i∈Iα

y∗igi(x
∗) +∇2

∑
i∈Iα

y∗igi(x
∗)p∗

}
+

1

2
vT

{
∇

[
∇2f(x∗)−∇2

∑
i∈I0

y∗igi(x
∗)

]
p∗ −∇

[
∇2

∑
i∈M\I0

y∗igi(x
∗)

]
p∗)

}
= 0.

That is

(18)
r∑

α=1

(τα − τ0)

{
∇

∑
i∈Iα

y∗igi(x
∗) +∇2

∑
i∈Iα

y∗igi(x
∗)p∗

}
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+
1

2
vT

{
∇

[
∇2f(x∗)−∇2y∗T g(x∗)

]
p∗

}
= 0.

If for all α = 0, 1, 2, . . . , r, τα = 0, then v = 0 from (16), γ = 0 from (7) and (8), and

β = 0 from (9) and (12); that is, (τ0, τ1, τ2, . . . , τr, β, γ, v) = 0, contradicts (15). Thus,

there exists an α ∈ {0, 1, 2, . . . , r}, such that τα > 0.

We claim that p∗ = 0. Indeed, if p∗ 6= 0, then (16) gives

(τα − τα)p∗ = 0, α = 1, 2, . . . , r, .

This implies τα = τα > 0, α = 1, 2, . . . , r,. So, (17) yields

p∗T

{∑
i∈Iα

∇y∗ig(x∗) +
∑
i∈Iα

∇2y∗ig(x∗)p∗
}

= 0, α = 1, 2, . . . , r,

which contradicts to assumption (A1). Hence, p∗ = 0. Based on (16) and p∗ = 0, we

have v = 0. In view of (A3), (16), p∗ = 0 and τα > 0 for some α ∈ {0, 1, 2, . . . , r}, (18)

implies τα = τα > 0. Now from (7) and (8), it follows that

τ0gi(x
∗)− γi = 0, i ∈ I0,(19)

ταgi(x
∗)− γi = 0, i ∈ Iα, α = 1, 2, . . . , r,(20)

Therefore g(x∗) > 0 since γ > 0 and τα > 0, α = 0, 1, 2, . . . , r. Thus, x∗ is feasible for

(P), and the objective functions of (P) and (GD) are equal.

Multiplying (19) by y∗i, i ∈ I0 and using (13) gives

τ0y
∗
igi(x

∗) = 0, i ∈ I0.

By τ0 > 0, it follows that

(21) y∗igi(x
∗) = 0, i ∈ I0.

Also, v = 0, τ0 > 0 and (9) give

(22) Bx∗ = (2βτ0)Bw∗.

Hence

(23) x∗T Bx∗ = (x∗T Bx∗)1/2(w∗T Bw∗)1/2.

If β > 0, then (12) gives w∗T Bw∗ = 1, and so (23) yields

x∗T Bw∗ = (x∗T Bx∗)1/2.

If β = 0, then (22) gives Bx∗ = 0. So we still get

x∗T Bw∗ = (x∗T Bx∗)1/2.
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Thus, in either case, we have

(24) x∗T Bw∗ = (x∗T Bx∗)1/2.

Therefore from (21), (24) and p∗ = 0, we have

f(x∗)+(x∗T Bx∗)1/2 = f(x∗)−
∑
i∈I0

y∗igi(x
∗)+u∗T Bw∗−1

2
p∗T

[
∇2f(x∗)−∇2

∑
i∈I0

y∗igi(x
∗)

]
p∗.

If, for all feasible (x, u, y, w, p), f(·) −
∑
i∈I0

yigi(·) + (·)T Bw is second order pseudoinvex

and
∑
i∈Iα

yigi(·), α = 1, 2, . . . , r is second order quasincave with respect to the same η, by

[5, Theorem 4], then x∗ is an optimal solution to (P).
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