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ON SECOND-ORDER CONVERSE DUALITY FOR

A NONDIFFERENTIABLE PROGRAMMING PROBLEM

Xin Min Yang and Ping Zhang

Certain shortcomings are described in the second order converse duality results in the
recent work of (J. Zhang and B. Mond, Bull. Austral. Math. Soc. 55(1997) 29–44).
Appropriate modifications are suggested.

1. Introduction

A second-order dual for a nonlinear programming problem was introduced by Man-

gasarian ([1]). Later, Mond [2] proved duality theorems under a condition which is called

“second-order convexity”. This condition is much simpler than that used by Mangasar-

ian. In the 1980’s, Mond and Weir [3] reformulated the second-order duals and high

order models.

In [4], Mond considered the class of nondifferentiable mathematical programming

problems

minimize 𝑓(𝑥) + (𝑥𝑇 𝐵𝑥)1/2(P)

subject to 𝑔(𝑥) ⩾ 0,(1)

where 𝑥 ∈ 𝑛, 𝑓 and 𝑔 are twice differentiable functions from 𝑛 into  and 𝑚, respec-

tively, and 𝐵 is an 𝑛× 𝑛 positive semi-definite (symmetric) matrix.

Recently, Zhang and Mond [5] formulated a general second-order dual model for

nondifferentiable programming problems (P):

maximize 𝑓(𝑢)−
∑
𝑖∈𝐼0

𝑦𝑖𝑔𝑖(𝑢) + 𝑢𝑇 𝐵𝑤 − 1

2
𝑝𝑇

[
𝛻2𝑓(𝑢)−𝛻2

∑
𝑖∈𝐼0

𝑦𝑖𝑔𝑖(𝑢)

]
𝑝,(GD)

subject to 𝛻𝑓(𝑢)−𝛻
(
𝑦𝑇 𝑔(𝑢)

)
+ 𝐵𝑤 +𝛻2𝑓(𝑢)𝑝−𝛻2𝑦𝑇 𝑔(𝑢)𝑝 = 0,(2) ∑

𝑖∈𝐼𝛼

𝑦𝑖𝑔𝑖(𝑢)− 1

2
𝑝𝑇𝛻2

∑
𝑖∈𝐼𝛼

𝑦𝑖𝑔𝑖(𝑢)𝑝 ⩽ 0, 𝛼 = 1, 2, . . . , 𝑟,(3)

𝑤𝑇 𝐵𝑤 ⩽ 1,(4)

𝑦 ⩾ 0,(5)

Received 3rd May, 2005
This research was partially supported by the National Natural Science Foundation of China (Grant
10471159), NCET and the Natural Science Foundation of Chongqing.
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266 X.M. Yang and P. Zhang [2]

where 𝑢, 𝑤, 𝑝 ∈ 𝑛, 𝑦 ∈ 𝑚, 𝐼𝛼 ⊂ 𝑀 = {1, 2, . . . ,𝑚}, 𝛼 = 0, 1, 2, . . . , 𝑟 with
𝑟⋃

𝛼=0

𝐼𝛼 = 𝑀

and 𝐼𝛼 ∩ 𝐼𝛽 = ∅ if 𝛼 ̸= 𝛽.

Zhang and Mond [5] gave weak, strong and converse duality theorems for first order

and second order nondifferentiable dual models under generalised convexity. In particular,

they proved the following second order converse duality theorem.

Theorem 1. (Converse duality, see [5, Theorem 6]) Let (𝑥*, 𝑦*, 𝑤*, 𝑝*) be an

optimal solution of (GD) at which

(A1) the 𝑛 × 𝑛 Hessian matrix 𝛻
[
𝛻2𝑓(𝑥*) − 𝛻2

(
𝑦*𝑇 𝑔(𝑥*)

)]
𝑝* is positive or negative

definite,

(A2) the vectors{[
𝛻2𝑓(𝑥*)−𝛻2

∑
𝑖∈𝐼0

𝑦*𝑖𝑔𝑖(𝑥
*)

]
𝑗

,

[
𝛻2

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*)

]
𝑗

, 𝛼 = 1, 2, . . . , 𝑟, 𝑗 = 1, 2, . . . , 𝑛

}
are linearly independent, where [·]𝑗 denotes the 𝑗th row.

If for all feasible (𝑥, 𝑢, 𝑦, 𝑤, 𝑝), 𝑓(·)−
∑
𝑖∈𝐼0

𝑦𝑖𝑔𝑖(·)+(·)𝑇 𝐵𝑤 is second order pseudoinvex

and
∑
𝑖∈𝐼𝛼

𝑦𝑖𝑔𝑖(·), 𝛼 = 1, 2, . . . , 𝑟 is second order quasincave with respect to the same 𝜂, then

𝑥* is an optimal solution to (P).

We note that the matrix 𝛻
[
𝛻2𝑓(𝑥*)−𝛻2

(
𝑦*𝑇 𝑔(𝑥*)

)]
𝑝* is positive or negative def-

inite in the assumption (A1) of Theorem 1.1, and the result of Theorem 1.1 implies

𝑝* = 0, see [5, proof of Theorem 6]. It is obvious that the assumption and the result are

inconsistent. In this note, we shall give appropriate modifications for the deficiency in

Theorem 1.1.

2. Second order converse duality

In the section, we shall present a second order converse duality theorem which cor-

rects Theorem 1.1.

Theorem 2. (Converse duality) Let (𝑥*, 𝑦*, 𝑤*, 𝑝*) be an optimal solution of

(GD) at which

(A1) for all 𝛼 = 1, 2, . . . , 𝑟, either (a) the 𝑛× 𝑛 Hessian matrix 𝛻2
∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*) is posi-

tive definite and 𝑝*𝑇𝛻
∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*) ⩾ 0 or (b) the 𝑛× 𝑛 Hessian matrix 𝛻2

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*)

is negative definite and 𝑝*𝑇𝛻
∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*) ⩽ 0,

(A2) the vectors{[
𝛻2𝑓(𝑥*)−𝛻2

∑
𝑖∈𝐼0

𝑦*𝑖𝑔𝑖(𝑥
*)

]
𝑗

,

[
𝛻2

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*)

]
𝑗

, 𝛼 = 1, 2, . . . , 𝑟, 𝑗 = 1, 2, . . . , 𝑛

}
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are linearly independent, where

(A3) the vectors

{
𝛻

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*), 𝛼 = 1, 2, . . . , 𝑟

}
are linearly independent.

If, for all feasible (𝑥, 𝑢, 𝑦, 𝑤, 𝑝), 𝑓(·)−
∑
𝑖∈𝐼0

𝑦𝑖𝑔𝑖(·)+(·)𝑇 𝐵𝑤 is second order pseudoinvex

and
∑
𝑖∈𝐼𝛼

𝑦𝑖𝑔𝑖(·), 𝛼 = 1, 2, . . . , 𝑟 is second order quasincave with respect to the same 𝜂, then

𝑥* is an optimal solution to (P).

Proof: Since (𝑥*, 𝑦*, 𝑤*, 𝑝*) is an optimal solution of (GD), by the generalised

Fritz John necessary conditions, there exists, 𝜏0 ∈ , 𝑣 ∈ 𝑛, 𝜏𝛼 ∈ , 𝛼 = 1, 2, . . . , 𝑟,

𝛽 ∈ , 𝛾 ∈ 𝑚, such that

𝜏0

{
−𝛻𝑓(𝑥*) +

∑
𝑖∈𝐼0

𝛻𝑦*𝑖𝑔𝑖(𝑥
*)−𝐵𝑤* +

1

2
𝑝*𝑇𝛻

[
𝛻2𝑓(𝑥*)−𝛻2

∑
𝑖∈𝐼0

𝑦*𝑖𝑔𝑖(𝑥
*)𝑝*

]}
(6)

+ 𝑣𝑇{𝛻2𝑓(𝑥*)−𝛻2𝑦*𝑇 𝑔(𝑥*) +𝛻
[
𝛻2𝑓(𝑥*)𝑝* −𝛻2𝑦*𝑇 𝑔(𝑥*)𝑝*

]
}

+
𝑟∑

𝛼=1

𝜏𝛼

{
𝛻

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*)− 1

2
𝑝*𝑇𝛻

[
𝛻2

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*)𝑝*

]}
= 0,

𝜏0

{
𝑔𝑖(𝑥

*)− 1

2
𝑝*𝑇𝛻2𝑔𝑖(𝑥

*)𝑝*
}
− 𝑣𝑇

{
𝑔𝑖(𝑥

*) +𝛻2𝑔𝑖(𝑥
*)𝑝*

}
− 𝛾𝑖 = 0, 𝑖 ∈ 𝐼0,(7)

𝜏𝛼

{
𝑔𝑖(𝑥

*)− 1

2
𝑝*𝑇𝛻2𝑔𝑖(𝑥

*)𝑝*
}

(8)

− 𝑣𝑇
{
𝛻𝑔𝑖(𝑥

*) +𝛻2𝑔𝑖(𝑥
*)𝑝*

}
− 𝛾𝑖 = 0, 𝑖 ∈ 𝐼𝛼, 𝛼 = 1, 2, . . . , 𝑟,

𝜏0𝐵𝑥* − 𝑣𝑇 𝐵 − 2𝛽𝑇 (𝐵𝑤*) = 0,(9)

(𝜏0𝑝
* + 𝑣)𝑇

{
𝛻2𝑓(𝑥*)−𝛻2

∑
𝑖∈𝐼0

𝑦*𝑖𝑔𝑖(𝑥
*)

}
(10)

−
𝑟∑

𝛼=1

(𝜏𝛼𝑝* + 𝑣)𝑇

{
𝛻2

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*)

}
= 0,

𝜏𝛼

{∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*)− 1

2
𝑝*𝑇𝛻2

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*)𝑝*

}
= 0, 𝛼 = 1, 2, . . . , 𝑟,(11)

𝛽(𝑤*𝐵𝑤* − 1) = 0,(12)

𝛾𝑇 𝑦* = 0,(13)

(𝜏0, 𝜏1, 𝜏2, . . . , 𝜏𝑟, 𝛽, 𝛾) ⩾ 0,(14)

(𝜏0, 𝜏1, 𝜏2, . . . , 𝜏𝑟, 𝛽, 𝛾, 𝑣) ̸= 0.(15)

Because of Assumption (A2), (10) gives

(16) 𝜏𝛼𝑝* + 𝑣 = 0 𝛼 = 0, 1, 2, . . . , 𝑟.

Multiplying (8) by 𝑦*𝑖, 𝑖 ∈ 𝐼𝛼, 𝛼 = 1, 2, . . . , 𝑟 and using (11), we have



268 X.M. Yang and P. Zhang [4]

𝜏𝛼

{
𝑦*𝑖𝑔𝑖(𝑥

*)− 1

2
𝑝*𝑇𝛻2𝑦*𝑖𝑔𝑖(𝑥

*)𝑝*
}

− 𝑣𝑇
{
𝛻𝑦*𝑖𝑔(𝑥*) +𝛻2𝑦*𝑖𝑔(𝑥*)𝑝*

}
= 0, 𝑖 ∈ 𝐼𝛼, 𝛼 = 1, 2, . . . , 𝑟,

thus

𝜏𝛼

{∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*)− 1

2
𝑝*𝑇

∑
𝑖∈𝐼𝛼

𝛻2𝑦*𝑖𝑔𝑖(𝑥
*)𝑝*

}
− 𝑣𝑇

{∑
𝑖∈𝐼𝛼

𝛻𝑦*𝑖𝑔(𝑥*) +
∑
𝑖∈𝐼𝛼

𝛻2𝑦*𝑖𝑔(𝑥*)𝑝*
}

= 0, 𝛼 = 1, 2, . . . , 𝑟.

From (11), it follows that

(17) 𝑣𝑇

{∑
𝑖∈𝐼𝛼

𝛻𝑦*𝑖𝑔(𝑥*) +
∑
𝑖∈𝐼𝛼

𝛻2𝑦*𝑖𝑔(𝑥*)𝑝*
}

= 0, 𝛼 = 1, 2, . . . , 𝑟.

Using (2) in (6), we have

(𝜏𝛼𝑝* + 𝑣)𝑇

{
𝛻2𝑓(𝑥*)−𝛻2

∑
𝑖∈𝐼0

𝑦*𝑖𝑔𝑖(𝑥
*) +𝛻

[
𝛻2𝑓(𝑥*)−𝛻2

∑
𝑖∈𝐼0

𝑦*𝑖𝑔𝑖(𝑥
*)

]
𝑝*

}

−
𝑟∑

𝛼=1

(𝜏𝛼𝑝* + 𝑣)𝑇

{
𝛻2

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*) +𝛻

[
𝛻2

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*)

]
𝑝*

}
−𝜏0

{
𝛻

∑
𝑖∈𝑀∖𝐼0

𝑦*𝑖𝑔𝑖(𝑥
*) +𝛻2

∑
𝑖∈𝑀∖𝐼0

𝑦*𝑖𝑔𝑖(𝑥
*)𝑝*

}

−1

2
𝜏0𝑝

*𝑇
{
𝛻

[
𝛻2𝑓(𝑥*)−𝛻2

∑
𝑖∈𝐼0

𝑦*𝑖𝑔𝑖(𝑥
*)

]
𝑝*

}

+
𝑟∑

𝛼=1

𝜏𝛼

{
𝛻

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*) +𝛻2

[∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*)

]
𝑝*

}

+
𝑟∑

𝛼=1

1

2
𝜏𝛼𝑝*𝑇

{
𝛻

[
𝛻2

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*)

]
𝑝*

}
= 0.

From (16), it follows that

𝑟∑
𝛼=1

(𝜏𝛼 − 𝜏0)

{
𝛻

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*) +𝛻2

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*)𝑝*

}
+

1

2
𝑣𝑇

{
𝛻

[
𝛻2𝑓(𝑥*)−𝛻2

∑
𝑖∈𝐼0

𝑦*𝑖𝑔𝑖(𝑥
*)

]
𝑝* −𝛻

[
𝛻2

∑
𝑖∈𝑀∖𝐼0

𝑦*𝑖𝑔𝑖(𝑥
*)

]
𝑝*)

}
= 0.

That is

(18)
𝑟∑

𝛼=1

(𝜏𝛼 − 𝜏0)

{
𝛻

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*) +𝛻2

∑
𝑖∈𝐼𝛼

𝑦*𝑖𝑔𝑖(𝑥
*)𝑝*

}
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+
1

2
𝑣𝑇

{
𝛻

[
𝛻2𝑓(𝑥*)−𝛻2𝑦*𝑇 𝑔(𝑥*)

]
𝑝*

}
= 0.

If for all 𝛼 = 0, 1, 2, . . . , 𝑟, 𝜏𝛼 = 0, then 𝑣 = 0 from (16), 𝛾 = 0 from (7) and (8) and

𝛽 = 0 from (9) and (12); that is, (𝜏0, 𝜏1, 𝜏2, . . . , 𝜏𝑟, 𝛽, 𝛾, 𝑣) = 0, contradicts (15). Thus,

there exists an 𝛼 ∈ {0, 1, 2, . . . , 𝑟}, such that 𝜏𝛼 > 0.

We claim that 𝑝* = 0. Indeed, if 𝑝* ̸= 0, then (16) gives

(𝜏𝛼 − 𝜏𝛼)𝑝* = 0, 𝛼 = 1, 2, . . . , 𝑟, .

This implies 𝜏𝛼 = 𝜏𝛼 > 0, 𝛼 = 1, 2, . . . , 𝑟,. So, (16) and (17) yield

𝑝*𝑇
{∑

𝑖∈𝐼𝛼

𝛻𝑦*𝑖𝑔(𝑥*) +
∑
𝑖∈𝐼𝛼

𝛻2𝑦*𝑖𝑔(𝑥*)𝑝*
}

= 0, 𝛼 = 1, 2, . . . , 𝑟,

which contradicts to assumption (A1). Hence, 𝑝* = 0. Based on (16) and 𝑝* = 0, we

have 𝑣 = 0. In view of (A3), 𝑝* = 0 and 𝜏𝛼 > 0 for some 𝛼 ∈ {0, 1, 2, . . . , 𝑟}, (18) implies

𝜏𝛼 = 𝜏𝛼 > 0, ∀𝛼 ∈ {0, 1, . . . , 𝑟}. Now from (7) and (8), it follows that

𝜏0𝑔𝑖(𝑥
*)− 𝛾𝑖 = 0, 𝑖 ∈ 𝐼0,(19)

𝜏𝛼𝑔𝑖(𝑥
*)− 𝛾𝑖 = 0, 𝑖 ∈ 𝐼𝛼, 𝛼 = 1, 2, . . . , 𝑟,(20)

Therefore 𝑔(𝑥*) ⩾ 0 since 𝛾 ⩾ 0 and 𝜏𝛼 > 0, 𝛼 = 0, 1, 2, . . . , 𝑟. Thus, 𝑥* is feasible for

(P), and the objective functions of (P) and (GD) are equal.

Multiplying (19) by 𝑦*𝑖, 𝑖 ∈ 𝐼0 and using (13), it follows that

𝜏0𝑦
*
𝑖𝑔𝑖(𝑥

*) = 0, 𝑖 ∈ 𝐼0.

By 𝜏0 > 0, it follows that

(21) 𝑦*𝑖𝑔𝑖(𝑥
*) = 0, 𝑖 ∈ 𝐼0.

Also, 𝑣 = 0, 𝜏0 > 0 and (9) give

(22) 𝐵𝑥* = (2𝛽𝜏0)𝐵𝑤*.

Hence

(23) 𝑥*𝑇 𝐵𝑥* = (𝑥*𝑇 𝐵𝑥*)1/2(𝑤*𝑇 𝐵𝑤*)1/2.

If 𝛽 > 0, then (12) gives 𝑤*𝑇 𝐵𝑤* = 1, and so (23) yields

𝑥*𝑇 𝐵𝑤* = (𝑥*𝑇 𝐵𝑥*)1/2.

If 𝛽 = 0, then (22) gives 𝐵𝑥* = 0. So we still get

𝑥*𝑇 𝐵𝑤* = (𝑥*𝑇 𝐵𝑥*)1/2.
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Thus, in either case, we have

(24) 𝑥*𝑇 𝐵𝑤* = (𝑥*𝑇 𝐵𝑥*)1/2.

Therefore from (21), (24) and 𝑝* = 0, we have

𝑓(𝑥*)+(𝑥*𝑇 𝐵𝑥*)1/2 = 𝑓(𝑥*)−
∑
𝑖∈𝐼0

𝑦*𝑖𝑔𝑖(𝑥
*)+𝑢*𝑇 𝐵𝑤*−1

2
𝑝*𝑇

[
𝛻2𝑓(𝑥*)−𝛻2

∑
𝑖∈𝐼0

𝑦*𝑖𝑔𝑖(𝑥
*)

]
𝑝*.

If, for all feasible (𝑥, 𝑢, 𝑦, 𝑤, 𝑝), 𝑓(·) −
∑
𝑖∈𝐼0

𝑦𝑖𝑔𝑖(·) + (·)𝑇 𝐵𝑤 is second order pseudoinvex

and
∑
𝑖∈𝐼𝛼

𝑦𝑖𝑔𝑖(·), 𝛼 = 1, 2, . . . , 𝑟 is second order quasincave with respect to the same 𝜂, by

[5, Theorem 4], then 𝑥* is an optimal solution to (P).
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