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EXISTENCE OF POSITIVE SOLUTIONS FOR NONLOCAL

AND NONVARIATIONAL ELLIPTIC SYSTEMS

Yujuan Chen and Hongjun Gao

In the paper we prove a result on the existence of positive solutions for a class
of nonvariational elliptic system with nonlocal source by Galerkin methods and a
fixed point theorem in finite dimensions. We establish another existence result by
the super and subsolution method and a monotone iteration.

1. Introduction and main results

In this paper, we consider the positive solutions for a class of elliptic system with
nonlocal source:

(1.1)


−Δ𝑢 = 𝑓1(𝑥, 𝑢)‖𝑣‖p1

α1
, 𝑥 ∈ Ω,

−Δ𝑣 = 𝑓2(𝑥, 𝑣)‖𝑢‖p2
α2

, 𝑥 ∈ Ω,

𝑢 > 0, 𝑣 > 0, 𝑥 ∈ Ω,

𝑢 = 0, 𝑣 = 0, 𝑥 ∈ 𝜕Ω.

where Ω is a bounded domain in 𝑅N , 𝑁 > 1, with smooth boundary 𝜕Ω, 𝑝i > 0,
1 6 𝛼i 6∞ and 𝑓i, 𝑖 = 1, 2, satisfy some assumptions to be stated below.

This system can be used to describe the steady-state solutions of parabolic systems
with a nonlocal source:

(1.2)


𝑢t −Δ𝑢 = 𝑓1(𝑥, 𝑢)‖𝑣‖p1

α1
, 𝑥 ∈ Ω, 𝑡 > 0,

𝑣t −Δ𝑣 = 𝑓2(𝑥, 𝑣)‖𝑢‖p2
α2

, 𝑥 ∈ Ω, 𝑡 > 0,

𝑢(𝑥, 𝑡) = 0, 𝑣(𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑣(𝑥, 0) = 𝑣0(𝑥), 𝑥 ∈ Ω.

When 𝑓1, 𝑓2 are positive constants, system (1.2) has been discussed by Deng, Li
and Xie (see [4]). It was proved that if 𝑝1𝑝2 < 1 every nonnegative solution is global;
whereas if 𝑝1𝑝2 > 1, and the initial data is sufficiently large, the nonnegative solution of
(1.2) blows up in finite time, and if the initial data is sufficiently small, the nonnegative
solution of (1.2) is global.

Received 3rd May, 2005
This project was supported by the NSF of Jiangsu Education Office of PRC 03KJD1101690.
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272 Yujuan Chen and Hongjun Gao [2]

Over the last few decades, many physical phenomena were formulated into nonlocal
mathematical models (see [2, 3, 4, 5, 6],7 or references therein). The corresponding
steady-state solutions have been attached great importance. Compared to the existence
of positive solutions for elliptic problems, different techniques (variational methods,
degree theory, fixed point theory, sub and supersolutions, Galerkin methods, moving
hyperplane methods, et cetera) have been used (see for instance [2, 3, 4, 5, 6],7).
However, to the author’s best knowledge, there is no literture on system (1.1). Since
the system (1.1) has no variational structure, it is worthwhile to recall some of related
nonvariational methods.

In [1], Alves and de Figureiredo used Galerkin methods and fixed point theorems
in finite dimension and proved the existence of solutions of the local semilinear elliptic
systems

−Δ𝑢 = 𝑎𝑢α + 𝑓(𝑥, 𝑢, 𝑣),

−Δ𝑣 = 𝑏𝑣β + 𝑔(𝑥, 𝑢, 𝑣),

in a bounded domain with homogeneous boundary conditions.
In [3] Correa studied the problem

−𝑎

(∫
Ω

|𝑢|q
)

Δ𝑢 = 𝐻(𝑥)𝑓(𝑢)

with homogeneous boundary condition. To prove the existence of positive solutions,
the Krasnoselskii fixed point theorem has been used in the unidimensional case and the
Schaefer fixed point theorem in the multidimensional case.

In [2] Correa, Silbano Menezes and Ferreira used fixed point theorems and index
theory to establish a positive solution for the problem

−𝑎

(∫
Ω

|𝑢|
)

Δ𝑢 = 𝑓(𝑥, 𝑢).

Furthermore, they proved another existence result by using sub and supersolutions
without monotone iteration, and relying heavily on a comparison principle and the
Schaefer fixed point theorem.

The purpose of this paper is to study the existence of solutions of (1.1) in two cases
via

(a) Galerkin methods

(b) super and subsolution techniques,

respectively. Our work is motivated by [1, 2, 3],6. From the viewpoint of physics, we
are considering the positive weak solutions. We shall use the following definition of the
weak solution for (1.1).
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Definition 1.1: We say a function (𝑢, 𝑣) ∈ 𝐻1
0 (Ω)×𝐻1

0 (Ω) is a weak solution of
(1.1) provided ∫

Ω

∇𝑢∇𝑤 𝑑𝑥 = ‖𝑣‖p1
α1

∫
Ω

𝑓1(𝑥, 𝑢)𝑤 𝑑𝑥,∫
Ω

∇𝑣∇𝑤 𝑑𝑥 = ‖𝑢‖p2
α2

∫
Ω

𝑓2(𝑥, 𝑣)𝑤 𝑑𝑥,

for all 𝑤 ∈ 𝐻1
0 (Ω).

This paper is organised as follows. In the next section, we use Galerkin methods to
establish an existence theorem for the solution for system (1.1) when 𝑁 > 3, 0 < 𝑝i < 1,
1 < 𝛼i < (2𝑁)/(𝑁 − 1) or 𝑁 = 1, 2, 0 < 𝑝i < 1, 1 6 𝛼i <∞ , 𝑖 = 1, 2. In Section 3,
we established another existence result for (1.1) by making use of super and subsolution
techniques and where the monotone iteration is used. When 𝑓i (𝑖 = 1, 2) is bounded
and 𝑝1𝑝2 < 1, we get a pair of super and subsolution of (1.1) Finally we consider the
special case 𝛼i = 𝑝i = 1, 𝑖 = 1, 2 and show the only probable solution is the trivial
one under some assumptions on 𝑓1, 𝑓2 .

Our main results read as follows.

Theorem 1.2. If either the following (H1) or (H2) is satisfied, system (1.1) has

a positive solution.

(H1) 𝑁 > 3 , 0 < 𝑝i < 1 , 1 < 𝛼i < (2𝑁)/(𝑁 − 2) ,

0 6 𝐷1(𝑥) 6 𝑓1(𝑥, 𝑢) 6 𝐴1(𝑥)|𝑢|r1 + 𝐵1(𝑥),

0 6 𝐷2(𝑥) 6 𝑓2(𝑥, 𝑣) 6 𝐴2(𝑥)|𝑣|r2 + 𝐵2(𝑥),

𝐵i(𝑥) ∈ 𝐿(αj)/(αj−1), 𝐴i(𝑥) ∈ 𝐿(αj)/(αj−ri−1),

𝑟i < min{1− 𝑝i, 𝛼j − 1} , 𝐷i(𝑥) 6≡ 0(𝑖 = 1, 2) , where 𝑖𝑗 = 2 and 𝑖, 𝑗 are

positive integers.

(H2) 𝑁 = 1, 2 , for 𝑖 = 1, 2 , 0 < 𝑝i < 1 , 1 6 𝛼i <∞ .

Theorem 1.3. Suppose that 𝑓1(·, 𝑢) ∈ 𝐶
(
Ω×𝑅

)
, 𝑓2(·, 𝑣) ∈ 𝐶

(
Ω×𝑅

)
are

nondecreasing and Lipschitz continuous in 𝑢 and 𝑣 respectively. Assume there ex-

ists a weak supersolution
(
𝑢(𝑥), 𝑣(𝑥)

)
and a weak subsolution

(
𝑢(𝑥), 𝑣(𝑥)

)
of system

(1.1), satisfying

(1.3)

(
𝑢(𝑥), 𝑣(𝑥)

)
> 0,

(
𝑢(𝑥), 𝑣(𝑥)

)
6 0 on 𝜕Ω in the trace sense,(

𝑢(𝑥), 𝑣(𝑥)
)

6
(
𝑢(𝑥), 𝑣(𝑥)

)
almost everywhere in Ω.
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Then there exists a solution (𝑢, 𝑣) of (1.1), such that

(1.4)
(
𝑢(𝑥), 𝑣(𝑥)

)
6
(
𝑢(𝑥), 𝑣(𝑥)

)
6
(
𝑢(𝑥), 𝑣(𝑥)

)
almost everywhere in Ω.

Furthermore, if
(
𝑢(𝑥), 𝑣(𝑥)

)
> 0 in Ω , the solution of system (1.1) is positive.

Theorem 1.4. In addition to the assumptions on 𝑓1, 𝑓2 of Theorem 1.3, we

assume further that 0 < 𝑚1 6 𝑓1(𝑥, 𝑢) 6 𝑀1 , 0 < 𝑚2 6 𝑓2(𝑥, 𝑣) 6 𝑀2 in Ω × 𝑅,

𝑝1𝑝2 < 1 , then there exists a positive solution of system (1.1).

2. Galerkin methods

In this section we show the existence of solutions for the system (1.1) via Galerkin
methods. The following Fixed Point Theorem is used (see [1] or [6, Chapter 9]).

Proposition 2.1. Let 𝐹 : 𝑅K → 𝑅K(𝐾 ∈ N) be a continuous function such that〈
𝐹 (𝜉), 𝜉

〉
> 0 on |𝜉| = 𝑟 . Then, there exists 𝑧0 ∈ 𝐵r(0) such that 𝐹 (𝑧0) = 0 . Here

〈 · , · 〉 denotes inner product of two vectors.

Proof of Theorem 1.2: First, we shall study the existence for the solution of
the following systems

(2.1)

−Δ𝑢 = 𝑓1(𝑥, 𝑢)‖𝑣‖p1
α1

+ 𝜆𝜙, 𝑥 ∈ Ω,

−Δ𝑣 = 𝑓2(𝑥, 𝑣)‖𝑢‖p2
α2

+ 𝜆𝜙, 𝑥 ∈ Ω,

𝑢 > 0, 𝑣 > 0, 𝑥 ∈ Ω

𝑢 = 0, 𝑣 = 0, 𝑥 ∈ 𝜕Ω.

where 𝜙 ∈ 𝐶∞0 (Ω) is a fixed positive function and 𝜆 is a positive parameter.
Let

∑
= {𝑒1, . . . , 𝑒n, . . .} be an orthogonal basis of the Hilbert space 𝐻1

0 (Ω) and
be smooth. For each 𝑚 ∈ 𝑁 define the subspace 𝑉m = span{𝑒1, . . . , 𝑒m} . It is well
known that

(
𝑉m, ‖ ·‖

)
and

(
𝑅m, | · |

)
are isometrically isomorphic by the natural linear

map 𝑇 : 𝑉m → 𝑅m given by

𝑣 =
n∑
i=1

𝜉i𝑒i 7→ 𝑇 (𝑣) = 𝜉 = (𝜉1, 𝜉2, . . . , 𝜉m).

So ‖𝑣‖ =
∣∣𝑇 (𝑣)

∣∣ = |𝜉| , where | · | and ‖ · ‖ denote the usual norms in 𝑅N and 𝑉m(Ω),
respectively.

Consider the following function 𝐹 : 𝑅2m → 𝑅2m given by

𝐹 (𝜉, 𝜂) =
(
𝐹1(𝜉, 𝜂), . . . , 𝐹m(𝜉, 𝜂), 𝐺1(𝜉, 𝜂), . . . , 𝐺m(𝜉, 𝜂)

)
,

where
𝐹i(𝜉, 𝜂) =

∫
Ω

∇𝑢∇𝑒i 𝑑𝑥− ‖𝑣‖p1
α1

∫
Ω

𝑓1(𝑥, 𝑢)𝑒i 𝑑𝑥− 𝜆

∫
Ω

𝜙𝑒i 𝑑𝑥,
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and

𝐺i(𝜉, 𝜂) =
∫

Ω

∇𝑣∇𝑒i 𝑑𝑥− ‖𝑢‖p2
α2

∫
Ω

𝑓2(𝑥, 𝑣)𝑒i 𝑑𝑥− 𝜆

∫
Ω

𝜙𝑒i 𝑑𝑥, 𝑖 = 1, 2, . . . , 𝑚.

In the above definitions we are using the identifications

𝜉 7→ 𝑢 =
m∑
i=1

𝜉i𝑒i and 𝜂 7→ 𝑣 =
m∑
i=1

𝜂i𝑒i.

Note that〈
𝐹 (𝜉, 𝜂), (𝜉, 𝜂)

〉
= ‖𝑢‖2 − ‖𝑣‖p1

α1

∫
Ω

𝑓1(𝑥, 𝑢)𝑢 𝑑𝑥

− 𝜆

∫
Ω

𝜙𝑢 𝑑𝑥 + ‖𝑣‖2 − ‖𝑢‖p2
α2

∫
Ω

𝑓2(𝑥, 𝑣)𝑣 𝑑𝑥− 𝜆

∫
Ω

𝜙𝑣 𝑑𝑥,

and when 𝑁 > 3, we have 𝐻1
0 (Ω) ⊂ 𝐿q(Ω), where 1 < 𝑞 < (2𝑁)/(𝑁 − 2). By (H1)

and the Hölder inequality, we have

‖𝑣‖p1
α1

∫
Ω

𝑓1(𝑥, 𝑢)𝑢 𝑑𝑥 + ‖𝑢‖p2
α2

∫
Ω

𝑓2(𝑥, 𝑣)𝑣 𝑑𝑥

6 ‖𝑣‖p1
α1

∫
Ω

(
𝐴1(𝑥)|𝑢|r1 + 𝐵1(𝑥)

)
𝑢 𝑑𝑥 + ‖𝑢‖p2

α2

∫
Ω

(
𝐴2(𝑥)|𝑣|r2 + 𝐵2(𝑥)

)
𝑣 𝑑𝑥

6 ‖𝑣‖p1
α1

[∥∥𝐴1(𝑥)
∥∥
α2/(α2−r1−1)

‖𝑢‖r1+1
α2

+
∥∥𝐵1(𝑥)

∥∥
α2/(α2−1)

‖𝑢‖α2

]
+ ‖𝑢‖p2

α2

[∥∥𝐴2(𝑥)
∥∥
α1/(α1−r2−1)

‖𝑣‖r2+1
α1

+
∥∥𝐵2(𝑥)

∥∥
α1/(α1−1)

‖𝑣‖α1

]
6 𝐶

(
‖𝑢‖p1+r1+1 + ‖𝑣‖p1+r1+1 + ‖𝑢‖p2+r2+1 + ‖𝑣‖p2+r2+1

+ ‖𝑢‖p1+1 + ‖𝑣‖p1+1 + ‖𝑢‖p2+1 + ‖𝑣‖p2+1
)
.

Here and elsewhere, we may use the same letter 𝐶 to indicate (possibly different)
positive constants. With

∥∥(𝑢, 𝑣)
∥∥2 = ‖𝑢‖2 + ‖𝑣‖2 , we obtain

〈
𝐹 (𝜉, 𝜂), (𝜉, 𝜂)

〉
>
∥∥(𝑢, 𝑣)

∥∥2 − 𝐶
[∥∥(𝑢, 𝑣)

∥∥p1+r1+1

+
∥∥(𝑢, 𝑣)

∥∥p2+r2+1 +
∥∥(𝑢, 𝑣)

∥∥p1+1 +
∥∥(𝑢, 𝑣)

∥∥p2+1
]
− 𝜆𝐶

∥∥(𝑢, 𝑣)
∥∥.

As of 0 < 𝑝i + 𝑟i < 1 and 0 < 𝑝i < 1, there exists a sufficient large 𝜌 such that〈
𝐹 (𝜉, 𝜂), (𝜉, 𝜂)

〉
> 0 on

∥∥(𝑢, 𝑣)
∥∥ = 𝜌 (𝜌 is independent of 𝑚).

It follows from Proposition 2.1 that, for each 𝑚 ∈ 𝑁 there exists (𝑢m, 𝑣m) ∈ 𝑉m × 𝑉m
satisfying

(2.2) 𝐹 (𝑢m, 𝑣m) = (0, 0),
∥∥(𝑢m, 𝑣m)

∥∥ 6 𝜌.
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Then (2.2) implies∫
Ω

∇𝑢m∇𝑤 𝑑𝑥 = ‖𝑣m‖p1
α1

∫
Ω

𝑓1(𝑥, 𝑢m)𝑤 𝑑𝑥 + 𝜆

∫
Ω

𝜙𝑤 𝑑𝑥, ∀𝑤 ∈ 𝑉m,∫
Ω

∇𝑣m∇𝑤 𝑑𝑥 = ‖𝑢m‖p2
α2

∫
Ω

𝑓2(𝑥, 𝑣m)𝑤 𝑑𝑥 + 𝜆

∫
Ω

𝜙𝑤 𝑑𝑥, ∀𝑤 ∈ 𝑉m,

with ‖𝑢m‖, ‖𝑣m‖ 6 𝜌 , ∀𝑚 ∈ 𝑁 . Let 𝑢, 𝑣 ∈ 𝐻1
0 (Ω) be the weak limit of {𝑢m} and

{𝑣m} respectively, choosing subsequences if necessary. So

(𝑢m, 𝑣m) ⇀ (𝑢, 𝑣) weakly in 𝐻1
0 (Ω),

(𝑢m, 𝑣m)→ (𝑢, 𝑣) in 𝐿q(Ω) for 1 < 𝑞 <
2𝑁

𝑁 − 2
,
(
since 𝐻1

0 is compact in 𝐿q(Ω)
)

(𝑢m, 𝑣m)→ (𝑢, 𝑣) almost everywhere in Ω.

Considering 𝑤 ∈ 𝑉k , Ψ ∈ 𝑉k and 𝑚 > 𝑘 we have

(2.3)

∫
Ω

∇𝑢m∇𝑤 𝑑𝑥 = ‖𝑣m‖p1
α1

∫
Ω

𝑓1(𝑥, 𝑢m)𝑤 𝑑𝑥 + 𝜆

∫
Ω

𝜙𝑤 𝑑𝑥, ∀𝑤 ∈ 𝑉k,∫
Ω

∇𝑣m∇Ψ 𝑑𝑥 = ‖𝑢m‖p2
α2

∫
Ω

𝑓2(𝑥, 𝑣m)Ψ 𝑑𝑥 + 𝜆

∫
Ω

𝜙Ψ 𝑑𝑥, ∀Ψ ∈ 𝑉k,

Then taking the limits as 𝑚→∞ , we obtain

(2.4)

∫
Ω

∇𝑢∇𝑤 𝑑𝑥 = ‖𝑣‖p1
α1

∫
Ω

𝑓1(𝑥, 𝑢)𝑤 𝑑𝑥 + 𝜆

∫
Ω

𝜙𝑤 𝑑𝑥, ∀𝑤 ∈ 𝑉k,∫
Ω

∇𝑣∇Ψ 𝑑𝑥 = ‖𝑢‖p2
α2

∫
Ω

𝑓2(𝑥, 𝑣)Ψ 𝑑𝑥 + 𝜆

∫
Ω

𝜙Ψ 𝑑𝑥, ∀Ψ ∈ 𝑉k,

The equality (2.4) holds for all functions in 𝐻1
0 , as functions of the form 𝑤 and Ψ are

dense in this space. Hence (𝑢, 𝑣) is a weak solution of the system (2.1).
Recalling that 𝜆 > 0, 𝜙 > 0, it follows from the maximum principle that 𝑢, 𝑣 > 0

in Ω. Then according to (H1), we have

−Δ
(
𝑢/‖𝑣‖p1

α1

)
> 𝐷1(𝑥),

−Δ
(
𝑣/‖𝑢‖p2

α2

)
> 𝐷2(𝑥).

Let (𝑧1, 𝑧2) be the only positive solution of

−Δ𝑧1 = 𝐷1(𝑥), in Ω,

−Δ𝑧2 = 𝐷2(𝑥), in Ω,

𝑧1 = 𝑧2 = 0, on 𝜕Ω.
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According to the maximum principle, we have 𝑢/‖𝑣‖p1
α1

> 𝑧1, 𝑣/‖𝑢‖p2
α2

> 𝑧2 in Ω, which
implies

‖𝑢‖α2
>
(
‖𝑧1‖α2

‖𝑧2‖p1
α1

)1/(1−p1p2)
> 0,

‖𝑣‖α1
>
(
‖𝑧1‖p2

α2
‖𝑧2‖α1

)1/(1−p1p2)
> 0,

So ‖𝑢‖α2
, ‖𝑣‖α1

has a positive lower bound. Moveover, take 𝜆 = 1/𝑛, 𝑛 = 1, 2, . . . and
denote the corresponding solution of (2.1) as (𝑢n, 𝑣n), that is (𝑢n, 𝑣n) satisfies (2.4)
with any 𝑤 and Ψ in 𝐻1

0 (Ω). Set 𝑤 = 𝑢n , Ψ = 𝑣n in (2.4), we get∥∥(𝑢n, 𝑣n)∥∥2
6 𝐶

(∥∥(𝑢n, 𝑣n)∥∥p1+r1+1 +
∥∥(𝑢n, 𝑣n)∥∥p2+r2+1 +

∥∥(𝑢n, 𝑣n)∥∥p1+1

+
∥∥(𝑢n, 𝑣n)∥∥p2+1 +

∥∥(𝑢n, 𝑣n)∥∥ · ‖𝜙‖2) for all 𝑛 ∈ N.

Since 0 < 𝑝i + 𝑟i < 1, and 0 < 𝑝i < 1,
{
(𝑢n, 𝑣n)

}
is a bounded sequence. As 𝑛→∞ ,

thanks to the Sobolev embedding and the Lebesgue convergence theorem, a positive
solution of (1.1) is obtained.

The case (H2) can be proved similarly, since for 𝑁 = 1,

𝐻1
0 (Ω) ⊂ 𝐶α

(
Ω
)
, 0 < 𝛼 6 1/2,

and for 𝑁 = 2,
𝐻1

0 (Ω) ⊂ 𝐿q(Ω), 1 6 𝑞 <∞.

So its proof is omitted.

3. Super and subsolution method

Over the past two decades, supersolution and subsolution methods have been
widely used in the proof of the existence of the solutions of parabolic or elliptic prob-
lems. In this section, we shall use this technique to prove the existence of the solution
of system (1.1).

First, we shall give the definition of the super and subsolution of system (1.1).

Definition 3.1: A function (𝑢, 𝑣) ∈ 𝐻1
0 (Ω)×𝐻1

0 (Ω) is called a weak supersolution

of (1.1) if∫
Ω

∇𝑢∇𝑤 𝑑𝑥 > ‖𝑣‖p1
α1

∫
Ω

𝑓1(𝑥, 𝑢)𝑤 𝑑𝑥, for each 𝑤 ∈ 𝐻1
0 , 𝑤 > 0 almost everywhere,

(3.1)∫
Ω

∇𝑣∇Ψ 𝑑𝑥 > ‖𝑢‖p2
α2

∫
Ω

𝑓2(𝑥, 𝑣)Ψ 𝑑𝑥, for each Ψ ∈ 𝐻1
0 , Ψ > 0 almost everywhere.
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Similarly,
(
𝑢(𝑥), 𝑣(𝑥)

)
∈ 𝐻1

0 (Ω) is called a weak subsolution if it satisfies (3.1) with
reversed inequalities.

Proof of Theorem 1.3: The method is standard, but for the reader’s con-
venience, we complete it. Now write (𝑢0, 𝑣0) = (𝑢, 𝑣), we can construct a sequence{
(𝑢k, 𝑣k)

}
∈ 𝐻1

0 (Ω)×𝐻1
0 (Ω) from the following iterative process

(3.2)

∫
Ω

∇𝑢k∇𝑤 𝑑𝑥 = ‖𝑣k−1‖p1
α1

∫
Ω

𝑓1(𝑥, 𝑢k−1)𝑤 𝑑𝑥,∫
Ω

∇𝑣k∇Ψ 𝑑𝑥 = ‖𝑢k−1‖p2
α2

∫
Ω

𝑓2(𝑥, 𝑣k−1)Ψ 𝑑𝑥.

We claim

(3.3) (𝑢, 𝑣) 6 (𝑢1, 𝑣1) 6 · · · 6 (𝑢n, 𝑣n) 6 · · · 6 (𝑢, 𝑣).

To confirm this, first note from (3.2) for 𝑘 = 1 that

(3.4)

∫
Ω

∇𝑢1∇𝑤 𝑑𝑥 = ‖𝑣0‖p1
α1

∫
Ω

𝑓1(𝑥, 𝑢0)𝑤 𝑑𝑥,∫
Ω

∇𝑣1∇Ψ 𝑑𝑥 = ‖𝑢0‖p2
α2

∫
Ω

𝑓2(𝑥, 𝑣0)Ψ 𝑑𝑥

for each 𝑤, Ψ ∈ 𝐻1
0 (Ω). Subtract (3.4) from (3.1), recall (𝑢0, 𝑣0) = (𝑢, 𝑣) and set

𝑤 = (𝑢0 − 𝑢1)
+ , Ψ = (𝑣0 − 𝑣1)

+ , to get

(3.5)

∫
Ω

∇(𝑢0 − 𝑢1) · ∇(𝑢0 − 𝑢1)
+

𝑑𝑥 6 0,∫
Ω

∇(𝑣0 − 𝑣1) · ∇(𝑣0 − 𝑣1)
+

𝑑𝑥 6 0.

But

∇(𝑢0 − 𝑢1)
+ =

∇(𝑢0 − 𝑢1), almost everywhere on {𝑢0 > 𝑢1},
0 almost everywhere on {𝑢0 6 𝑢1},

∇(𝑣0 − 𝑣1)
+ =

∇(𝑣0 − 𝑣1), almost everywhere on {𝑣0 > 𝑣1},
0 almost everywhere on {𝑣0 6 𝑣1},

(see [6, Chapter 5]). Consequently,

(3.6)

∫
{u0>u1}

∣∣∇(𝑢0 − 𝑢1)
∣∣2 𝑑𝑥 6 0,∫

{v0>v1}

∣∣∇(𝑣0 − 𝑣1)
∣∣2 𝑑𝑥 6 0,
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so that (𝑢0, 𝑣0) 6 (𝑢1, 𝑣1) almost everywhere in Ω. Now assume inductively

(3.7) (𝑢k−1, 𝑣k−1) 6 (𝑢k, 𝑣k) almost everywhere in Ω

From (3.2) we find similarly∫
{uk>uk+1}

∇(𝑢k − 𝑢k+1) · ∇(𝑢k − 𝑢k+1)
+

𝑑𝑥

6
∫

Ω

(
𝑓1(𝑥, 𝑢k−1)‖𝑣k−1‖p1

α1
− 𝑓1(𝑥, 𝑢k)‖𝑣k‖p1

α1

)
(𝑢k − 𝑢k+1)

+
𝑑𝑥 6 0,∫

{vk>vk+1}
∇(𝑣k − 𝑣k+1) · ∇(𝑣k − 𝑣k+1)

+
𝑑𝑥

6
∫

Ω

(
𝑓2(𝑥, 𝑣k−1)‖𝑢k−1‖p2

α2
− 𝑓2(𝑥, 𝑣k)‖𝑢k‖p2

α2

)
(𝑣k − 𝑣k+1)

+
𝑑𝑥 6 0.

The last inequality holds in view of (3.7) and 𝑓1(·, 𝑢), 𝑓2(·, 𝑣) is nondecreasing in 𝑢 and
𝑣 respectively. Therefore (𝑢k, 𝑣k) 6 (𝑢k+1, 𝑣k+1) almost everywhere in Ω.∫

{uk+1>u}

∣∣∇(𝑢k+1 − 𝑢)
∣∣2 𝑑𝑥 6

∫
{uk+1>u}

(
𝑓1(𝑥, 𝑢k)‖𝑣k‖p1

α1

−𝑓1(𝑥, 𝑢)‖𝑣‖p1
α1

)
(𝑢k+1 − 𝑢)+

𝑑𝑥 6 0,∫
{vk+1>v}

∣∣∇(𝑣k+1 − 𝑣)
∣∣2 𝑑𝑥 6

∫
{vk+1>v}

(
𝑓2(𝑥, 𝑣k)‖𝑢k‖p2

α2

−𝑓2(𝑥, 𝑣)‖𝑢‖p2
α2

)
(𝑣k+1 − 𝑣)+

𝑑𝑥 6 0.

Next we show that (𝑢k, 𝑣k) 6 (𝑢, 𝑣) almost everywhere in Ω. It is valid for 𝑘 = 0
by hypothesis (1.3). Assume now for induction (𝑢k, 𝑣k) 6 (𝑢, 𝑣) almost everywhere in
Ω. Then we have

Thus (𝑢k+1, 𝑣k+1) 6 (𝑢, 𝑣) almost everywhere in Ω.
Therefore

(
𝑢(𝑥), 𝑣(𝑥)

)
:= lim

n→∞

(
𝑢n(𝑥), 𝑣n(𝑥)

)
exists for almost all 𝑥 . Further-

more, by the assumptions on 𝑓i(𝑖 = 1, 2), there is a subsequence
{(

𝑢nj
, 𝑣nj

)}∞
j=1

which
converges weakly in 𝐻1

0 (Ω) × 𝐻1
0 (Ω) to (𝑢, 𝑣). So, (𝑢, 𝑣) is a weak solution of (1.1).

The theorem follows.

Theorem 1.4 is an example in which the above result applies.
Proof of Theorem 1.4: Let (𝑤1, 𝑤2) be the only solution of

−Δ𝑤1 = 𝑚1, in Ω,

−Δ𝑤2 = 𝑚2, in Ω,

𝑤1 = 𝑤2 = 0, on 𝜕Ω.(3.8)



280 Yujuan Chen and Hongjun Gao [10]

Set
𝑢 =

(
‖𝑤1‖p1p2

α1
‖𝑤2‖p2

α2

)1/(1−p1p2)
𝑤1, 𝑣 =

(
‖𝑤2‖p1p2

α1
‖𝑤1‖p2

α2

)1/(1−p1p2)
𝑤2,

then (𝑢, 𝑣) is a positive subsolution of system (1.1). Similarly, if we denote by (𝑊1, 𝑊2)
the only positive solution of (3.8) with 𝑚1, 𝑚2 be replaced by 𝑀1, 𝑀2 respectively, we
can get the supersolution (𝑢, 𝑣) of system (1.1), where

𝑢 =
(
‖𝑊1‖p1p2

α1
‖𝑊2‖p2

α2

)1/(1−p1p2)
𝑊1, 𝑣 =

(
‖𝑊2‖p1p2

α1
‖𝑊1‖p2

α2

)1/(1−p1p2)
𝑊2

As 𝑚i 6 𝑀i , we have 𝑤i 6 𝑊i, 𝑖 = 1, 2. In addition, 0 < 𝑝1𝑝2 < 1, so (𝑢, 𝑣) 6 (𝑢, 𝑣).
Theorem 1.3 completes the proof.

Now, for the the special case 𝛼i = 𝑝i = 1, becomes the system

−Δ𝑢 = 𝑓1(𝑥, 𝑢)
∫

Ω

|𝑣| 𝑑𝑥, 𝑥 ∈ Ω,(3.9a)

−Δ𝑣 = 𝑓2(𝑥, 𝑣)
∫

Ω

|𝑢| 𝑑𝑥, 𝑥 ∈ Ω,(3.9b)

𝑢 = 𝑣 = 0, 𝑥 ∈ 𝜕Ω.(3.9c)

Denote by 𝜑0(𝑥) the unique positive solution of the linear elliptic problem

−Δ𝜑0(𝑥) = 1, 𝑥 ∈ Ω; 𝜑0(𝑥) = 0, 𝑥 ∈ 𝜕Ω.

Set 𝜌 =
∫

Ω

𝜑0(𝑥) 𝑑𝑥 . Thus, we have the following result.

Proposition 3.2. In addition to the assumptions on 𝑓1, 𝑓2 of Theorem 1.3,

assume further 0 < 𝑓i 6 𝑀i(𝑖 = 1, 2) in Ω × 𝑅 . Then nonegative solutions of (3.9)
exist if 𝜌2 6 1/(𝑀1𝑀2) .

Proof: Applying 𝜌2 6 1/(𝑀1𝑀2), we see that there exist large positive constants
𝐾1 and 𝐾2 such that

𝑀1𝜌 6 𝐾1/𝐾2 6 1/(𝑀2𝜌).

Let 𝑊 (𝑥) = 𝐾1𝜑0(𝑥), 𝑆(𝑥) = 𝐾2𝜑0(𝑥), then (𝑊, 𝑆) is a pair of supersolutions of
(3.9). Furthermore, (0, 0) is its subsolution, so we can get a nonnegative solution via
Theorem 1.3.

Indeed, we have the following result.

Proposition 3.3. Assume 0 < 𝑚i < 𝑓i 6 𝑀i(𝑖 = 1, 2) in Ω × 𝑅 , and 𝜌

satisfies

(3.10) 𝜌2 <
1

𝑀1𝑀2

or 𝜌2 >
1

𝑚1𝑚2

.
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Then the system (3.9) only possesses the trivial solution.

Proof: Suppose (𝑢, 𝑣) is a non trivial solution of (3.9). Multiplying (3.9a), (3.9b)
through by 𝜑0 and integrating on Ω respectively, we find∫

Ω

𝑢 𝑑𝑥 = ‖𝑣‖1
∫

Ω

𝑓1(𝑥, 𝑢)𝜑0 𝑑𝑥∫
Ω

𝑣 𝑑𝑥 = ‖𝑢‖1
∫

Ω

𝑓2(𝑥, 𝑣)𝜑0 𝑑𝑥.

Since 0 < 𝑚i 6 𝑓i 6 𝑀i(𝑖 = 1, 2), and 𝜑0 is a positive function, we have

𝑚1𝜌‖𝑣‖1 6 ‖𝑢‖1 6 𝑀1𝜌‖𝑣‖1,
𝑚2𝜌‖𝑢‖1 6 ‖𝑣‖1 6 𝑀2𝜌‖𝑢‖1.

So
𝑚1𝑚2𝜌

2‖𝑢‖1‖𝑣‖1 6 ‖𝑢‖1‖𝑣‖1 6 𝑀1𝑀2𝜌
2‖𝑢‖1‖𝑣‖1.

The conclusion follows since (3.10) holds.
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