Bull. Austral. Math. Soc. 72(3) pp.423--440, 2005.

Rendezvous numbers in normed spaces

Bálint Farkas

Szilárd György Révész

Received: 11th July, 2005

The present publication was supported by the Hungarian-French Scientific and Technological Governmental Cooperation, project # F-10/04 and the Hungarian-Spanish Scientific and Technological Governmental Cooperation, project # E-38/04.

Abstract

In previous papers, we used abstract potential theory, as developed by Fuglede and Ohtsuka, to a systematic treatment of rendezvous numbers. We considered Chebyshev constants and energies as two variable set functions, and introduced a modified notion of rendezvous intervals which proved to be rather nicely behaved even for only lower semicontinuous kernels or for not necessarily compact metric spaces.

Here we study the rendezvous and average numbers of possibly infinite dimensional normed spaces. It turns out that very general existence and uniqueness results hold for the modified rendezvous numbers in all Banach spaces. We also observe the connections of these magical numbers to Chebyshev constants, Chebyshev radius and entropy. Applying the developed notions with the available methods we calculate the rendezvous numbers or rendezvous intervals of certain concrete Banach spaces. In particular, a satisfactory description of the case of Lp spaces is obtained for all p > 0.

Click to download PDF of this article (free access until July 2006)

or get the no-frills version

[an error occurred while processing this directive]
(Metadata: XML, RSS, BibTeX) MathSciNet: MR2199644 Z'blatt-MATH: 1127.46008

References

  1. V. Anagnostopoulos and Sz. Gy. Révész;
    Polarization constants for products of linear functionals over R2 and C2 and Chebyshev constants of the unit sphere,
    Publ. Math. Debrecen (to appear).
  2. M. Baronti, E. Casini and P.L. Papini;
    On average distances and the geometry of Banach spaces,
    Nonlinear Anal. 42 (2000), pp. 533--541. MR1775391
  3. J. Borwein and L. Kneer;
    The Hausdorff metric and Chebyshev centres,,
    J. Approx. Theory 28 (1980), pp. 366--376. MR589992
  4. J.M. Cleary, S.A. Morris and D. Yost;
    Numerical geometry -- numbers for shapes,
    Amer. Math. Monthly 93 (1986), pp. 260--275. MR835294
  5. B. Farkas and B. Nagy;
    Transfinite diameter, Chebyshev constant, and capacity on locally compact spaces,
    Alfréd Rényi Institute preprint series, Hung. Acad. Sci. 7 (2004), pp. 10.
  6. B. Farkas and Sz.Gy. Révész;
    How magical rendezvous numbers are explained by potential theory?,
    Alfréd Rényi Institute preprint series, Hung. Acad. Sci. 2 (2005), pp. 21.
    http://arxiv.org/abs/math.CA/0503423.
  7. B. Farkas and Sz.Gy. Révész;
    Rendezvous numbers of metric spaces -- a potential theoretic approach,
    Arch. Math. (Basel) (to appear).
  8. M. Fekete;
    Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzahligen Koeffizienten,
    Math. Z. 17 (1923), pp. 228--249. MR1544613
  9. B. Fuglede;
    On the theory of potentials in locally compact spaces,
    Acta Math. 103 (1960), pp. 139--215. MR117453
  10. B. Fuglede;
    Le théorème du minimax et la théorie fine du potentiel,
    Ann Inst. Fourier (Grenoble) 15 (1965), pp. 65--87. MR190368
  11. J.C. Garcıa-Vázquez and R. Villa;
    The average distance property of the spaces n({C }) and n1({C }),
    Arch. Math. 76 (2001), pp. 222--230. MR1816993
  12. A.L. Garkavi;
    On the Chebyshev centre and convex hull of a set,
    Uspekhi Mat. Nauk 19 (1964), pp. 139--145. MR175035
  13. O. Gross;
    The rendezvous value of a metric space,
    in Advances in Game Theory,
    Ann. of Math. Studies 52 (Princeton University Press, N.J., 1964), pp. 49--53. MR162643
  14. A. Hinrichs;
    The average distance property of classical Banach spaces,
    Bull. Aust. Math. Soc. 62 (2000), pp. 119--134. MR1775893
  15. A. Hinrichs and J. Wenzel;
    The average distance property of classical Banach spaces II,
    Bull. Aust. Math. Soc. 65 (2002), pp. 511--520. MR1910504
  16. P.K. Lin;
    The average distance property of Banach spaces,
    Arch. Math. 68 (1997), pp. 496--502. MR1444661
  17. M. Ohtsuka;
    On potentials in locally compact spaces,
    J. Sci. Hiroshima Univ. Ser. A-I Math. 25 (1961), pp. 135--352. MR180695
  18. M. Ohtsuka;
    On various definitions of capacity and related notions,
    Nagoya Math. J. 30 (1967), pp. 121--127. MR217325
  19. A. Pappas and Sz. Gy. Révész;
    Linear polarization constants of Hilbert spaces,
    J. Math. Anal. Appl. 300 (2004), pp. 129--146. MR2100242
  20. Sz. Gy. Révész and Y. Sarantopoulos;
    Plank problems, polarization, and Chebyshev constants,
    J. Korean Math. Soc. 41 (2004), pp. 157--174. MR2048707
  21. W. Stadje;
    A property of compact, connected spaces,
    Arch. Math. 36 (1981), pp. 275--280. MR620518
  22. C. Thomassen;
    The rendezvous number of a symmetric matrix and a compact connected metric space,
    Amer. Math. Monthly 107 (2000), pp. 163--166. MR1745895
  23. R. Wolf;
    On the average distance property in finite dimensional real Banach spaces,
    Bull. Austral. Math. Soc. 51 (1994), pp. 87--101. MR1313116
  24. R. Wolf;
    On the average distance property of spheres in Banach spaces,
    Arch. Math. 62 (1994), pp. 338--344. MR1264706

ISSN 0004-9727