Bull. Austral. Math. Soc. 72(3) pp.423--440, 2005.
Rendezvous numbers in normed spaces
Bálint Farkas |
Szilárd György Révész |
The present publication was supported by the Hungarian-French Scientific and Technological Governmental Cooperation, project # F-10/04 and the Hungarian-Spanish Scientific and Technological Governmental Cooperation, project # E-38/04.
Abstract
Here we study the rendezvous and average numbers of possibly infinite dimensional normed spaces. It turns out that very general existence and uniqueness results hold for the modified rendezvous numbers in all Banach spaces. We also observe the connections of these magical numbers to Chebyshev constants, Chebyshev radius and entropy. Applying the developed notions with the available methods we calculate the rendezvous numbers or rendezvous intervals of certain concrete Banach spaces. In particular, a satisfactory description of the case of Lp spaces is obtained for all p > 0.
Click to download PDF of this article (free access until July 2006)
or get the no-frills version
[an error occurred while processing this directive](Metadata: XML, RSS, BibTeX) | MathSciNet: MR2199644 | Z'blatt-MATH: 1127.46008 |
References
- V. Anagnostopoulos and Sz. Gy. Révész;
Polarization constants for products of linear functionals over R2 and C2 and Chebyshev constants of the unit sphere,
Publ. Math. Debrecen (to appear). - M. Baronti, E. Casini and P.L. Papini;
On average distances and the geometry of Banach spaces,
Nonlinear Anal. 42 (2000), pp. 533--541. MR1775391 - J. Borwein and L. Kneer;
The Hausdorff metric and Chebyshev centres,,
J. Approx. Theory 28 (1980), pp. 366--376. MR589992 - J.M. Cleary, S.A. Morris and D. Yost;
Numerical geometry -- numbers for shapes,
Amer. Math. Monthly 93 (1986), pp. 260--275. MR835294 - B. Farkas and B. Nagy;
Transfinite diameter, Chebyshev constant, and capacity on locally compact spaces,
Alfréd Rényi Institute preprint series, Hung. Acad. Sci. 7 (2004), pp. 10. - B. Farkas and Sz.Gy. Révész;
How magical rendezvous numbers are explained by potential theory?,
Alfréd Rényi Institute preprint series, Hung. Acad. Sci. 2 (2005), pp. 21.
http://arxiv.org/abs/math.CA/0503423. - B. Farkas and Sz.Gy. Révész;
Rendezvous numbers of metric spaces -- a potential theoretic approach,
Arch. Math. (Basel) (to appear). - M. Fekete;
Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzahligen Koeffizienten,
Math. Z. 17 (1923), pp. 228--249. MR1544613 - B. Fuglede;
On the theory of potentials in locally compact spaces,
Acta Math. 103 (1960), pp. 139--215. MR117453 - B. Fuglede;
Le théorème du minimax et la théorie fine du potentiel,
Ann Inst. Fourier (Grenoble) 15 (1965), pp. 65--87. MR190368 - J.C. Garcıa-Vázquez and R. Villa;
The average distance property of the spaces ℓn∞({C }) and ℓn1({C }),
Arch. Math. 76 (2001), pp. 222--230. MR1816993 - A.L. Garkavi;
On the Chebyshev centre and convex hull of a set,
Uspekhi Mat. Nauk 19 (1964), pp. 139--145. MR175035 - O. Gross;
The rendezvous value of a metric space,
in Advances in Game Theory,
Ann. of Math. Studies 52 (Princeton University Press, N.J., 1964), pp. 49--53. MR162643 - A. Hinrichs;
The average distance property of classical Banach spaces,
Bull. Aust. Math. Soc. 62 (2000), pp. 119--134. MR1775893 - A. Hinrichs and J. Wenzel;
The average distance property of classical Banach spaces II,
Bull. Aust. Math. Soc. 65 (2002), pp. 511--520. MR1910504 - P.K. Lin;
The average distance property of Banach spaces,
Arch. Math. 68 (1997), pp. 496--502. MR1444661 - M. Ohtsuka;
On potentials in locally compact spaces,
J. Sci. Hiroshima Univ. Ser. A-I Math. 25 (1961), pp. 135--352. MR180695 - M. Ohtsuka;
On various definitions of capacity and related notions,
Nagoya Math. J. 30 (1967), pp. 121--127. MR217325 - A. Pappas and Sz. Gy. Révész;
Linear polarization constants of Hilbert spaces,
J. Math. Anal. Appl. 300 (2004), pp. 129--146. MR2100242 - Sz. Gy. Révész and Y. Sarantopoulos;
Plank problems, polarization, and Chebyshev constants,
J. Korean Math. Soc. 41 (2004), pp. 157--174. MR2048707 - W. Stadje;
A property of compact, connected spaces,
Arch. Math. 36 (1981), pp. 275--280. MR620518 - C. Thomassen;
The rendezvous number of a symmetric matrix and a compact connected metric space,
Amer. Math. Monthly 107 (2000), pp. 163--166. MR1745895 - R. Wolf;
On the average distance property in finite dimensional real Banach spaces,
Bull. Austral. Math. Soc. 51 (1994), pp. 87--101. MR1313116 - R. Wolf;
On the average distance property of spheres in Banach spaces,
Arch. Math. 62 (1994), pp. 338--344. MR1264706
ISSN 0004-9727