Bull. Austral. Math. Soc. 72(3) pp.477--480, 2005.
There are no n-point Fσ sets in Rm
David L. Fearnley |
L. Fearnley |
J.W. Lamoreaux |
.
Abstract
We show that, for any positive integers n and m, if a
set S Rm intersects every
m - 1 dimensional affine
hyperplane in Rm
in exactly n points, then
S is not an
F
set. This gives a natural
extension to results of Khalid Bouhjar, Jan J. Dijkstra, and R.
Daniel Mauldin, who have proven this result for the case when
m = 2, and also Jan J. Dijkstra
and Jan van Mill, who have shown this result for the case when
n = m.
Click to download PDF of this article (free access until July 2006)
or get the no-frills version
[an error occurred while processing this directive](Metadata: XML, RSS, BibTeX) | MathSciNet: MR2199649 | Z'blatt-MATH: 1091.54003 |
References
- K. Bouhjar, J.J. Dijkstra and R.D. Mauldin;
No n-point set is σ-compact,
Proc. Amer. Math. Soc. 129 (2001), pp. 621--622. MR1800242 - J.J. Dijkstra and J. van Mill;
On sets that meet every hyperplane in n-space in at most n points,
Bull. London Math. Soc. 34 (2002), pp. 361--368. MR1887709 - D.L. Fearnley, L. Fearnley and J.W. Lamoreaux;
Every three-point space is zero dimensional,
Proc. Amer. Math. Soc. 131 (2003), pp. 2241--2245. MR1963773 - D.L. Fearnley, L. Fearnley and J.W. Lamoreaux;
On the dimension of n-point sets,
Topology Appl. 129 (2003), pp. 15--18. MR1955662 - J. Kulesza;
A two point set must be zero dimensional,
Proc. Amer. Math. Soc. 116 (1992), pp. 551--553. MR1093599 - R.D. Mauldin;
Is there a Borel set M in R2 which meets each straight line in exactly two points?,
in Open Problems in Topology (North-Holland, Amsterdam, 1990), pp. 619--629. MR1078636 - S. Mazurkiewicz;
O pewnej mnogsci plaskiej, ktora ma z kazda prosta dwa i tylkp dwa punkty wspolne,
(Polish),
C. R. Varsovie 7 (1914), pp. 382--384. MR0250248
French translation: {Sur un ensemble plan qui a avec chaque droit deut at seulement points cummuns}, Stefan Mazurkiewicz, in Traveaux de Topologie et ses Applications (PWN, Warsaw, 1969), pp. 46--47
ISSN 0004-9727