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Editorial

What do you write as your ‘usual occupation’ on the entry card when returning to Australia
from overseas? ‘Mathematician’, or the more generic ‘Academic’? Is Mathematics a profes-
sion and how is it looked upon by the outside world? In this issue’s Math matters Cheryl
Praeger makes a strong case for all of us to increase the visibility of the mathematical pro-
fession in everyday life. As part of this she proposes to include undergraduates as members
of the AustMS, free of charge. Similar feelings are expressed in a non-mathematician’s
apology by Ian Enting, responding to Tony Dooley’s Math matters column in issue two of
the Gazette.

Views on the future of our profession and government involvement are offered in Tony
Guttmann’s final President’s column and the last of the Brain drain articles by gainee
and Federation Fellow Richard Brent.

At the time of writing the federal election campaign is in full swing with our politicians
travelling the country begging for our attention, and ultimately, our votes. That voting does
not just come down to attracting the majority of votes is something well understood by all
sides of politics. But whether John Howard, Mark Latham and other political leaders know
all about Condorcet’s voting paradox and the Gibbard-Satterthwaite Theorem is doubtful.
To see if a proper understanding of the mathematics behind voting would have changed
your vote in the federal election read Norman Do’s article. Norman — a graduate student
at The University of Melbourne — is our new Mathellaneous columnist, replacing Daniel
Mathews.

At this time of year it is probably not just voting that is on our minds, but also the
rapidly approaching holiday season. If sand, beach and surf is your thing then Neville (Iron
Man) de Mestre’s article on the history and mathematics of bodysurfing is a must.

It has come to our attention that some of our readers are under the impression that
contributions to the Gazette are by invitation only. Although this happens to be true for
the President’s column and Math matters, we very much welcome submissions from all of
our readers.

Deadlines for submissions to the Gazette

Volume Number Deadline
31 5 12 October 2004
32 1 15 February 2005
32 2 19 April 2005
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President’s column by Tony Guttmann

This is my last column as President, so I
thought I would indulge myself by musing
on both the positive and the negative devel-
opments in the mathematical sciences over
the last two years. Unfortunately, the neg-
ative developments far outweigh the posi-
tives.

It has been an exciting time for re-
searchers, as I reported in the President’s
column in the previous issue, with break-
throughs in the search for solutions of a
number of long-standing and celebrated
problems. The positives also include the
growing recognition by both State and Fed-
eral Governments of the importance of the
mathematical sciences. This has been man-
ifested by the support for AMSI, MASCOS
and ICE-EM.

Unfortunately, the State and Federal
Governments’ generosity in establishing in-
stitutes has not been backed up by much
needed expenditure across the board. Peter
Hall, in his trenchant article in the March
2004 issue of the Gazette, listed many of the
problems facing the profession, and high-
lighted the particular difficulties facing the
discipline of statistics.

Currently, direct Federal Government
funding typically accounts for less than 40%
of a university’s operating budget. It is
the full-fee paying cohort of students, both
overseas and local, that is propping up our
universities, thereby making universities in-
credibly vulnerable to fluctuations in the
level of this resource. Indeed, with the ap-
preciation of the Australian dollar, we are
already seeing a decline in overseas student

enrolments. I have heard this process evoca-
tively described as “strip mining” the edu-
cational sector. Rather than using income
generated by full-fee paying students to cre-
ate superb universities, the Federal Govern-
ment is using it as an opportunity to allo-
cate them ever-decreasing levels of funding.
For the mathematical sciences, the effect of
this is exacerbated by the current Relative
Funding Model, which leaves us at a disad-
vantage relative to other disciplines.

As a result, while there are a reasonable
number of fixed-term opportunities at uni-
versities for post-doctoral job seekers, there
are only limited opportunities for them to
obtain tenure track positions. As a result
we are losing many of our best and bright-
est young mathematicians overseas.

The Federation Fellowship scheme has
been essentially useless in addressing this is-
sue. Not one young mathematical scientist
has been attracted back to Australia by it,
and only by using a broad definition of the
mathematical sciences can we say that any
mathematicians have been awarded Federa-
tion Fellowships at all. Indeed, the ARC
seems to have lessened its regard for the
mathematical sciences, as evidenced by the
number of mathematicians on the relevant
panel. As Peter Hall points out, the Cana-
dian Research Chairs system is a far more
effective (and less expensive) way of bolster-
ing the university sector.

Nor have government budgets addressed
the teacher crisis in schools. There are no
new funds for professional development, no
mechanism to address the problem of teach-
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ers teaching out of field, and little sense
of concern for, or even awareness of, a di-
minishing population of trained mathemat-
ics teachers, many of whom are approaching
retiring age.

Support for R&D is also too low if Aus-
tralia is to have a future as a scientifically
advanced nation. Admittedly, government
expenditure on R&D is above the OECD
average, but little seems to be being done,
by any political party, to promote policies
to raise R&D expenditure by industry. The
demand for mathematical scientists created
by initiatives in bio-informatics, stem cell
research, neuro-informatics and nanotech-
nology, to name but a few of the areas in
which Australia seeks to have a major im-
pact, is huge. Yet the supply of mathe-
matical scientists is not there. The “brain
drain”, carefully quantified by our Execu-
tive Officer, Jan Thomas, shows no signs of
improving.

The establishments of the three institutes
mentioned above may buy more time, but
cannot work miracles, nor compensate for
billions of dollars of lost funding. Unfortu-
nately, there seems little sense of urgency in
the policies of any political party to address
these issues.

It has been a privilege to have been
President of the Society for the past two
years, and I have been ably assisted—
perhaps “propped up” is a more accu-
rate description—by many members of the
Executive. I am grateful to all of them,
particularly our Secretary, Liz Billington,
Treasurer Algy Howe and Executive Officer
Jan Thomas. I congratulate and welcome
Michael Cowling as the incoming President,
and wish him every success in addressing
some of the issues raised above.
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Letter to the editors

The editors through their new series of ar-
ticles are highlighting some of the issues
that Mathematics is facing in Australia.
Yet I cannot help but feel that the issues
that are being raised are to some extent
ancient history. We have moved on from
those dark days and in fact Mathematics
has done quite well recently, as has been
documented in the excellent article by Tony
Dooley. Why not have more emphasis on
the positive and on our collective achieve-
ments. Doom and gloom is all well and good
but it can be self fulfilling and can give quite
the wrong impression, especially with the
recent Federal Fundings in Mathematics.

Finally, I suppose it is up to the Editors
and to the readers of the Gazette to form
their own views as to the appropriateness
of the article by Philip Broadbridge and the
comments on page 91 about colleagues knif-
ing people in the back. The ARC does its
best in difficult circumstances and I cannot
understand why the Gazette would allow
such comments. Informed opinion is fine
but not vitriol.

I urge the Gazette to think about what
they are trying to achieve with such articles.

Kevin Burrage
Federation Fellow
Professor of Computational Mathematics

Co-Director of the Advanced Computational Modelling Centre
Staff member of the Department of Mathematics, ITEE and IMB
The University of Queensland, Queensland 4072.

E-mail : kb@maths.uq.edu.au

Our aim with the series of articles on the brain drain has been to complement the wealth
of statistical data on this important issue with personal stories of drainees. As editors we
have chosen to give free reign to our contributors and to not shy away from the sometimes
confronting comments being made. Indeed, although the Gazette should not (just) become
a forum for disgruntled mathematicians, the Australian mathematical community should
hopefully be strong and mature enough to allow for a free and open debate. We would
rather have the Gazette be sometimes controversial than be uninteresting and irrelevant.

As to whether the brain drain is something of the past, only time will tell. It will be
clear from Kevin Burrage’s letter, the President’s column and Richard Brent’s ‘brain gain’
contribution that views on this issue are not at all clear cut.
The editors

mailto:kb@maths.uq.edu.au
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Math matters

The Profession of Mathematics

Cheryl E. Praeger

You who glance at this column may care
about Mathematics as passionately as I do.
You may feel that the importance of Math-
ematics education is self-evident, for both
individuals and society. On the other hand
you may also have experienced conversa-
tions such as one I had with a friend this
week. On telling her that I intended to write
about the Profession of Mathematics, she
responded that she didn’t think that Math-
ematics was a profession. To be a profes-
sion, she said, there had to be a range of
careers available, and there were none listed
for Mathematics in careers material that her
high school-aged son had brought home to
show his parents. As a student, she contin-
ued, she knew that she had strong problem-
solving skills, and good logical and analyt-
ical thinking. However, based on her (neg-
ative) experience in studying calculus, she
had decided to build on her strengths and
not proceed with Mathematics.

The skills my friend chose in describing
her strengths are close to those I would
nominate as generic skills to be obtained
from a good Mathematics education. How-
ever my friend had a very different view
from me on the purpose and outcome of
a Mathematics education. My view, al-
ready on record, is that “the most impor-
tant outcome from a mathematics education

[is] an automatic expectation by students
that mathematical thinking will play a key
role in their understanding, and problem-
solving in every part of their lives”1.

Why did my perceptive and well-
educated friend have such a different under-
standing from me of the role of Mathemat-
ics? Is there a Mathematics Profession? If
so, what is it like? If not, and if we want
there to be one, what must we do to achieve
this?

Let us assume for the moment that there
is a Mathematics Profession and that we are
members of it. What are our perceptions of
the Profession? Who are the members and
where do they work? What do they need
professionally, and in particular, what do
they need from a professional association?

Purpose of the Profession

The two hallmarks of Mathematics are its
power and its beauty. “The high technol-
ogy that is so celebrated today is essen-
tially mathematical technology”2. More-
over mathematical literacy is critical for an
individual to function effectively in mod-
ern society. Politicians, industrial leaders,
and educators all say they recognise this.
To summarise, let’s say that the role of the
Mathematics Profession is:

1In The Essential Elements of Mathematics, a paper I wrote in March 2004 in response to an invitation

from the Victorian Curriculum and Assessment Authority with respect to its work on developing Framework
of Essential Learning.

2E.E. David, President of Exxon Research and Engineering, see http://www.maths.uwa.edu.au/

students/prospective/first_year_general.php

http://www.maths.uwa.edu.au/students/prospective/first_year_general.php
http://www.maths.uwa.edu.au/students/prospective/first_year_general.php
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• To strengthen Mathematics education
in schools and tertiary institutions, in
order to fit young people to function ef-
fectively in society;

• To enhance the impact of Mathematics
research for the health of our own and
other disciplines, and ultimately for the
public good; and

• To promote effective applications of
Mathematical methods and analysis in
commerce and industry, for the eco-
nomic benefit of our community and na-
tion.

Inevitably most of us, as members of the
profession, will focus on some aspects more
than others. Indeed it is the major challenge
for the Mathematics Profession to harness
the energy and commitment of all its mem-
bers to work together towards fulfilling this
role.

Many mathematicians are striving to-
wards this. One celebrated successful ini-
tiative is the long-running Mathematics in
Industry Study Group that seeks to provide
annually a forum where mathematicians
and other professionals meet to bring math-
ematical thinking and expertise to bear on
a range of problems arising in industry.

Moreover, the mission of the recently es-
tablished Australian Mathematical Sciences
Institute3 is aligned precisely with this role,
as discussed by Garth Gaudry in the third
of these columns. In his role as Director
of AMSI, Garth found “the level of appre-
ciation of our discipline and its extraordi-
nary impact [to be] extremely high”. He
called on us in the profession to “broaden
our horizons” and “demonstrate our will-
ingness to cooperate, not only among our-
selves but with people from the many other
endeavours in which the mathematical sci-
ences play a significant role”4.

Similarly, in the second of these columns,
Tony Dooley5 argued cogently that, in the
area of mathematics research, the Mathe-
matics Profession must take “greater con-
trol of the mysterious process between the-
ory and applications” and develop “better
structures for sharing ideas and projects
across the whole spectrum from the purest
to the most highly applied research”. Tak-
ing control of the connection between the-
ory and application is critical, and must be
taken seriously. The reason why the pro-
cess may look “mysterious” is that many of
us have not done it – it is challenging and
sometimes very difficult as a real applica-
tion is rarely as clear-cut as theory. How-
ever, the mathematical mind is a good one
for solving these problems because of the
ability to think clearly, recognise what is a
proof (or more commonly, what is not) and
to simplify complex systems.

Membership of the Profession

The Mathematics Profession deserves a
depth of membership that embraces under-
graduate “trainees”, mathematics teachers
at all levels, mathematics researchers, and
commercial and industrial mathematicians.
Universities certify as graduate mathemati-
cians those who have a major in a mathe-
matical science. Usually this means gradu-
ates with three year degrees. At the least,
all of these graduates are part of our profes-
sion.

However the profession is broader than
this. For example, the PhD program in any
of the mathematical sciences offers a rig-
orous training in research, and this is one
of the possible routes into a mathemati-
cal career. Some graduates in disciplines
other than the mathematical sciences be-
come members of the Mathematics Profes-
sion through such a program.

3See http://www.amsi.org.au/about.html. The AMSI mission is to become a nationally and internation-

ally recognised centre for the mathematical sciences, providing service to its member institutions, improving
the international competitiveness of Australian industry and organisations and enhancing the national level

of school mathematics, by the provision and support of mathematical and statistical expertise.
4AustMS Gazette 31 (2004), 145–146.
5AustMS Gazette 31 (2004), 76–78.

http://www.amsi.org.au/about.html
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Alternative routes into the Mathemat-
ics Profession for those without a complete
mathematics or statistics major are of equal
validity: for example, the “in-house” and
“on-the-job” training and experience that
produce effective commercial or industrial
mathematicians and statisticians; or the
professional development and further study
that enable those without a mathematics
major to become competent mathematics
teachers in schools. Mathematical ability
and commitment should determine member-
ship of the Mathematics Profession, not for-
mal qualifications – certainly not the hold-
ing of a PhD degree. And let us not forget
our undergraduate student members.

When it comes to defining the profession,
it is important to use the broadest possible
umbrella. It is especially relevant to em-
brace those diverse users of Mathematics
and Statistics (in fields such as Computer
Science and Bioinformatics) who may not
describe their work as Mathematics. Much
of what they do is Mathematics by any rea-
sonable definition. The Mathematics Pro-
fession should be taking credit for it and
welcoming those who practise it into our
fold.

Professional associations

There are many mathematical associations
in Australia, of which we may like to think
of the Australian Mathematical Society as
one of the major ones. The membership
of each covers only a “slice” of the profes-
sion’s membership. Most members of the
Australian Mathematical Society (including
ANZIAM) are mathematicians or statisti-
cians in universities. A minority are re-
search or commercial mathematicians and
statisticians from government or private en-
terprise, and some are mathematics teachers
in schools.

Several other professional mathematical
associations include teachers of mathemat-
ics in primary and secondary schools, statis-
ticians from all sectors, and mathematical
scientists from special sub-disciplines such
as Operations Research. There is no sin-
gle organisation to which all professional
mathematicians can logically belong. More-
over, none caters very well for undergradu-
ate mathematics students as members.

By contrast Engineers Australia6 of-
fers free student membership to all under-
graduate engineering students, entailing a
monthly student newsletter, and access to
careers services, discussion forums and pro-
fessional advice. From this early stage un-
dergraduate engineering students are wel-
comed into the Engineering Profession. In
addition Engineers Australia has active pro-
grams run by its branches, and offers struc-
tured professional development programs
for individual members and teams.

Efforts to provide opportunities for un-
dergraduate mathematics and statistics stu-
dents led to the inaugural AMSI Sum-
mer School in Melbourne in February 2003,
whose success was praised by the Federal
Minister, Dr Brendan Nelson7. In addition,
the Statistical Society of Australia runs a
Young Statisticians Section8 for statistics
students and new graduates. Both the Sta-
tistical Society of Australia and the Aus-
tralian Association of Mathematics Teach-
ers have strong state branches that run their
own programs independently of the central
organisation.

The Accredited Mathematical Sci-
entist

Several mathematical associations have
tried to raise public awareness of Mathe-
matics and Statistics, and the quality of
members of the Mathematics Profession, by
introducing accreditation of their members

6http://www.ieaust.org.au
7Garth Gaudry, Math Matters, AustMS Gazette 31 (2004), 145–146.
8http://www.statsoc.org.au/Sections/YoungStatisticians.htm

http://www.ieaust.org.au
http://www.statsoc.org.au/Sections/YoungStatisticians.htm
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or of university courses. While accredita-
tion may benefit an individual by providing
recognition of their qualifications and expe-
rience, the most valuable purpose of accred-
itation is to assure those outside the pro-
fession that the accredited person can help
them mathematically.

When the Australian Mathematical So-
ciety introduced its accreditation scheme in
1994 during my term as President, it was a
controversial decision. The scheme was con-
servative, measuring worthiness for accredi-
tation against performance levels of univer-
sity academic staff. Three levels of accredi-
tation were offered, and the Society website
currently lists 108 persons who have been
accredited as Fellows (the highest level).
However, no lists of accredited members, or
accredited graduate members are given. We
have, it seems, failed to attract young math-
ematicians to accredited graduate member-
ship, which is available to those who are
graduates with a major in a mathematical
science.

The Statistical Society of Australia
(SSAI) introduced its accreditation scheme
in 1996, and more recently decided to of-
fer graduate accreditation status to those
with a three year degree with a major in
statistics. Unlike the Society, the SSAI pro-
vides a list9 of all Accredited Statisticians
and Graduate Statisticians, together with
their contact details and professional ar-
eas of interest, thus helping to achieve the
major purpose of accreditation. I question
whether the accreditation scheme of the So-
ciety is sufficiently outwardly focused.

How is the Profession perceived?

As well as internal strength, the Mathemat-
ics Profession needs external recognition to
ensure that:

• Young people see the relevance of a
mathematical training for developing
strong problem-solving skills and crit-
ical thinking, and the possibility of a
variety of satisfying mathematical ca-
reers;

• Companies expect and obtain maxi-
mum, and cost-effective, benefits from
incorporating mathematicians on their
staff, or as consultants, to enable them
to achieve their competitive edge; and

• Government comprehends the value of
investing in mathematics education for
its citizens.

How are we as a profession faring in
terms of recognition? Some data indicate
that Mathematics is facing a crisis, with de-
creased resources, splintering of the disci-
pline, and dissipation of mathematics con-
tent in courses at all levels. In the first
of these columns Peter Hall10 analysed the
negative impact on Mathematics and Sta-
tistics in Australian universities of govern-
ment policies on research and higher edu-
cation, principally the “penalising of highly
performing Australian mathematical scien-
tists” and lack of provision of “adequate ca-
reer paths for younger Australian mathe-
matical scientists”. Documenting the de-
cline in resources is important, but does not
necessarily shed light on the causes.

If we, as members of the Mathematics
Profession, assume that the only relevant
issues are government decisions on support
for Mathematics, then the cause of the de-
cline is the government. But this might di-
vert the Mathematics Profession from fac-
ing the possibility that much of the problem
may lay within itself.

The most recent university mathematics
enrolment data I have seen indicate that, in
the Mathematical Sciences during the pe-
riod 1995–9911, the ratio of the number of
graduates with majors in a mathematical

9http://www.statsoc.org.au/Accreditations/AccreditedMembers.htm
10AustMS Gazette 31 (2004), 6–11. Peter called for increased government funding for university math-

ematics teaching, structured research/teaching fellowships, and fundamental changes to government policy

on the measurement of research performance.
11Information collected from Heads of Mathematics Departments in 2001.

http://www.statsoc.org.au/Accreditations/AccreditedMembers.htm
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science from Australian universities to the
number who graduate with honours is more
than 5:1. In past years the mathematical as-
sociations have largely ignored the former,
and they account for 80% of the Profes-
sion. Unless the government sees a vigorous
Mathematics Profession that acknowledges
and engages all its members, we cannot ex-
pect it to regard Mathematics as important
politically.

A way forward

All undergraduate students studying a
mathematics subject should be of interest
to the Mathematics Profession, not only be-
cause they are its clients, but also because
they are students with a good mathemat-
ics education and we want to ensure that
they understand the “unreasonable effec-
tiveness”12 of mathematics in solving real-
world problems. Two simple initiatives the
Society might take are:
• To extend the offer of free student mem-

bership of the Australian Mathematical
Society for the duration of a student’s
undergraduate career13; and

• To establish a Young Mathematicians
section of the Society.

However, from a student’s perspective
(and indeed the perspective of most mem-
bers of the community), the “angles of sep-
aration” between academic mathematicians
and statisticians, industrial and commer-
cial mathematicians, and school mathemat-
ics teachers, are very small indeed. Students
should be welcomed into the Mathematics
Profession early in their undergraduate ca-
reers – before most of them distinguish (let

alone choose) between the various mathe-
matical career paths, not to mention alter-
native career paths such as the computing
or physical sciences, or engineering.

An appropriate initiative to achieve this
would involve:
• A joint initiative by several mathemat-

ical bodies14 to welcome and engage
undergraduate mathematics students in
the Mathematics Profession.

Fortunately for this country, the Aus-
tralian Mathematics Trust engages many
thousands of Australian students in mathe-
matics challenges and enrichment activities
while they are in primary and secondary
school. Equally fortunately, the Australian
Mathematical Sciences Institute has a fo-
cus on school and undergraduate training in
the mathematical sciences, and the profes-
sional development of mathematics teach-
ers. The Trust’s activities could become the
first part of a seamless program of mathe-
matics enrichment, promotion and informa-
tion offered to young people by the Mathe-
matics Profession.

Australia is a talented country. It is
also a small country, too small to waste its
mathematical resources. Success in building
the Mathematics Profession demands the
goodwill and commitment of all Australian
Mathematicians (in the broadest sense of
the word).
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Mathellaneous by Norman Do

The mathematics of voting

1 Introduction

In the animal kingdom, leaders are chosen by instinct, tradition, and occasionally the bump-
ing of heads. We humans, on the other hand, have moved away from such primitive and
barbaric behaviour. Democracy, from the same people who brought us the Olympic Games,
necessitated a method to elect leaders in a way that would accurately reflect the will of the
people. Thus, voting was born.

Having been practised for thousands upon thousands of years, voting is now rife in our
society, whether it be used to opt between holiday destinations, choose a new member for a
committee or elect a head of state. And what could be simpler? All it takes is for someone to
count the votes and declare whichever candidate has the most to be the winner. Indeed, the
subject of voting did not catch the eye of the mathematical world until the late eighteenth
century when some clever people noticed that there were strange and paradoxical anomalies
lurking behind this seemingly elementary process. Such simple observations gave rise to the
marriage of mathematics with the field now known as social choice theory, which analyzes
how collective decisions are made by a set of voters.

2 Two Alternatives

Voting between two alternatives is so simple that it can be seen being practised by young
children in their playground politics. If more children want to play hide-and-seek than
chasey, then it is generally understood that that is the game that they should play. This
system, known for obvious reasons as majority vote, seems like the optimal way to choose a
winner in order to please the most people and displease the fewest. But let us ask ourselves
the following question. . .

Are there any other ways, besides majority vote, to elect a winner from two
alternatives?

What we are on the hunt for is some method of producing from an input of many prefer-
ences an output consisting of only one preference. This is an example of what is known in
the literature as a social choice function. More precisely, a social choice function

◦ accepts as input a sequence of preference lists which strictly rank the elements of
some set, and

◦ produces as output a winner or a list of tied winners from the set. The input
sequence of preference lists is known as a profile and the output list of winners is
called the social choice.

Of course, whether we are voting between hide-and-seek and chasey or between the lesser
of two evil candidates for the leader of a nation is totally irrelevant. Also, in this simple
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case of two alternatives, ranking all of the alternatives is equivalent to choosing a preferred
one. So, for convenience, we can give the two alternatives abstract names, such as +1 and
−1, and a voter’s preference list can simply be described as one of these two numbers.
Furthermore, a profile can be given by an m-tuple of numbers which are either +1 or −1,
where m corresponds to the number of voters. As long as there are no ties involved, our
problem now translates into finding a function f : {−1,+1}m → {−1,+1}. But the number
of such functions — which happens to be 22m

— is phenomenally large, even for reasonably
small values of m. The following are just three simple examples of social choice functions
for two alternatives.

◦ Dictatorship: Let one of the voters be the dictator and then let the social choice
simply coincide with their preference.

◦ Constant: No matter how people vote, let the social choice always be +1.
◦ Parity: Let the social choice be +1 if an even number of people vote for +1 and let

it be −1 otherwise.
It should be clear that all of these, although legitimate examples of the abstract notion

of a social choice function, are preposterous attempts to accurately reflect the will of the
people. The dictatorship does not treat all voters equally while the constant function does
not treat both alternatives equally. The parity function allows a voter who changes his or
her mind from −1 to +1 to make the social choice change in the reverse direction. So we
need to put some conditions on our function to avoid these pathological examples. The
following are three conditions which seem reasonable along with their translations into the
more abstract language of mathematics.

◦ Anonymous: The social choice function should treat all voters equally.
If (x1, x2, . . . , xm) is a permutation of (y1, y2, . . . , ym), then f(x1, x2, . . . , xm) =
f(y1, y2, . . . , ym).

◦ Neutral: The social choice function should treat both alternatives equally.
For all (x1, x2, . . . , xm), f(−x1,−x2, . . . ,−xm) = −f(x1, x2, . . . , xm).

◦ Monotone: Voting for someone cannot hurt their chances.
If xk ≥ yk for all k, then f(x1, x2, . . . , xm) ≥ f(y1, y2, . . . , ym).

The natural question to ask now is . . .
Besides majority vote, are there any social choice functions for two alterna-
tives which are anonymous, neutral and monotone?

If we restrict our interest to the case where there is an odd number of voters and no ties,
then the answer is given in the following. . .

May’s Theorem (1952): Suppose that we have a social choice function for two
alternatives which

◦ has an odd number of voters;
◦ does not allow ties; and
◦ is anonymous, neutral and monotone.

Then the social choice function is a majority vote.

Problem: Prove May’s Theorem by finding all functions f : {−1,+1}m → {−1,+1}
for odd m which are anonymous, neutral and monotone.

3 Three or More Alternatives

May’s Theorem tells us that voting between two alternatives offers no surprises, so let us
turn our attention to the more interesting case of three or more alternatives. Of course, one
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might be tempted to think that we are just about ready to conquer the world of voting,
as long as we can generalize May’s theorem to a larger number of alternatives. The most
obvious way to do this is to simply take as the social choice the alternative whom most
people think is the best. This method is known as plurality voting and is widely adopted,
most notably in the United States presidential elections. Despite this fact, it is generally
accepted in the social choice theory community that plurality voting is flawed. The following
profile of voter preferences from a hypothetical election will give just one reason of many as
to why this is so.

Suppose that there are fifteen voters and three alternatives. It may be the case that six
of the voters prefer A to B to C, while five prefer C to B to A and the rest prefer B to C
to A. This information can be conveniently captured in the following table.

6 voters 5 voters 4 voters
A C B
B B C
C A A

If this election were to use plurality voting as the social choice function, then it is clear
that alternative A would be the winner. However, notice that A is the last choice for nine of
the fifteen voters. . . does choosing A accurately reflect the will of the people? Most people
would be inclined to think not and would perhaps even believe that A is the worst possible
social choice. One might be tempted to think that such an anomaly is particular to this case
and a handful of other concocted examples. But this is far from the truth and the flaws of
plurality voting have been witnessed in many situations, most notably in the controversial
US presidential race of 2000.

To avoid this flaw in plurality voting, it seems sensible to take advantage of the full
preference lists of the voters, and voting systems which use this information are known as
preferential voting systems. However, with this extra information at our disposal, there
are far more options for us in determining a winner. Social choice functions abound and
have been constructed by such voting conscious mathematicians as Charles Lutwidge Dodg-
son15 and Edward John Nanson16. The following are three simple examples of social choice
functions.

Borda Count: In order to overcome the deficiencies of plurality voting, Jean-Charles de
Borda introduced in the late eighteenth century a voting system which would take advantage
of each individual’s intensity of preference for each alternative. He proposed assigning a
number of points to each alternative, equal to the distance from the bottom of each voter’s
preference list. Thus, an alternative would receive 0 points for each last place vote, 1 point
for each next-to-last place vote, all the way up to n − 1 points for each first place vote,
where n is the number of alternatives. The winner is, of course, the alternative that has
been awarded the most points. You may be wondering what is so special about the numbers
0, 1, 2, 3, 4, . . . that they should be the number of points assigned to the alternatives. Why

15Charles Lutwidge Dodgson (1832–1898) is better known by his pseudonym Lewis Carroll, under which

he wrote the popular book “Alice’s Adventures in Wonderland”. Less well known is the fact that he was a

mathematician and particularly interested in the mathematics of voting. In 1876, his exploration into voting
led him to design a social choice function, but since then mathematicians have shown that the problem of

calculating a winner by his method is NP-hard.
16Edward John Nanson (1850–1936) was a professor at The University Of Melbourne for 48 years. He

was a strong advocate of preferential voting in the years leading up to the federation of Australia.
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not use a sequence like 1, 2, 3, 5, 8, . . . or 1, 2, 5, 14, 42, . . .? Such social choice functions which
generalize the Borda count are known as positional voting systems.

The Hare System: Also known as single transferable vote, this voting system was
introduced by Thomas Hare in 1861. The utilitarian philosopher John Stuart Mill described
it as “among the greatest improvements yet made in the theory and practice of government”
and it is currently in use to elect officials in Australia, Malta and Ireland. The idea behind
the Hare system is that the winner should be voted in by a majority of the voters. But
this is a rare occurrence when there are many alternatives to choose between, so what can
we do? Simple — just delete some of the alternatives! More precisely, if any alternative is
at the top of a majority of preference lists, then they are declared the winner. If not, then
the alternative which appears at the top of the fewest preference lists is eliminated and the
process is repeated. Of course, it may be the case that there is more than one alternative
tied with the fewest number of votes and in that case, we can delete all of them. The process
terminates when all remaining alternatives are at the top of the same number of preference
lists. These remaining alternatives are the winners.

Dictatorship: This social choice function is one of the simplest to implement! One of
the voters is assumed to be a dictator and the social choice is simply whoever is at the top
of the dictator’s preference list.

The following problem highlights the distinction between these different social choice
functions. In particular, notice that in many elections, the person who wins can be heavily
dependent on the type of voting system in use.

Problem: Consider the following simple profile with seven voters and four alternatives.
Check that A wins using plurality, B wins using the Borda count, C wins using the
Hare system and D wins using a dictatorship by voter 7. Who would you choose as the
winner?

Voter 1 Voter 2 Voter 3 Voter 4 Voter 5 Voter 6 Voter 7
A A A C C B D
B B B B B C C
C D D D A A B
D C C A D D A

4 Condorcet’s Voting Paradox

One of the first surprise results in voting was noticed by the Marquis de Condorcet, a
contemporary of Borda, who considered the possibility of determining a social choice by
using pairwise elections. He proposed that the alternative which would beat all others in
a one-on-one majority vote should be the social choice. This alternative is known in the
literature as the Condorcet winner. This voting system offers a natural generalization to
majority vote which overcomes the flaws of plurality voting by using each individual’s full
list of preferences.

However, such a voting system is not without its flaws, as can be demonstrated by con-
sidering the following voting profile.

23 voters 17 voters 2 voters 10 voters 8 voters
A B B C C
B C A A B
C A C B A



226 Norman Do

Suppose now that candidate C dropped out of the running, leaving A and B in a head-
to-head contest. Then using majority vote, as May’s Theorem suggests we should, shows
us that A would beat B by 33 votes to 27. In other words, a majority of voters prefer A
to B, and we can encapsulate this statement in the convenient notation A � B. Now by
comparing B and C, we find that B � C, winning by 42 votes to 18. It seems clear from
this analysis that society prefers A to B and B to C, thereby making A the logical social
choice.

But wait a minute. . . why did we neglect to compare alternative C with alternative A?
Indeed, it turns out that in a direct comparison, C would have beaten A by 35 votes to 25.
So we have the relations

A � B, B � C, C � A,

and it turns out that for this particular profile that there is no Condorcet winner. Common
sense dictates that if a person prefers an apple to a banana and a banana to a cherry, then
they should prefer an apple to a cherry. However, Condorcet’s voting paradox tells us that
society as a whole does not obey such common sense. If society prefers A to B and B to
C, it may also occur that society prefers C to A. Of course, this argument relies on the
assumption that society prefers one option to another if a majority of voters do. But what
other ways are there in which to decide, given that we only have everyone’s preference listing
to deal with?

Condorcet himself realized the possibility for this type of intransitive behaviour to occur
in the following much simpler example, which is now known as the Condorcet profile.

Voter 1 Voter 2 Voter 3
A B C
B C A
C A B

Even on this small scale, we have the relations A � B, B � C and C � A, which are
reminiscent of the famous children’s game known as rock-paper-scissors.

Condorcet’s Voting Paradox: There are particular profiles in which a social choice
function must choose a particular alternative X as the winner, even though a majority
of people prefer some other alternative Y .

This result from the late eighteenth century gave mathematicians a preview of the para-
doxes that were in store for future social choice theorists. The upshot of it is that even
though voting between a pair of alternatives is easy, pairwise voting falls apart when three
or more alternatives are involved.

Problem: Show that for three voters and three alternatives, the probability that a
Condorcet winner exists is 17

18 .

5 Arrow’s Theorem

Thus far, our exploration of voting has only dealt with social choice functions, voting systems
which turn a profile into a set of tied winners. In this section, we will be interested in more
general voting systems which turn a profile into a ranking of the alternatives. More precisely,
a social welfare function

◦ accepts as input a sequence of individual preference lists of some set, and
◦ produces as output a listing (perhaps with ties) of the set. This list is called the

social preference list.



Mathellaneous 227

Social welfare functions are easy to find, and it turns out that we already have a few
examples of them. For example, the Borda count can easily be converted from picking a
winner to determining a social preference list by ordering the alternatives from highest to
lowest depending on the number of points that they have received. The Hare system can
also be converted into a social welfare function. To determine the set of people tied for
first place is easy — just take the set of winners. To determine the set of people tied for
second place, just delete the alternatives tied for first and repeat the Hare system. Iterating
the procedure yields an ordered social preference list, perhaps with ties, as desired. This
construction is not specific to the Hare system, but actually shows that every social choice
function gives rise to a social welfare function. Of course, the reverse is also true, by obvious
reasons. Note also that, in terms of social welfare functions, a dictatorship assumes that
there is a voter who is a dictator and the social preference list coincides exactly with the
dictator’s preference list.

Now that we have the definition and some examples of a social welfare function, it seems
natural for us to ask the question. . .

Can we find a reasonable social welfare function?

Of course, the answer to this question will depend on what exactly we mean by the
imprecise and subjective term “reasonable”. It is not overly difficult to find properties that
almost everyone will agree are desirable in a social welfare function. One such property is
illustrated in the following dialogue, which takes place in a dimly-lit fancy restaurant.

Waiter: Good evening, madam. Where would you and your family like to sit —
in the smoking section or the non-smoking section?

Madam: I’d prefer non-smoking, but let me ask my family first. . . [turning to family]
Where would you all like to sit?

Father: I’d rather non-smoking.
Son: Yeah, I hate the smoking section.
Daughter: Me too!
Waiter: Well, in that case, let me put you all in the smoking section!

Anyone in their right mind would find the waiter’s decision to be incomprehensibly absurd.
And it is surely reasonable for us to exclude from our consideration all social welfare functions
which are incomprehensibly absurd. We do this by requiring the following property to be
satisfied.

Unanimity: If every voter has the same preference list, then the social pref-
erence list should agree with it.

Another desirable property that we might impose on our social welfare function is illus-
trated in the following dialogue, which takes place in the very same dimly-lit fancy restaurant
only minutes later.

Waiter: Good evening, madam. Can I get you a drink to start off with?
Madam: Yes, please. What kind of juices do you have?
Waiter: We have apple juice and orange juice.
Madam: OK, well I’ll have the orange juice, thanks.
Waiter: Excellent choice, madam! Oh, I just remembered. . . we also have cran-

berry juice available.
Madam: You also have cranberry? Well in that case, I’ll have the apple juice!
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This time, it is the waiter’s turn to be surprised by the lady’s absolute irrationality.
Why on earth would the presence of a third alternative alter which one of the first two is
preferred? Again, it is surely reasonable for us to exclude from our consideration all social
welfare functions which are absolutely irrational. We do this by requiring the following
property to be satisfied.

Independence of Irrelevant Alternatives: The relative positions of X and Y
in the social choice should depend only on the relative positions of X and
Y in the preference list of each voter. In other words, if every voter changes
their preference list but decides to keep the relative positions of X and Y
the same, then the social choice should keep the relative positions of X and
Y the same.

Now we seem to have two desirable properties that any reasonable social welfare function
should possess. Of course, we could go searching for more, but then we might be here all day
without knowing when to stop. Anyway, it might pay to not be so greedy for the moment.
So let us now ask the question. . .

Can we find a social welfare function which satisfies unanimity and indepen-
dence of irrelevant alternatives?

The quick-witted reader might already have noticed that there is an obvious, although
undesirable, candidate for such a social welfare function — namely, a dictatorship. So for
those quick-witted readers, let us rephrase our question just slightly.

Can we find a social welfare function which satisfies unanimity and indepen-
dence of irrelevant alternatives without being a dictatorship?

This question was answered by Kenneth Arrow in 1950 with a surprising and resounding,
“No!”

Arrow’s Theorem (1950): Suppose that we have a social welfare function which
◦ has at least three alternatives;
◦ satisfies unanimity; and
◦ satisfies independence of irrelevant alternatives.

Then the social welfare function is a dictatorship.

From our earlier discussion, we were led to the fact that any reasonable social welfare
function should satisfy unanimity and independence of irrelevant alternatives, and probably
a host of other desirable properties as well. But Arrow’s Theorem tells us that even with
these two obvious conditions, a dictatorship is unavoidable. In 1972, Kenneth Arrow was
awarded the Nobel Prize in Economics for “pioneering contributions to general economic
equilibrium theory and welfare theory”.

Paul Samuelson, himself a Nobel laureate in Economics, put it this way. . .
“The search of the great minds of recorded history for the perfect democ-
racy, it turns out, is the search for a chimera, for logical self-contradiction.
New scholars all over the world — in mathematics, politics, philosophy, and
economics — are trying to salvage what can be salvaged from Arrow’s dev-
astating discovery that is to mathematical politics what Kurt Gödel’s 1931
impossibility-of-proving-consistency theorem is to mathematical logic.”

Problem: Suppose that we have a social welfare function which has at least three
alternatives, satisfies unanimity and satisfies independence of irrelevant alternatives.
Show that the social welfare function will never produce ties in the output (without
using Arrow’s Theorem, of course).
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In light of the this fact, Arrow’s Theorem boils down to the following problem of purely
mathematical content. It is interesting to note that this problem and its solution may never
have been uncovered by mathematicians were it not for democracy. The truly adventurous
reader may like to try their hand at proving it before reading the next section.

Problem: Let f : Sm
n → Sn be a function which takes m-tuples of permutations to

permutations and which satisfies the following two propertiesa.
◦ For all p ∈ Sn, the function satisfies f(p, p, . . . , p) = p.
◦ If (p1, p2, . . . , pm) and (q1, q2, . . . , qm) are m-tuples of permutations and the

integers a and b satisfy

sign[pi(a)− pi(b)] = sign[qi(a)− qi(b)]

for all i, then

sign[P (a)− P (b)] = sign[Q(a)−Q(b)]

where P = f(p1, p2, . . . , pm) and Q = f(q1, q2, . . . , qm).
Then there exists an integer k such that for every m-tuple of permutations
(x1, x2, . . . , xm)

f(x1, x2, . . . , xm) = xk.

aAs usual, Sn denotes the symmetric group on n elements and we will consider an element of Sn to be

a bijection f : {1, 2, . . . , n} → {1, 2, . . . , n}.

6 A proof of Arrow’s Theorem in five bite-sized pieces

We have now come to the meaty part of the exposition, into which much of the mathematical
argument has been condensed. For easier digestion, the proof of Arrow’s Theorem has been
divided into five bite-sized pieces of steadily increasing size.

Bite-sized piece 1: If every voter ranks X over Y , then society ranks X over
Y .

Consider the profile where every voter has the same preference list with X at the top and
Y second from the top. By unanimity, society must also have X at the top and Y second
from the top. But independence of irrelevant alternatives tells us that whether society ranks
X over Y or not depends only on each voter’s relative ranking of X and Y . In particular, if
everyone were to rearrange their list while keeping X over Y , then the social choice should
not change. So we conclude that for any profile where every voter ranks X over Y , society
must also rank X over Y .

Bite-sized piece 2: If every voter ranks A at the top or bottom of their
preference list, then society ranks A at the top or bottom.

Let us assume on the contrary that there is a profile where every voter ranks A at the
top or bottom but society does not. Then there must be three distinct alternatives A, B
and C such that society ranks B at least as high as A and A at least as high as C.

But consider now what happens if every voter moves their ranking of C to be just over
B. Since A occupies an extremal position in every preference list, this does not disturb any
voter’s relative ranking between A and B. Nor does it disturb any voter’s relative ranking
between A and C. So society must continue to rank B at least as high as A and A at least
as high as C. Hence, society must rank B at least as high as C. But as we have shown
above, if everyone ranks C over B, society must also rank C over B. Since society cannot
simultaneously rank B at least as high as C and C over B, we have the desired contradiction.



230 Norman Do

Bite-sized piece 3: There exists a profile at which A is at the bottom of the
social ranking and a voter who can move A to the top of the social ranking by
changing his or her preference list.

Consider a profile where every voter has the same preference list with A placed at the
bottom. By unanimity, society must also place A at the bottom. Now consider what happens
to the social ranking when each voter in turn moves A from the bottom of their ranking to
the top. After this process has finished, A is at the top of every voter’s ranking and hence,
must be at the top of the social ranking as well. So there must have been some voter V (A)
whose change caused A to move from the bottom of the social ranking. Let profile I denote
the profile just prior to V (A) moving A from the bottom to the top and let profile II denote
the profile just after.

1 2 · · · V − 1 V V + 1 · · · N
A A · · · A ? ? · · · ?
? ? · · · ? ? ? · · · ?
? ? · · · ? ? ? · · · ?
? ? · · · ? ? ? · · · ?
? ? · · · ? A A · · · A

Profile I

1 2 · · · V − 1 V V + 1 · · · N
A A · · · A A ? · · · ?
? ? · · · ? ? ? · · · ?
? ? · · · ? ? ? · · · ?
? ? · · · ? ? ? · · · ?
? ? · · · ? ? A · · · A

Profile II

Bite-sized piece 4: The voter V (A) is a dictator over any pair B and C not
including A. In other words, if V (A) ranks B over C, then society ranks B over
C, and if V (A) ranks C over B, then society ranks C over B.

Let us consider profile III which is constructed from profile II in the following way.
◦ Let V (A) move B and C to be just above and below A, so that his or her first three

preferences are B, A and C.
◦ Let all other voters keep A in the same extremal position as in profile II but let

them change the relative order of B and C however they please.

1 2 · · · V − 1 V V + 1 · · · N
A A · · · A B C · · · B
C B · · · C A B · · · C
B C · · · B C ? · · · ?
? ? · · · ? ? ? · · · ?
? ? · · · ? ? ? · · · ?
? ? · · · ? ? A · · · A

Profile III

Note that in profiles I and III every voter has the same relative ranking for A and B.
So it must be the case that they yield the same relative ranking in their output, due to
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independence of irrelevant alternatives. And since the social ranking for profile I places B
over A, the social ranking for profile III must also place B over A.

Also note that in profiles II and III, every voter has the same relative ranking for A and
C. So it must be the case that they yield the same relative ranking in their output, due to
independence of irrelevant alternatives. And since the social ranking for profile II places A
over C, the social ranking for profile III must also place A over C.

So the social ranking for profile III places B over A and A over C, and hence, B over C.
But remember that we let all voters other than V (A) arrange their relative ranking of B
and C arbitrarily. But by independence of irrelevant alternatives, it follows that whenever
V (A) places B over C, society must as well. And by a totally analogous argument, if V (A)
places C over B, society must as well. So V (A) is a dictator over any pair B and C not
including A.

Bite-sized piece 5: The voter V (A) is a dictator over any pair A and B. In
other words, if V (A) ranks A over B, then society ranks A over B, and if V (A)
ranks B over A, then society ranks B over A.
Now one thing you might be wondering is what is so special about alternative A. Indeed,
it is contemptible to play favourites with letters, so it may serve us well to consider what
might have happened had we begun our construction with alternative B instead. Supposing
we had done this, we would have found out that there exists some voter V (B) who is a
dictator over every pair which does not involve B. In particular, V (B) is a dictator over
the pair A and C which means that society’s relative ranking of A and C must always agree
with V (B)’s relative ranking of A and C.

But in profiles I and II we noted that V (A) had the power to alter the relative rankings
of A and C, while everyone else kept their preference lists the same. So it must be the case
that V (A) and V (B) are one and the same person! Of course, there is nothing from stopping
us running through the whole process with alternative C and consequently, we would have
found out not only that V (C) is a dictator over every pair which does not involve C, but also
that V (A), V (B) and V (C) are all one and the same person. It turns out that this particular
one person is a dictator over every pair of alternatives and hence, the social welfare function
in question must be a dictatorship.

7 Strategy-Proofness and the Gibbard-Satterthwaite Theorem

Consider an election where there are four voters wishing to choose a winner from a set of
four alternatives. Suppose that their preferences for the alternatives are as shown in the
profile below and that the social choice function to be used is the Borda count.

Voter 1 Voter 2 Voter 3 Voter 4
A C C B
B D B C
C B A D
D A D A

A quick tally of the votes reveals that C wins the election with a count of nine, closely
followed by B with eight, then A with four and finally D with a measly three points. If you
were voter 1, you probably couldn’t help but feel chagrined by such an election outcome.
So suppose now that you were crafty and devilish and instead of submitting your true
preferences ABCD, you instead submitted the insincere preference list BADC. Then the
resulting profile would have looked a little more like this.
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Voter 1 Voter 2 Voter 3 Voter 4
B C C B
A D B C
D B A D
C A D A

And running through the Borda count for this profile shows that B would have won with
nine points, followed closely by C with eight points, then D with four and finally A with
a measly three points. This quick calculation highlights an important flaw of the Borda
count: that a crafty and devilish voter can sometimes obtain a better outcome by voting
insincerely!

A social choice function is said to be strategy-proof if there is no profile in which one of the
voters can vote insincerely in order to obtain a better outcome. Unfortunately, this definition
is somewhat incomplete, since it is difficult to define what exactly a better outcome for a
voter is. Suppose, for example, that your true preference list is ABCD and that voting
sincerely produces A and D as tied winners, while voting insincerely might produce B and
C as tied winners. Which of these two choices is a better outcome for you? If, for example,
ties were to be broken by the flip of a coin, it might depend on whether you are a pessimist
or an optimist. But instead of worrying about whether the glass is half-empty or half-full,
let us just sweep the problem under the rug and focus exclusively on social choice functions
in which there are no ties. In such cases, it is obvious which one of two outcomes is better
for a particular voter.

Now there are several reasons why it is desirable to have a social choice function which
is strategy-proof, such as the following.

(1) Insincere voting introduces an element of randomness into collective decisions.
(2) Unequal strategic skills amongst voters means that they will not be treated equally.
(3) Voters will waste resources in making strategic calculations.
(4) Voters are encouraged to conceal their preferences, reducing a flow of information

that might aid in collective decision making.

So the obvious question to ask now is. . .

Can we find a social choice function which has no ties and is strategy-proof?

An example of a strategy-proof social choice function is the constant one in which one
particular alternative is always declared the winner, no matter how people vote. Of course,
this is terribly unfair to the other candidates, so to avoid this pathological example, we
might look for social choice functions which allow all alternatives to win. So the question
we are trying to answer is now the following. . .

Can we find a social choice function which has no ties, is strategy-proof and
allows all alternatives to win?

A little bit of thought might suggest that a dictatorship satisfies all of these conditions,
so let us refine our question just one more time. . .

Can we find a social choice function which has no ties, is strategy-proof,
allows all alternatives to win, but is not a dictatorship?

This question was answered independently by Allan Gibbard and Mark Satterthwaite
with a surprising and resounding, “No!” Thus did mathematics deal another devastating
blow to democracy.
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Gibbard-Satterthwaite Theorem (1973): Suppose that we have a social choice
function which

◦ has at least three alternatives;
◦ does not allow ties;
◦ allows all alternatives to win; and
◦ is strategy-proof.

Then the social choice function is a dictatorship.

8 The Future of Voting and Social Choice Theory

The mathematics of voting has been inspired by a trilogy of theorems that we have presented
here — Condorcet’s Voting Paradox, Arrow’s Theorem and the Gibbard-Satterthwaite The-
orem. It is surprising, though somewhat disheartening, that social choice theory seems to
be based on a bunch of negative results. Does the mathematics suggest that we should give
up on democracy? Should we appoint a dictator? Should we give up on society altogether,
become hermits and eke out the rest of our lives as turnip farmers? Unless you happen to
have a particular penchant for dictators or turnips, then such drastic measures are probably
not required. Instead, these results should be taken as a warning that voting is not as simple
as it seems and as a mathematical challenge to design and analyze more democratic voting
procedures. They also highlight the power of mathematics to uncover beautiful structures
and surprising paradoxes in areas where intuition tells us there should be none.
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Brain drain

There is growing concern about Australia’s brain drain. In this last issue of the series of
personal essays by mathematicians who went overseas, Federation Fellow Richard Brent
talks about returning to Australia and reversing the brain drain.

A more positive note

Richard P. Brent

The first three essays in this series were by
Australians who contributed to the ‘brain
drain’ by moving overseas and who, for rea-
sons explained in their essays, are unlikely
to return soon, if at all. Here I will strike a
more positive note by explaining why, after
six years in Oxford, I am planning to re-
turn to Australia. Thus, although I may be
counted in the statistics for the brain drains
from both Australia and the UK, the net
drain (or gain) will be zero. What follows is
my personal story, and does not necessarily
have any relevance to others.

To start at the beginning, my childhood
was spent in a small country town in Gipp-
sland. When I was eight my family moved
to Melbourne. After completing secondary
school there I enrolled for a BSc degree at
Monash University. In those days (1964–
1967) Monash was a small and new univer-
sity, with many young and enthusiastic aca-
demic staff, some of whom had contributed
to Australia’s ‘brain gain’ by migrating from
UK/Europe a few years earlier. I consid-
ered Melbourne University, but it seemed to
have too much of a 19th century feel. That

might not bother me now, since I am writ-
ing in Oxford, where the 19th century seems
only yesterday. However, Monash appealed
to me and turned out to be a good choice at
the time. That was well before the period of
cutbacks described in the first essay in this
series.

At Monash I discovered that I had more
interest in mathematics than physics or
chemistry. Computer science was not an
option then – the first professor (Chris Wal-
lace) did not arrive until 1968. My inter-
est in astronomy led to a vacation scholar-
ship at Mt Stromlo Observatory, where I
first learned something about computing on
an IBM 1620 (an interesting machine, but
that is another story). My computing skills
proved useful when I returned to Monash,
since I was able to perform some rudimen-
tary computational group theory for Prof
Janko’s PhD students on a Ferranti Sirius
computer. The results had to be written
out by hand before Janko saw them, since
he did not trust computers!

After graduating from Monash I decided
to continue my studies overseas. I do not
regret that decision, as my career would
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otherwise have been quite different and
probably much less interesting. Thanks
to the excellent teaching at Monash, I did
well enough on the GRE that Stanford of-
fered me a place in their Computer Sci-
ence PhD program. I had applied to Com-
puter Science rather than Mathematics be-
cause at that time computer science was a
new and exciting field, and one in which
I could use my mathematical ability. In
fact, the Computer Science Department at
Stanford was founded by a mathematician
(George Forsythe) and computer science
students were able to take several mathe-
matics courses in their first year.

At that time CSIRO offered ‘overseas
studentships’ that would pay Australian
students to study overseas. Unfortunately,
such studentships no longer exist, so it
is more difficult for students nowadays.
Thanks to CSIRO I was able to study full-
time at Stanford and did not have to earn
my living as a teaching assistant. Some of
the Stanford professors who I particularly
remember were Gene Golub and George
Forsythe (my thesis advisors), George Pólya
(then in his eighties, but ably assisted by
Bob Tarjan who was in his twenties), Bob
Floyd (whose take-home exam question in-
spired one of my first papers), and visi-
tors such as Peter Henrici and Jim Wilkin-
son. Don Knuth arrived in Stanford in the
same year (1968) that I did. Fortunately
I became friendly with his secretary, Phyl-
lis Winkler, who typed my thesis when she
was not typing Don’s books and papers.
This was in the days before TEX, and a
good mathematical typist was a precious
commodity. (Following Wilkinson’s excel-
lent advice, my wife never admitted that she
could type.)

I completed my PhD at Stanford rather
too quickly – looking back, it might have
been better to take advantage of the oppor-
tunities there for a few quarters longer. The
reason for hurrying was that I had an of-
fer of a lectureship in Computer Science at
Monash. However, IBM’s recruitment team

was very persuasive, and paid for my wife
and me to visit the IBM Research Center
in Yorktown Heights, New York, to meet
people there and see the beautiful location.
Thus, at the last minute I decided to turn
down the Monash offer and to take a post-
doctoral position (officially ‘practical train-
ing’ since it was done on a student visa)
in the Mathematical Sciences Department
at IBM Research. It was a good decision,
for it enabled me to get some industrial ex-
perience, to meet some of the ‘East Coast’
mathematics and computer science commu-
nity (Goldstine, Rabin, Winograd, . . .), and
to revise my thesis and publish it as a book.

In 1972, after 18 months at Yorktown
Heights, I decided that it was time to return
to Australia. Bob Anderssen and Mike Os-
borne persuaded me to take up a Research
Fellowship in the Computer Centre at the
Australian National University. In those
days the ANU made it easy for new staff
from overseas by offering adequate removal
expenses and excellent temporary housing.

My intention was to stay at ANU for
three years, but as it turned out I stayed
for 26 years. In that period my position
(and office) changed many times. In 1978,
when the Computer Centre was abolished
in an administrative shuffle, I moved to the
small Computer Science Department in the
Faculties (then SGS, the part of ANU that
did undergraduate teaching) to become the
Foundation Professor of Computer Science.

In 1983–1985 I was on secondment to Neil
Trudinger’s ‘Centre of Excellence’, the Cen-
tre for Mathematical Analysis. That was
great while it lasted, but eventually the
money ran out. The government at the
time apparently thought that such a Cen-
tre could become self-supporting; sadly that
was not the case. Not wanting to revert
to the role of Head of an undergraduate
teaching department, and seeing the writ-
ing on the wall, I moved to the IAS (the
other part of ANU) as its first Professor of
Computer Sciences. This was initially in the
Department of Engineering Physics under
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Prof Kaneff (a pioneer of solar energy who
was ahead of his time), and then in a sepa-
rate Department, called the Computer Sci-
ences Laboratory to distinguish it from the
undergraduate teaching Computer Science
Department.

I was never a member of the IAS
Mathematics Department, but I came
close. Kurt Mahler encouraged me to
write some multiple-precision software in
order to compute interesting transcen-
dental numbers such as exp(π

√
163) ≈

262537412640768743.99999999999925. For
a while I occupied the office that had previ-
ously belonged to Bernhard Neumann and
then John Coates, before John contributed
to the brain drain by moving overseas and
the IAS Mathematics Department moved to
the other side of campus. My period under
the influence of the ghosts of former occu-
pants lasted only a few years: after another
reorganisation I also moved to the other
side of the campus, to the new Research
School of Information Science and Engineer-
ing. This might have caused an identity cri-
sis – was I a mathematician, computer sci-
entist, or engineer? However, such distinc-
tions did not bother me. It can be useful to
have different hats for different occasions.

The first time that I contemplated join-
ing the brain drain was in the late eighties,
when John Dawkins, the Minister for Ed-
ucation at the time, was embarking on his
‘reforms’ of the Australian higher education
system. Funding became tight and universi-
ties started to be run more by accountants
and politicians than by academics. How-
ever, for personal reasons (two children at
school, elderly relatives, etc.) it was diffi-
cult to move. It was only in 1997, after the
children had left home, that an unexpected
phone call inviting me to apply for a chair
in Oxford made me realise that the time for
a move was ripe.

Early in 1998 I took up the chair of Com-
puting Science at the University of Oxford.
Even though the move was unexpectedly
difficult and it took some time for my wife

and me to settle into our new life in Oxford,
we now enjoy living in the UK, and espe-
cially enjoy the opportunity to explore Eu-
rope. Some pleasant things that I noticed
when I arrived in Oxford were the better
ratio of support staff to academic staff, and
the lack of pressure to perform ‘stunts’ to
get publicity and obtain funding.

Academically, Oxford is a stimulating
place. The undergraduate students are ex-
cellent. There are distinguished colleagues
in the department, both in the Program-
ming Research Group, where my chair is of-
ficially located, and in the Numerical Anal-
ysis group (sometimes I wear an NA hat,
since my thesis and some early publications
were in that area). There are often inter-
esting visitors passing through and giving
seminars. The Computing Laboratory (Ox-
ford’s name for its Computer Science De-
partment) is close to Physics, where there is
a strong group working in quantum comput-
ing (a subject that I am interested in, if only
because I do not believe in the ‘hype’ as-
sociated with it), and to the Mathematical
Institute, where I have interests in common
with number theorists such as Roger Heath-
Brown and Bryan Birch. Thus, why would
I want to leave Oxford? There are of course
a few practical problems related to living in
Oxford, such as high house prices (compa-
rable to Sydney; but fortunately we were
able to buy a house when we first arrived),
and the climate (but it is not really that
bad – a hot Canberra summer can be much
worse than a wet Oxford winter). The com-
plicated and devolved University and Col-
lege system at Oxford makes it very diffi-
cult to change anything, so the undergrad-
uate courses are often out of date, and the
examination system is arcane, but perhaps
these minor flaws add to Oxford’s charm.

The UK, while not the same as Australia,
has many ties to Australia, and living in
the UK I feel much more ‘at home’ than
I would in the USA. On the other hand,
North American universities are, in my ex-
perience, more welcoming to newcomers. In
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the UK, and especially at Oxbridge, class
distinctions still persist, and foreigners find
it difficult to make friends amongst the na-
tives. Thus, I understand why the first three
authors of essays in this series decided to
move to the USA rather than the UK, al-
though I made a different choice, and I am
not tempted to try the USA at present.

The University of Oxford is theoreti-
cally independent of government control,
but in practice it is dependent on gov-
ernment funding, just like all major Aus-
tralian universities. Thus, Oxford has to
put up with various bureaucratic inconve-
niences imposed from above. A particu-
larly irksome one is the Research Assess-
ment Exercise (RAE), which rates the re-
search done in departments and indirectly
determines their level of funding. This is
widely seen as divisive, biased against in-
terdisciplinary or novel research, discourag-
ing scholarship and teaching as they com-
pete for time with research, and encourag-
ing department heads to worry more about
the ever-changing rules of the RAE than
about encouraging genuine research. Cer-
tainly the RAE is time-consuming, expen-
sive, and has capricious outcomes. Unfortu-
nately, Australia has the habit of adopting
fashions from overseas even as they are be-
ing recognised as failures where they orig-
inated. Thus, there are moves to intro-
duce something like the RAE in Australia.
I hope that this does not happen, because
at present the lack of an RAE is one of Aus-
tralia’s advantages over the UK.

Although living happily in the UK, I feel
some bond with the country of my birth,
and would like to contribute to it by, for ex-
ample, training some of the younger gener-
ation of Australian computer scientists and
mathematicians. Also, of course, as one
grows older it is best to live close to one’s
children. Thus, whenever someone sug-
gested applying for a Federation Fellowship,
as happened several times after I moved to
Oxford, I would reply “yes, it’s a good idea,
but not just yet, as I would like to stay a

few more years in Oxford”. However, by
2003, I realised that it was ‘now or never’.
I would soon be too old and would either
have to stay in Oxford until retiring age, or
return to a less attractive position in Aus-
tralia. Thus, I applied for a Federation Fel-
lowship, and was lucky enough to be offered
one. Once the formalities are completed (at
the time of writing the formal contract re-
mains to be signed), I expect to return to
Australia for at least five years.

The Federation Fellowship will give me
the opportunity to make a contribution to
Australia by training graduate students and
building up a research group that will, hope-
fully, continue to flourish after I retire. Of
course, I also hope to do some research, in-
sofar as someone of my age is capable of it.
Failing that, I shall follow Hardy’s advice
and write some books. Returning to Aus-
tralia for a Federation Fellowship is a much
more attractive proposition than returning
to a position as a Head of Department or
other administrative position.

What can we conclude from this personal
history? In my case, the Federation Fel-
lowship scheme will (most likely) succeed in
its aim of bringing Australians back home.
However, for a younger person, such as the
author of the previous essay in this series,
applying for a Federation Fellowship might
not be so attractive. There is the question
of what happens at the end of the five-year
Fellowship. It is not yet clear what ex-
Federation Fellows will do – we may hope
that the majority of them will stay in Aus-
tralia, but quite likely many of them will
start contributing to the brain drain. An-
other concern is that so few Federation Fel-
lowships have been awarded to mathemati-
cians, statisticians, or computer scientists.
I do not know the reasons for this. How-
ever, I hope that my success will encourage
others to apply in the future.

One problem with the Federation Fellow-
ship scheme is that, by the time someone is
well enough known and has a good enough
track record to be offered such an attractive
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Fellowship, he (or, in rare cases, she) will be
old enough to have established strong ties
to his/her present location, e.g. a spouse
who can not easily change jobs, children
at high school, etc. To bring back early-
and mid-career academics it is necessary to
improve overall working conditions in Aus-
tralian Universities, and to improve morale
in academic departments. This is not the
place, and I am not the best person, to say
how to achieve such aims, but a good start
might be to take a hard look at the ‘reforms’
of the past two decades and decide which of
them were ultimately harmful and should
be reversed, if possible.

To conclude, I will continue to advise
good Australian students and postdocs to
go overseas for a few years, but remind them

not to stay there too long, lest they find
it impossible to return and regret that in
their old age. Those in positions of influence
in the Australian higher education system
should aim to make it as attractive as pos-
sible for academics to return to Australia.
This means help with relocation, housing,
child care, the ‘two body problem’, travel
funds, and generally improving conditions
and morale in our universities. The aim
should be to make our intellectual ‘trade
balance’ positive in the long run. Inevitably
some talented Australians will settle over-
seas and never return, but at least an equal
number of talented immigrants should be
attracted to take their place. Otherwise,
Australia’s intellectual capital will decline,
and we will all be the poorer for it.

Oxford University Computing Laboratory, 358 Wolfson Building, Parks Road, Oxford OX1 3QD, UK
E-mail : Richard.Brent@comlab.ox.ac.uk

mailto:Richard.Brent@comlab.ox.ac.uk
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Beyond disciplines? – A non-mathematician’s apology
Ian Enting

The pronoun ‘we’ has caused me problems
for at least a decade. Right now I am get-
ting used to the fact that, for the first time
in 23 years, ‘we’ no longer means CSIRO. At
present I am working in MASCOS [1] with a
brief that includes doing the sort of linking
to end-users that Tony Dooley [2] regards as
essential for the survival of the discipline of
mathematics (research?). This article aims
to expand on Tony’s “if you want to live
you will do this”, drawing on my own ex-
perience in CSIRO and from watching the
physics community grapple with similar is-
sues.

In professional terms, I am not sure who
should constitute ‘we’. My preferred self-
description is ‘mathematical scientist’ [3] as
being more comprehensible (and more com-
prehensive) than ‘biogeochemical modeller’,
not to mention ‘ex-physicist’. Some details
of my various roles are scattered through
the endnotes.

One comment is that engagement is hard
[4] – Tony Dooley commented on the ‘mas-
sive investment of time needed to under-
stand the insights and methods’ [of each
other]. It is essential to avoid what Mau-
rice Kendall identified as:
Hiawatha, who at college
majored in applied statistics
consequently felt entitled
to instruct his fellow man on
any subject whatsoever [5].

The best model that I have seen for
real engagement was the CSIRO Division of
Mathematics and Statistics under Joe Gani,
with mathematicians seconded part-time
into CSIRO divisions which were oriented
to disciplines and/or application areas. The
aim (presumably) was to be ‘time-effective’
in that the mathematicians/statisticians
would gain some familiarity with a field so
that each new problem did not involve a
major new learning experience [6]. DMS in

this form was a casualty of the 1987 McKin-
sey review of CSIRO. For much of my sub-
sequent CSIRO career, the CSIRO math-
ematics that I might wish to engage with
were split into two groups. I was forbidden
to talk to group A; group B were forbid-
den to talk to me [7] – in each case the is-
sue was intra-CSIRO budget allocation [8].
This is, of course, the CSIRO equivalent of
the territorial take-overs in universities that
have mathematics service courses increas-
ingly taught by ‘user’ departments, not by
mathematics departments [9]. In some ar-
eas – e.g. theoretical physics and dynamical
meteorology, autonomous departments ex-
ist whose mathematical research is at suffi-
ciently high level that researchers move be-
tween such departments and mathematics
departments. This is, I believe, a ‘good
thing’ [10] in its way, but it pre-supposes
a large critical mass of research, and so has
limited applicability as a model for engage-
ment across the whole spectrum of areas of
application of mathematics.

If I select four points on the mathemat-
ical research continuum, described by Tony
Dooley as “the mysterious process between
theory and applications”, I can talk about
four roles: (1) proving theorems (2) devis-
ing ways of calculating things (3) calculat-
ing things about the real world (4) ‘mar-
keting’ the results of such calculations [11].
The ‘research’ component of role (4) is go-
ing to be mainly researching the real and
perceived needs of the end-users [12].

My own career has spanned (2) to (4)
[13]. I hang around with people who prove
theorems [14] – in fact I hang around such
people enough to have acquired an Erdös
number of 2, but my only two papers pub-
lished in mathematics journals were in 1979
and 1992 [15], hence my reluctance to de-
scribe myself as a mathematician. This
raises the question of whether – putting
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aside such special circumstances as MAS-
COS [16] – could/would/should your math-
ematics department employ me? [17].
Probably not, for a bunch of very good
reasons, starting with the small number of
courses that I would be equipped to teach,
but this ‘gap’ illustrates one of the barriers
to engagement.

Most of my working career has involved
studying the carbon cycle. Apart from its
considerable importance, the fun aspect of
carbon cycle studies is that it is an ex-
cuse for getting involved in almost every
field of science (with a need to forge cross-
disciplinary partnerships, avoiding the Hi-
awatha syndrome). Mathematics is just one
of the areas where I need to learn new things
from time to time, and, to use Tony Doo-
ley’s example, often getting what I need
from a 30-year-old textbook is easier than
the phone (or e-mail or the internet).

Is this a bad thing? The nature of math-
ematics means that mathematics that was
valid 30 years ago is valid today, computer
algorithms being an important exception.
Do mathematicians want their role to be as
support for people who are too lazy to walk
to the library?

An important professional support for
cross-disciplinary carbon cycle study comes
through being a member of the American
Geophysical Union (AGU). The AGU in-
cludes sections on Atmospheric Sciences,
Biogeosciences, Geodesy, Geomagnetism &
Paleomagnetism, Hydrology, Ocean Sci-
ences, Planetary Sciences, Seismology [18],
Space Physics, Tectonophysics, and finally,
Vulcanology, Geochemistry & Petrology.
However, the AGU itself, along with the
The American Physics Society, The Op-
tical Society of America, The Acoustical
Society of America, American Association
of Physics Teachers, America Crystallo-
graphic Society, American Astronomical So-
ciety, American Association of Physicists in
Medicine and AVS comes under the um-
brella of the American Institute of Physics.

What I lack is correspondingly comprehen-
sive links across the mathematical sciences
community.

Philip Broadbridge’s ‘brain drain’ article
[19] notes officers of Australian professional
associations who: ‘recommend old mates
for medals [20]’ and ‘denigrate any activ-
ity of mathematical science that is more
than two journal pages way from their own
beloved paradigms’. This is a rather harsh
description, but in comparison to the Amer-
ican situation, Australian professional so-
cieties really do seem excessively parochial
and fragmented [21]. In contrast, a more
plausible analysis of how one might oper-
ate effectively in a relatively small (and
geographically-isolated) nation would sug-
gest a need for less rather than more frag-
mentation.

Part of this fragmentation reflects a sit-
uation where professional scientific societies
reflect the divisions enshrined in university
departments and, are of less direct relevance
to those whose science cuts across tradi-
tional discipline boundaries [22]. This is, of
course, a self-sustaining condition. In this
regard, a recent article in Physics Today [23]
(of which more later) sees engagement with
all their graduates as being essential for the
long-term health of the (US) physics disci-
pline.

Using Douglas Adams’ “SEP” recipe for
invisibility, much of this is ‘Somebody Else’s
Problem’ [24]. A better-linked arrangement
of associations of natural scientists in Aus-
tralia (a) won’t happen any time soon; (b)
won’t do much for the corresponding prob-
lems for mathematics.

There is, however, one very impor-
tant ‘fragmentation’ issue for mathemat-
ics: Probably the most commonly-applied
field of mathematics is statistics [25]. (It is
also, almost certainly, the most commonly
mis-applied, but that is another story). In
their names, both MASCOS and my de-
partment at The University of Melbourne
(and formerly CSIRO) treat ‘Mathematics’
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and ‘Statistics’ as two, presumably differ-
ent, things [26]. From my own work [27],
and a wide range of studies that I encoun-
tered through the CSIRO complex systems
science initiative, I can report that, for
much of the real world, this nice division be-
tween (applied) mathematics vs. statistics is
not particularly helpful.

Returning to the Rigden and Stith
Physics Today article [23], the vast major-
ity of their words about physics could apply
as well, or better, to mathematics. Some of
the issues to which they attribute a decline
in student numbers is:
• the invisibility of physicists [read math-

ematicians] in the workplace, since
their high-level problem-solving skills
take them into jobs [e.g. biogeochemi-
cal modeller] with non-physicist titles.

• the academic attitude that the only
real physicists [again read mathemati-
cians] are those who leave the depart-
ment with a Ph.D.

Rather than inadequately summarise
their proposed solutions, my main take-
home message is to read the article if your
care about these issues.

Two provocative recommendations:
• Australia needs an ANZIAM++, i.e. a

group that covers the full range of appli-
cable mathematics, not just what cur-
rently goes under the name of applied
mathematics.

• Membership of ANZIAM++ should be
available as a low-cost add-on for mem-
bers of any other appropriate profes-
sional society in Australia (and New
Zealand?), not just the Australian
Mathematical Society.
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Endnotes

(1) MASCOS is the ARC Centre of Excellence for Mathematics and Statistics of Com-
plex Systems, http://www.complex.org.au.

(2) Tony Dooley, Math matters, AustMS Gazette 31 (2004), 76.
(3) In Physics Today 57(5) (2004), p. 10, http://www.aip.org/pt/vol-57/iss-5/

p10.html, David Mermin describes the difference between mathematical physics and
theoretical physics as: Theoretical physics is done by physicists who lack the neces-
sary skills to do real experiments; mathematical physics is done by mathematicians
who lack the necessary skills to do real mathematics. All I can do is plead guilty on
both counts.

(4) Remember that this has to happen along with what Philip Broadbridge [19] identi-
fies as the roles of researchers in the present climate: entrepreneur, administrator,
PR expert, project manager, performer, stenographer and innovative teacher. He
appears to have left out editor, graphic artist and IT manager. Of course in the
mathematical sciences we have it easy – our list doesn’t normally include the OHS
responsibility for laboratories and/or field work – in the normal course of our work,
no-one risks death if we foul up.

(5) This is really a minor aside in Kendall’s parody of Longfellow’s poem which seems
to be about bias vs. efficiency. It is more relevant to issues of ‘engagement’ if one
interprets it more generally as being about elegance vs. practical applicability. The
parody, Hiawatha designs an experiment, can be found at a number of locations
including http://www.ed.uiuc.edu/csg/documents/hiawatha.html.

(6) The direct consequence for me was M.L. Thompson, I.G. Enting, G.I. Pearman
and P. Hyson, Interannual variation of atmospheric CO2 concentration, J. Atmos.

http://www.complex.org.au
http://www.aip.org/pt/vol-57/iss-5/p10.html
http://www.aip.org/pt/vol-57/iss-5/p10.html
http://www.ed.uiuc.edu/csg/documents/hiawatha.html
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Chem. 4 (1985), 125–155. The indirect consequences shaped much of my subsequent
career in atmospheric science [27].

(7) Group A was the re-directed DMS who were to interact with the ‘wealth-producing’
half of CSIRO and could only interact with the other CSIRO divisions if they paid
money. Group B were the Biometrics Units who were created to interact with the
rest of CSIRO, apart from those divisions (including my own) whose chiefs refused
to relinquish a position to create the units. Fortunately, CSIRO people like Bob
Anderssen often had joint university roles and we were allowed to talk while they
were wearing their non-CSIRO hats.

(8) I will have to leave it to others, and the passage of time, to assess whether the current
‘One-CSIRO’ slogan reflects a real improvement. Although I am probably biased
on this matter, the CSIRO complex systems initiative (http://www.dar.csiro.au/
css) shows great promise if it can survive amidst the prevailing micro-accountability.

(9) It has also been put to me, from the ‘client side’, that another reason for this loss
of service teaching was that mathematics departments assigned such courses to the
newest, most junior, least experienced faculty, or even to less qualified sessional
teaching assistants. For mathematics, I have only hearsay – for physics, I’ve been
there, done that.

(10) My view is that what matters most is the survival of mathematical research, not
the survival of the name ‘Department of Mathematics’.

(11) The people who devise techniques for calculations will, of course, draw on theorems
to prove that their techniques will work. The other links along the spectrum are
even more obvious.

(12) One of my most direct end-use involvements was the study for the inelegantly-named
Subsidiary Body for Scientific and Technical Advice (SBSTA) for the Framework
Convention on Climate Change (FCCC). This involved looking at a proposal, put
forward by Brazil in the negotiations leading to the Kyoto Protocol, that emis-
sion reduction targets should be set on the basis of nations’ relative blame for the
greenhouse effect (see http://ms.unimelb.edu.au/~enting/brazil.html). How-
ever the suspicion remains that referring the issue to a scientific panel was the
diplomats’ alternative to doing something undiplomatic like telling the Brazilians to
piss off. It was also presumably cost effective – scientists are much more likely than
diplomats to be expected to fly economy class.

(13) One indication of serious engagement with the real world is when people try to
suppress your work. For me that happened when representatives of US/Middle East
oil interests tried to prevent the IPCC Radiative Forcing Report from referencing the
CSIRO Atmospheric Research Technical Paper 31 on carbon cycle modelling results
(republished at http://www.dar.csiro.au/publications/enting_2001a0.htm).

(14) My engagement was facilitated by having some powerful computational techniques
that were of considerable interest to the Statistical Mechanics group at Melbourne
– for a review see I. Enting Series expansions from the finite lattice method Nucl.
Phys. B (proc. suppl.) 47 (1996), 180–197. This was a special circumstance which
limits the applicability of my own experience as a role model for engagement. From
my side, the motivations for engagement were (a) it’s fun (b) the CSIRO constraints
noted above [7]. CSIRO tolerated this statistical physics activity for many years,
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Mathematics and bodysurfing

Neville de Mestre

Abstract

Bodysurfing is an art that many people can enjoy, particularly in Australia where
the ocean is relatively warm and waves break regularly near a sandy shoreline.
In its purest form a bodysurfer catches a wave some distance from the water’s
edge by swimming onto it, just as it is about to break. The bodysurfer is then
propelled by the broken surf front (breaker) towards the shoreline. Rides of 50 to
100 metres are normal for experienced bodysurfers.

This paper will discuss bodysurfing in general and consider simple mathemat-
ical models for catching a wave, riding a wave and falling off the wave at the end
of the ride.

1 Introduction

No one knows who the first bodysurfers were!
Captain Cook noticed South Sea Islanders frolicking
in the surf on one of his trips to the Sandwich Islands,
now the Hawaiian Islands [3]. Australian aborigines
were observed to enjoy the surf near Caves Beach,
Newcastle in the 19th century. Tommy Tanna from
the Marshall Islands was working in Manly, Syd-
ney in 1889 and began introducing white Australians
to the skills of bodysurfing. But such activity was
against the law, which at that time said that it was
illegal to bathe in waters exposed to views from any
wharf, street, public place or dwelling house between
the hours of 6a.m. and 7p.m.

Enter William Gocher, a Manly newspaper edi-
tor, in 1902. He announced that he would swim in
the ocean at noon on various Sundays. Although ar-
rested, he was told that no charges would be laid as
long as he wore neck-to-knee bathers. The law was
rescinded in November 1903, and surfing became a
popular pastime [4].

Neville de Mestre

Undoubtedly the best early bodysurfers were the Hawaiians in the 18th and 19th centuries.
The Australians began at the start of the 20th century followed by the Californians, New
Zealanders and South Africans around 1920. My interest in the subject arose because I
was taught to bodysurf by my father in 1946, and then became a research mathematician
specialising in fluid dynamics. As many readers know, I still compete at the Masters’ level
in the Australian Surf Life Saving Championships each year, and hence I find a scientific
understanding of the skills involved in bodysurfing still helpful and intriguing.
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2 Waves on the ocean

Waves breaking near the shore are generated by storms and wind at sea. The waves thus
generated eventually move out from the storm area and travel as “ground swell” towards a
distant shoreline. The average characteristics of a wave within this ground swell depend on
the action time of the storm, the fetch (or distance from the storm centre) and the intensity
of the storm or wind. In deep water the water motion set up by these waves as they pass
can be modelled by the equations of inviscid, irrotational fluid dynamics.

The governing equation is Laplace’s equation

∇2φ = 0

which for a 2-dimensional wave travelling at speed U on the surface can be solved by sepa-
ration of the variables to yield

φ = (U/k)eky sin{k(Ut− x)}.

The X(= x− Ut) axis and the y axis (vertically upwards) travel with the wave, while k
is the wave number. Therefore, the water particle velocity components at any point on the
surface or beneath the wave are

Ẋ = Ueky cos{k(Ut− x)}

ẏ = Ueky sin{k(Ut− x)}.
Clearly Ẋ and ẏ decrease rapidly as points deeper and deeper are considered. Thus

submarines can dive beneath a disturbed ocean surface to avoid the pitching, rolling and
yawing motions caused by surface waves.

When the wind blows on the surface of the ocean at more than 20 knots (approximately
17 ms−1), “white caps” appear. These are generated by the wind altering the symmetrical
ground swell into an asymmetrical wave with a steepened slope on the front section of the
wave form. Eventually the slope reaches a critical value and the wave breaks. But these surf
fronts soon diminish, and the wave reforms as a swell and travels on with reduced energy.
It is difficult for a bodysurfer to ride these “white caps”, because he or she would have to
position themselves way out in the ocean exactly where the “white caps” break and they
would also have to accelerate to wave speed. On the other hand, ships or craft have been
known to surf the bigger white caps in deep ocean.

3 Waves near the shore

Besides the wind, there is another effect which causes waves to steepen on the front side
and eventually break. This is the diminishing depth beneath the wave as the shoreline is
approached. The equations governing the motion are still the Navier-Stokes equations for
an incompressible, inviscid and irrotational fluid but the boundary condition on the bottom
fluid/solid interface must now be included. Essentially, ∂φ/∂n = 0 on the bottom and the
rate at which the bottom profile changes determines the type of breaking wave that occurs.

The analysis of a breaking wave has been carried out by many researchers. An excellent
summary is given by Peregrine [8]. When the depth of the water beneath the wave reaches
less than half the wavelength, the wave starts to change with its height increasing, its wave
speed and wavelength decreasing, and its period remaining the same. Also, the wave crest
at the surface gradually assumes a higher speed than the wave trough in front of it. The
front or forward slope between this crest and trough becomes increasingly steeper, the crest
eventually becomes unstable, and it spills over forming a breaker. Because this occurs near
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the shoreline, and within a regularly defined region, humans can take advantage of this
physical phenomenon and ride the broken surf front (the breaker) to the shore.

The mathematical analysis for the formation of the breaker has only been obtained
through an approximation to the Navier-Stokes equations, known as the Boussinesq shallow-
water approximation [10, Section 13.11]. The relevant equations are

ut + uux + gηx = 0

within the wave, while the free-surface (water/air) boundary condition is

ηt + uηx + ηux = 0.

Here u denotes the horizontal velocity component in the x direction, t denotes the time,
and y = η(x, t) is the unknown wave profile. It was noticed by Stoker [9] that these are
the same equations that determine the behaviour of a one-dimensional compressible gas
flow with η as the variable density. The breaking of the wave is equivalent to the unstable
behaviour of a compressible gas forming shock waves. These shallow-water equations are
hyperbolic and solvable by the method of characteristics. One solution is the solitary wave
[1]. Although the Boussinesq approximation breaks down as soon as the wave is about to
break, this shallow-water theory has nevertheless proved useful in describing the behaviour
of breaking ocean waves.

4 Catching a wave

Galvin (1972) [5] describes four types of breakers: spilling, plunging, collapsing and surging.
Only two of these are useful for bodysurfing, namely spilling and plunging. For spilling waves,
the bottom profile changes gradually and only the neighbourhood of the crest becomes
unstable initially. The surf front of foam, bubbles and water starts to tumble down the
front face of the sloping wave front. These rollers or gently breaking waves are ideal for
bodysurfing, and they frequently occur near the high point of each tide cycle.

Plunging waves (or dumpers) overturn along the whole front of the wave with a jet of
water plunging to the toe of the wave and trapping air inside the overturning tube. They
occur if the depth changes quickly, particularly near the time for low tide. If refraction of
the wave front occurs at the same time (for example, around headlands or along the edge of
sandbars), the wave can be ridden obliquely. For surfboard riders, these are the “barrels”
or “tubes” that they love to ride, but for bodysurfers, the sideways breaking of the wave
along the wave front is usually too fast to enable the bodysurfer to stay level with the break,
although swim fins (or flippers) can assist sometimes.

In order to ride the surf front, a bodysurfer has to accelerate up to wave speed, and float
within the travelling turbulent surf front of air and water. The surfer’s motion is clearly
governed by Newton’s laws. The vertical components have buoyancy balancing the surfer’s
weight, while the horizontal motion shorewards has the force generated within the turbulent
front and accompanying wave balanced almost by the drag on the surfer. There is a slight
decrease in the surf front speed as the depth becomes shallower within the surf zone, but
essentially, the surfer is carried along within the surf front at almost constant wave speed.

Beginning bodysurfers find that riding the surf front is not one of the main difficulties in
bodysurfing, but catching a wave at the start or staying on the wave near its finish are the
more difficult skills to acquire.

The problem in catching a wave is that most rideable waves travel at speeds faster than a
person can swim, even faster than the best Olympic swimmer. When the wave has already
broken and the surfer can stand in leg-deep water ahead of the wave, he or she can launch
themselves up to wave speed by a huge thrust of their legs against the sandy bottom, at
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the same time propelling themselves into a horizontal position. Timing is important as the
window of opportunity for catching the front of the wave is small. Too early, and the speed
developed by the leg thrust is lost before the surf front reaches the surfer; too late, and the
surfer falls off the back of the wave as it passes.

When the water depth is such that the surfer cannot stand on the bottom, it is almost
impossible to catch a broken wave, although a few experienced and strong swimmers have
sometimes been able to do this.

More frequently experienced bodysurfers swim out to where the waves are consistently
breaking, and attempt to swim onto an unbroken wave just as it is about to break. Math-
ematically, this position can be determined by stipulating a limiting value on the steepness
of the wave front for a train of periodic waves. However, studies have now indicated that
it is better to consider each wave crest as an independent entity like a solitary or cnoidal
wave rather than as part of a periodic wave train. Grimshaw [6] has provided a theoretical
framework for a more general study of these waves.

For a bodysurfer to catch a wave in deep water, it is clear that he or she must be competent
enough to accelerate quickly to wave speed. Timing is important once again, so that this
must be accomplished just as the wave is passing. Some surfers can do this with one or two
strokes only, if they position themselves correctly in the wave-breaking area.

A mathematical quantitative examination of this skill is of interest. For a person swim-
ming in a pool or lake, the forces acting in the vertical direction are just gravity and buoyancy
which balance each other, and hence physically explain the swimmer’s ability to remain at
the surface interface. In the horizontal direction the forces are the propulsive forward force
P due to the swimmer’s technique and a quadratic drag force.

The governing equation is therefore

mẍ = P − kẋ2

where m is the swimmer’s mass, and the resistance coefficient is

k =
1
2
ρACD

with ρ as the water density, A the swimmer’s area of cross-section normal to the direction
of motion, and CD as the drag coefficient.

The maximum speed that can be attained by the swimmer is therefore

ẋ =
√

P/k

occurring when ẍ = 0. This value can only be improved by increasing P (technique training),
decreasing A (weight loss) or decreasing CD (special swimming suits).

Consider now a similar one-dimensional model of a wave travelling with speed U(>
√

P/k)
towards a surfer. As the wave approaches its breaking point there is an increase in the water
particle speeds near the crest and a strong shoreward surging force is experienced within
the wave as it passes.

This force rises sharply from zero as the wave approaches, reaches a maximum at the
crest, and dies quickly as the back of the wave passes. A simple model for it could be
F cos[W (x− Ut)] where F is the maximum force at the crest on breaking and W is a wave
property related to the field of influence −π

2 < W (x−Ut) < π
2 of this force about the crest.

Outside this region the generated force is zero until the next wave arrives. It is this force
which enables the surfer to accelerate up to wave speed.

The dynamics of catching a wave within this limited window of opportunity are based on
the forces shown in Figure 1.
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The horizontal forces for this simple model yield

mẍ = F cos[W (x− Ut)] + P − k(ẋ− U)2 (1)

where (ẋ − U) is the speed of the swimmer relative to the passing travelling wave. Using
the co-ordinate transformation X = x− Ut, as before, equation (1) becomes

mẌ = F cos(WX) + P − kẊ2.

Since Ẍ = d
dX ( 1

2Ẋ2), this differential equation can be rewritten as

d
dX

(Ẋ2) +
2k

m
Ẋ2 =

2F

m
cos(WX) +

2P

m
. (2)

If the surfer starts to swim at the beginning of the field of influence of the wave force
then

ẋ = 0, Ẋ = −U, when t = 0, WX =
π

2
. (3)

Using the integrating factor exp(2kX/m) , the solution of equation (2) with conditions
(3) is

Ẋ2 =
P

k
+

2F

4k2 + m2W 2
2k cos(WX) + mW sin(WX)

+ U2 − P

k
− 2FWm

4k2 + m2W 2
exp

(
k

m

( π

W
− 2X

))
. (4)

Now the surfer will catch the wave when Ẋ = 0 (i.e., ẋ = U), and this is only possible
if there is a solution of the right hand side of equation (4) equal to zero in the range
0 < X < π/(2W ), the front face of the wave.

Typical values for a surfer are m = 75 (kg), k = 15 (kg m−1), P = 15 (N), while, for a
wave about to break, typical values are U = 3 (ms−1), W = 2 (m−1), F = 1000 (N).

Equation (4) then particularises to

0 = 1 + [2.56 cos 2X + 12.8 sin 2X − 4.82] exp(0.31− 0.4X)

which has a solution 0.11 lying in the range 0 < X < 0.79. In this case, the surfer will catch
the wave.

Stronger swimmers have a higher value for P than weaker swimmers enabling them to
catch some waves that others can’t. Swim fins enable all swimmers to raise their P value.
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5 Riding in the surf zone

Once a wave has been caught, the surfer is transported through the surf zone. The dynamics
of this region have been surveyed by Battjes [2]. Basically, the surf front appears to be quasi-
steady shortly after the initial breaking of the wave, with the turbulent surf front dissipating
slowly as the wave travels towards the shoreline. The detail of the turbulent front is not
well known yet, nor the dissipating mechanisms, but the turbulence seems independent of
whether the wave is of the spilling or plunging type.

Of interest to the bodysurfer is how he or she falls off the wave as the surf front diminishes.
In particular surfers can stay longer on the wave by kicking their legs, reducing their drag
by streamlining the body with arms in a diving position, and by stroking with one arm. As
the horizontal depth of the turbulent front decreases, there comes a point where the surfer’s
legs are no longer being carried along within the wave front even though the upper torso
still is. The drag starts to increase dramatically and the wave force F cos[W (x − Ut)] is
diminishing through a reduction in its maximum value F . Hence, the surfer decelerates and
falls off the back of the wave.

6 Bodysurfing skills

There are many aspects of bodysurfing that have not yet been researched scientifically.
If an inert floating object, such as a log or floating surf craft, enters the surf zone, it

moves with the surf front in a transverse orientation. Humans cannot do this, and they ride
waves in the longitudinal orientation. A new toy has been developed which is a small-scale
plastic model of a human on a surf mat with a keel at the back. This also rides waves in
the longitudinal orientation. But humans do not have a built-in keel, so it is intriguing why
they can ride waves in the longitudinal orientation and not turn sideways as all inert floating
objects do.

Riding a wave is generally accomplished by bodysurfers with either their arms by their
sides and their heads up so that they can see where they are going, or with their arms held
in the diving position and their heads down. Variations include hydroplaning, where the
arms are straight ahead and the palms of the hand form hydrofoils on the front slope of the
wave. Hand boards have been developed to assist bodysurfers to do this.

The legs are usually held in the stiff prone position to enhance the streamline shape
of the surfer, but some surfers in earlier days bent one leg at the knee, so that the foot
was vertically above the knee. It is thought that this may have assisted the surfer on large
turbulent surf fronts, but no evidence is available yet concerning this, and the practice seems
to have died out. Additionally, no one yet seems to have investigated bodysurfing with both
legs bent at the knees.

Another fascinating aspect of bodysurfing is that waves can be ridden by humans in the
longitudinal orientation with their hands at the front (either face down or face up), but not
with their feet first. Practical experiments conducted so far indicate that it is difficult to
get up to wave speed in this orientation and, of course, the surfer finds it difficult to breathe
because his or her face is deep within the turbulent surf front.

A useful skill is to practise riding obliquely across the face of a wave about to break.
The lateral speed of the surfer can be increased by using swim fins, and these are used in
bodysurfing events in Hawaii and California. The advantage of learning how to slide across
the face of a wave is put to practical use when inadvertently catching a dumper (plunging
wave). Surfers who try to catch these waves normal to the wave front may suffer severe back
or neck injuries when they hit the shallow water in front of the dumper. Sliding across the



250

face of these dumpers shoots the surfer out the back of the wave as it dumps its crest onto
the shallow water below. The surfer is trapped inside the tube and suffers no injuries at all.

More advanced bodysurfing skills include “cork-screwing” down the face of a wave, “por-
poising” through the face of a wave just before it breaks, and “piggy-backing” with two
people on the same wave, usually with the lighter person on top.

There is much still to investigate about the scientific aspects of bodysurfing. The forces
within a nearly breaking wave and within a broken surf front need further analysis. The
length and depth of the turbulence within the moving surf front also needs closer scrutiny,
although Longuet-Higgins and Turner [7] considered a model for this for a spilling breaker.

Of course, bodysurfers don’t need to understand the mathematics and physics of body-
surfing to enjoy the thrill of riding a wave shorewards. However, a more detailed knowledge
of what is happening can enhance one’s ability by developing new skills, becoming more
efficient in the various techniques, and perhaps finding new ways to enjoy the surf.
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Totally Goldbach numbers and related conjectures

David van Golstein Brouwers, John Bamberg and Grant Cairns

Goldbach’s famous conjecture is that every even integer n greater than 2 is the sum of two
primes; to date it has been verified for n up to 1017; see [10, 13]. In order to establish the
conjecture for a given even integer n, one optimistic approach is to simply choose a prime
p < n, and check to see whether n−p is prime. Of course, one has to make a sensible choice
of p; if n − 1 is prime, one should not choose p = n − 1, and there is obviously no point
choosing a prime p which is a factor of n. In this paper we examine the set of numbers n
for which every “sensible choice” of p works:

Definition 1 A positive integer n is totally Goldbach if for all primes p < n− 1 with p not
dividing n, we have that n − p is prime. We denote by A the set of all totally Goldbach
numbers.

It turns out that there are very few totally Goldbach numbers. We find:

A = {1, 2, 3, 4, 5, 6, 8, 10, 12, 18, 24, 30}.

At first sight, it would seem very plausible that A is a small finite set. As everyone knows,
the primes tend to become rarer as one proceeds along the real line; if π(n) denotes the
number of primes no greater than n, then one expects π(n) ≤ 2π(n/2) for all n ≥ 6. Indeed,
this was conjectured by Landau and proved by Rosser and Schoenfeld [16]. For n to be a
member of A we require as many “sensible” primes p with p < n/2 as there are primes p
with n/2 < p < n − 1. So we would have n 6∈ A if we could show that π(n) is less than
2π(n/2) minus the number of prime divisors of n. The Prime Number Theorem tells us
that the density of the primes falls off on average with 1/ log(n). So for big n, there will
tend to be considerably more primes between 1 and n/2 than there are between n/2 and
n; in fact, the difference is approximately (2n log 2)/(log n)2. The number of prime divisors
of n is more difficult to describe, but it grows much more slowly with n [14]. So we expect
that large integers n will not belong to A. However, individual numbers seem to care little
for expected “average” behaviour. Consistent with the falling frequency of prime numbers,
Hardy and Littlewood conjectured (see for example [6]) that π(x + y) ≤ π(x) + π(y) for all
sufficiently large x, y, but there are strongly held contrary views [19].

Before explaining how A can be determined, we first make some connections with three
other closely related sets. Consider the set B of positive integers n such that every positive
integer r < n which is coprime to n is prime or 1. The members of B are called “very round
numbers”; B appears as integer sequence A048597 in Sloane’s Integer Sequences web site
[17]. Obviously B ⊆ A. Knowing A, one finds easily that

B = A\{5, 10}.

According to [12, p. 281], the composition of B was first determined by Schatunowsky
(1893) and independently by Wolfskehl (1901). Apparently, it was also obtained by Bonse

This work was commenced while the first author, an undergraduate student at La Trobe University, was

a vacation scholar funded by the Australian Mathematical Sciences Institute.
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(1907); see [11] for an account of this proof, which is elementary, and makes use of “Bonse’s
inequality”:

pn+1 <
√

p1p2 . . . pn,

where pn denotes the nth prime.
Another closely related set is C = {n ∈ N : ϕ(n) ≤ τ(n)}, where ϕ is Euler’s Totient

function and τ is the divisor counting function. Using the simple formulae for ϕ and τ (see
for instance [15, p. 19]), one finds that

C = A\{5}.

This set appears as integer sequence A020490 in Sloane’s Integer Sequences web site [17].
Despite the striking similarity between A and C, there is no obvious logical relation between
the two sets; is their similarity merely a remarkable coincidence?

When examining Goldbach’s conjecture, for a given integer n, it is common to study the
number g(n) of ways of representing n as the sum of two primes. Obviously g(n) is less than
or equal to the number of primes p with n/2 ≤ p < n − 1. Let the set D consist of those
n for which g(n) equals this maximum. Obviously A ⊆ D. In [4], Deshouillers, Granville,
Narkiewicz and Pomerance showed that the maximum element of D is 210. It is easy to
verify then that

D = A ∪ {7, 14, 16, 36, 42, 48, 60, 90, 210}.
Of course, the determination of A is a simple consequence of the determination of D; one
just checks the elements of D to see which are totally Goldbach.

In their 1993 paper [4], two strategies are given for finding the maximal element n0 of
D. The first strategy relies on the following simple idea: if one can find primes p, q with
n/2 ≤ p < n−q such that p ≡ n (mod q), then n−p would be a multiple of q and n−p > q;
in this case, n − p would not be prime and so n could not belong to D. According to [4],
using estimates for the number of primes p ≤ x with p ≡ a (mod q), this strategy shows
that D is finite and gives n0 ≤ 10520. Unfortunately, this leaves too many cases to check,
even by computer. Abandoning this approach, the authors of [4] then adopt a different
strategy; using an argument involving sieve estimates, they obtain n0 ≤ 2 · 1024. Finally,
using a computer to check the cases n ≤ 2 · 1024, they arrive at n0 = 210.

We will show that the first strategy of [4] is sufficient for the determination of our set A;
i.e., A can be determined once one has the bound 10520. Our motivation for doing this is two-
fold. Firstly, since A is a simpler set, it is only fitting that it have a simpler determination.
(This was the original motivation for this work). Secondly, and perhaps more importantly,
we will see that this leads us naturally to interesting questions concerning primes in a fixed
residue class.

We proceed as follows. First show that A has no element n with 30 < n ≤ 2 · 106 by
directly applying the definition; this is easily accomplished by computer. Then suppose that
n ∈ A and n > 2 · 106. Obviously n must be even. Assume first that n ≡ 1 (mod 3). If q is
prime, q < n − 3 and q ≡ 1 (mod 3), then n − q is divisible by 3 and hence not prime; as
n ∈ A, we conclude that q is a factor of n. Thus

n ≥ 2
∏

q prime
q<n−3

q≡1 mod 3

q ≥ 2
∏

q prime
q<2·106−3
q≡1 mod 3

q ≥ 101000,

where the last calculation is performed by computer. Similarly, if n ≡ 2 (mod 3), then n is
at least twice the product of those primes q < 2 · 106 − 3 for which q ≡ 2 (mod 3). Once
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again, one finds that n ≥ 101000. So it remains to consider the case where n is divisible by
3 (and hence 6). Arguing as above, for each a ∈ {1, 2, 3, 4},

n ≥ 6
∏

q prime
q<n−5

q≡a mod 5

q ≥ 6
∏

q prime
q<2·106−5
q≡a mod 5

q,

for n ≡ a (mod 5) and once again this gives n ≥ 101000 in each case. So we may assume
that n is divisible by 5 (and hence 30). Proceeding in this manner, we find that for each
prime q up to the 351-st prime, 2371, and for each a = 1, . . . , 2370, one has n ≥ 101000 for
n ≡ a (mod q). So we may assume that n is divisible by the product of the first 351 primes;
but this also gives n > 101000, as claimed.

In all, the various calculations took less than 24 hours running Maple 9 on a Pentium IV
2.4GHz; the calculations were verified in a little over 2 days, running Mathematica 4 on a
Macintosh G3.

Notice that the above argument used the assumption that n > 2 · 106 to show that
n ≥ 101000. A complete determination of A, without recourse to [4], would be obtained if the
above method could be extended indefinitely and thus turned into an induction argument;
that is, assuming that n is greater than some sufficiently large number K, one could try
to use the above method to show that n is greater than some larger number K ′. Loosely
speaking, this approach would work providing the primes q, in any given residue class, are
not too sparse. What this asks for is effectively a modular version of Euclid’s theorem; recall
that Euclid’s proof of the infinitude of primes can be rephrased as follows:

pn+1 < p1 · p2 . . . pn, for all n ≥ 2

where pi is the i-th prime. This can be regarded as a weak version of Bonse’s inequality
[11], and a very weak version of Bertrand’s postulate [1]. The simplest modular version of
Euclid’s theorem would be that for all primes q and for all a = 1, 2, . . . , q − 1,

rn+1 < r1 · r2 . . . rn, for all n ≥ 2 (1)

where ri is the i-th prime that is congruent to a (mod q). Unfortunately, this doesn’t
hold in general. For example, the primes congruent to 3 (mod 13) are 3, 29, 107, . . . , but
107 6< 3×29, and the primes congruent to 5 (mod 61) are 5, 127, 859, . . . , but 859 6< 5×127,
etc. In fact, if the twin prime conjecture is true, there are infinitely many counterexamples
to (1); indeed, if q, q + 2 are twin primes, then the first two primes congruent to 2 (mod q)
are r1 = 2, r2 = q + 2, and since 2q + 2 is not prime, we must have r3 ≥ 3q + 2. Hence
r3 ≥ r1r2.

Nevertheless, computer calculations do seem to show that the following is true for small
values of q and n.

Conjecture 1 For all primes q and for all a = 1, 2, . . . , q − 1,

rn+1 < r1.r2 . . . rn, for all n ≥ 3

where ri is the i-th prime that is congruent to a (mod q).

We have been unable to find a statement to this effect in the literature. There are known
modular versions of Bertrand’s postulate (see [7, 18, 9]), but these results are typically of
the form: “for sufficiently large n, . . . ”, and moreover, they are usually not uniform in q
and a. The above conjecture is certainly consistent with the prime number theorem modulo
q, which gives the asymptotic behaviour of the number π(x; q, a) of primes at most x which
are congruent to a modulo q:
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“The expected asymptotic formula π(x; q, a) ∼ x/ϕ(q) log x as x → ∞ has
long been known to hold but in all proofs given so far the dependence of
the error term on the parameter q is rather poorly understood. For all
we know it might even be the case that the asymptotic formula begins to
represent the true state of affairs only after x is (almost) exponentially large
compared to q.” from John Friedlander’s MathSciNet review of [2].

Notice that Conjecture 1 would follow by induction if we could prove:

Conjecture 2 For all primes q and for all a = 1, 2, . . . , q − 1,
(1) r4 < r1r2r3,
(2) rn+1 < r2

n, for all n ≥ 4,
where ri is the i-th prime that is congruent to a (mod q).

Computer calculations appear to support part (1) of Conjecture 2, and in fact for (2),
they seem to indicate that rn+1 < r2

n, for all n ≥ 3. Notice that rn ≥ (2n− 3)q + a. This is
simply because the numbers congruent to a (mod q) are:

a, q + a, 2q + a, 3q + a, . . .

so if a is odd, the smallest possible ri would be

a, 2q + a, 4q + a, 6q + a, . . .

while if a is even, the smallest possible ri would be

q + a, 3q + a, 5q + a, . . .

if a 6= 2 and
a, q + a, 3q + a, . . .

if a = 2. In each case, rn ≥ (2n− 3)q + a. So, to establish the second part of Conjecture 2,
it suffices to show that rn+1 < (2n− 3)2q2, or the somewhat stronger:

Conjecture 3 rn < 4(n− 3)2q2, for all n ≥ 4, all primes q and all a = 1, . . . , q − 1.

In fact, it is easy to see, using the same kind of elementary arguments used above, that
Conjecture 3 also implies the first part of Conjecture 2. So we have

Conjecture 3 ⇒ Conjecture 2 ⇒ Conjecture 1.

Moreover, it is not difficult to show that by the Bombieri–Friedlander–Iwaniec Theorem [3],
Conjecture 3 holds “with few exceptions”. In fact, computer investigations indicate that the
following may be true:

Conjecture 4 rn < (n + n log n)q2, for all n ≥ 1, all primes q and all a = 1, . . . , q − 1.

This conjecture is a generalization of an old conjecture of Schinzel and Sierpinski (see [12,
p. 280 and p. 397]): r1 < q2 for all primes q and all a = 1, . . . , q − 1. At present the best
result is Meng’s improvement of Heath-Brown’s version of Linnik’s theorem [8]: r1 < q4.5.
So Conjecture 4 may be a long way away.
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Ramanujan and Fermat’s Last Theorem

Michael D. Hirschhorn

Hardy [1] relates the following anecdote. “I remember going to see him [Ramanujan] when
he was lying ill at Putney. I had ridden in taxi–cab No. 1729, and remarked that the
number (7 × 13 × 19) seemed to me rather a dull one, and that I hoped it was not an
unfavourable omen. “No,” he replied, “it is a very interesting number; it is the smallest
number expressible as a sum of two cubes in two different ways.””

Indeed,
1729 = 93 + 103 = 123 + 13.

But there is another way in which this example is special. We know, since Euler, that the
sum of two positive cubes is never a cube. But the above example shows that the sum of
two positive cubes can do the next best thing – and that is, to miss a cube by as little as 1.

Indeed, Ramanujan left for us infinitely many examples of just that phenomenon. In his
so-called “Lost Notebook” [4], he stated a result equivalent to the following.

If x1

y1

z1

 =

 9
10
12

 ,

x2

y2

z2

 =

 791
812
1010

 ,

x3

y3

z3

 =

65601
67402
83802


and xn+3

yn+3

zn+3

 = 82

xn+2

yn+2

zn+2

 + 82

xn+1

yn+1

zn+1

−

xn

yn

zn

 (1)

then
x3

n + y3
n = z3

n + (−1)n+1.

In two articles in the Mathematics Magazine [2], [3] I gave two proofs of this amazing
statement, and gave an explanation as to how Ramanujan may have obtained this result. I
will give a brief exposition below.

Recently, I was inspired to guess that the vectors xn = (xn, yn, zn)T might satisfy a
different type of recurrence. Let me explain. The continued fraction for

√
2 is

√
2 = 1 +

1

2 +
1

2 +
1

2 + · · ·

.

If we cut this off after the nth 2, we obtain a rational close to
√

2, which we call the nth
convergent to

√
2, and which we denote by

pn

qn
. Thus(

p1

q1

)
=

(
3
2

)
,

(
p2

q2

)
=

(
7
5

)
and (

pn+2

qn+2

)
= 2

(
pn+1

qn+1

)
+

(
pn

qn

)
.
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But it is also true that (
pn+1

qn+1

)
=

(
1 2
1 1

) (
pn

qn

)
and so (

pn

qn

)
=

(
1 2
1 1

)n (
1
1

)
.

Inspired by this, I guessed that there may exist a 3× 3 matrix M such that the vectors
xn = (xn, yn, zn)T given by (1) satisfy xn+1 = Mxn and xn = Mnx0.
And indeed there is! xn

yn

zn

 =

63 104 −68
64 104 −67
80 131 −85

n −1
2
2

 . (2)

(Incidentally, we can use Ramanujan’s recurrence backwards as well as forwards to obtain
triples (xn, yn, zn), just as we can have n negative in (2).)

This is how one might discover Ramanujan’s solutions.
Suppose you notice that

(x2 + 16x− 21)3 + (2x2 − 4x + 42)3

is even.
It follows that

(x2 + 16x− 21)3 + (2x2 − 4x + 42)3 = (x2 − 16x− 21)3 + (2x2 + 4x + 42)3.

Replace x by 2x + 1 and divide by 64 to obtain

(x2 + 9x− 1)3 + (2x2 + 10)3 = (x2 − 7x− 9)3 + (2x2 + 4x + 12)3.

Replace x by v/u, multiply through by u6 and rearrange to obtain

(9u2 + 7uv − v2)3 + (10u2 + 2v3)3 = (12u2 + 4uv + 2v2)3 + (u2 − 9uv − v2)3.

Now comes the Ramanujan-esque touch. Set u = hn, v = hn−1 where the sequence {hn}
is defined by

h0 = 0, h1 = 1, hn+2 = 9hn+1 + hn for n ≥ 0.

This forces
u2 − 9uv − v2 = (−1)n+1

and if we set

xn = 9u2 + 7uv − v2, yn = 10u2 + 2v3, zn = 12u2 + 4uv + 2v2

then
x3

n + y3
n = z3

n + (−1)n+1.

These are Ramanujan’s xn, yn and zn.
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Visualising contingency table data

Dongwen Luo, G. R. Wood, G. Jones

Abstract

A geometric object, a simplex, is useful for picturing the joint, conditional and
marginal distributions within a contingency table. The joint distribution is rep-
resented using weights on all vertices of the simplex, a conditional distribution by
weights on vertices of a face of the simplex, and a marginal distribution by weights
on the faces containing the conditional distributions. All detailed discussion is
based on the simplest case, that of a two-by-two contingency table, for which all
distributions are seen in a tetrahedron.

1 Introduction

A contingency table is a cross-tabulation of categorical variables. An example is given in
Table 1, using data from an Australian survey of attitudes to genetic engineering of food
[4]. The 894 respondents are distributed among four categories defined by income level and
attitude to genetic engineering. The question of interest is whether income level and attitude
to genetic engineering of food are dependent.

Attitude
Income For Against
Low 258 222
High 263 151

Table 1. A cross-tabulation of income level against acceptance of genetic engineering of

food, with data drawn from a recent Australia-wide survey.

When faced with contingency table data, it is useful for the practitioner to have a quick
method for visualising the associated distributions. The primary aim of this article is to
bring such a method to a wider audience; the secondary aim is to provide a cameo example
of the symbiosis between mathematics and statistics. The article exposits and builds on
ideas first introduced by Fienberg [2] and Fienberg and Gilbert [3].

There are three distributional types associated with a contingency table: the joint distri-
bution, conditional distributions and marginal distributions. This article pictures these three
types in a simplex. For a given contingency table, the joint distribution can be represented
by weights on all vertices of the simplex, a conditional distribution by weights on vertices
of a face of the simplex, and a marginal distribution by weights on the faces containing the
conditional distributions. All discussion is based on the contents of a two-by-two table, since
such a table is complex enough to illustrate all items of interest yet simple enough to be
readily pictured.

In the next section we review the three distributions, using notation of Agresti [1]. The
three distributional types are described geometrically in Section 3, then the article is com-
pleted with a generalisation in Section 4 to tables of arbitrary dimension and a conclusion.
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2 Distributions in a two-by-two table

We begin this section by briefly reviewing standard terminology and notation for joint,
conditional and marginal distributions in a contingency table. Consider two categorical
variables X1 and X2, each at two levels. The joint distribution of X1 and X2 can be
represented in a 2× 2 table denoted (πij), where πij is the probability of X1 at the ith level
and X2 at the jth level, for i = 1, 2 and j = 1, 2.

The marginal distributions of X1 and X2 are denoted (π1+, π2+) and (π+1, π+2) respec-
tively. Here the subscript “+” denotes summation over the associated index, so πi+ =

∑
j πij

and π+j =
∑

i πij . Thus, the marginal distribution of X1 (X2) appears as the row (column)
totals of the table (πij).

The distribution of X2 conditional upon X1 = i is written as (π1|i, π2|i) so πj|i = πij/πi+

for all j. Symmetrically, we could define the distribution of X1 for a given level of X2.
These three distributions associated with a two-by-two table and a numerical example

(the frequency table of the Australia survey data) are displayed in Table 2.

X2

X1 1 2 Total
1 π11 π12 π1+

(π1|1) (π2|1)
2 π21 π22 π2+

(π1|2) (π2|2)
Total π+1 π+2 1.00

Attitude
Income For Against Total
Low 0.2886 0.2483 0.5369

(0.5375) (0.4625)
High 0.2942 0.1689 0.4631

(0.6353) (0.3647)
Total 0.5828 0.4172 1.00

Table 2. The left panel presents the notation for joint, conditional and marginal distribu-

tions of categorical variables X1 and X2, each with two levels. The right panel presents

the relative frequency table for the Australia survey data. Figures in brackets show the
distribution of X2 for the given level of X1.

3 Geometry of the three distributions

The joint distribution of categorical variables X1 and X2 with two levels each can be repre-
sented as

(π11, π12, π21, π22) = π11e1 + π12e2 + π21e3 + π22e4

where e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0) and e4 = (0, 0, 0, 1) form the standard
basis in R4 (points A, B, C and D respectively in Figure 1(a)). Thus the joint distribution
of X1 and X2 can be pictured as weights π11, π12, π21 and π22 on A, B, C and D respectively.

Alternatively, since πij ≥ 0 for all i, j and
∑

ij πij = 1, the joint distribution of X1 and
X2 can be represented by the centre of mass J (more formally known as the “resultant” or
“barycentre”) of these weights on A,B, C and D in the three dimensional simplex given by

S3 = {(π11, π12, π21, π22) :
∑
ij

πij = 1 and πij ≥ 0 for all i, j}

as illustrated in Figure 1(a).
The distribution of X2 conditional on X1 = 1 can be represented as (π1|1, π2|1, 0, 0), an

ordered 4-tuple in R4, and since we have the representation

C1 = π1|1e1 + π2|1e2
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evidently this distribution can be represented by weights π1|1 and π2|1 on A and B alone.
Alternatively, since πj|1 ≥ 0 for all j with

∑
j πj|1 = 1, the distribution of X2 conditional

on X1 = 1 is the resultant of these weights on A and B, so is a point C1 in line segment AB.
Similarly, the distribution of X2 conditional on X1 = 2 can be represented as (0, 0, π1|2, π2|2),
so as a point C2, the resultant of weights π1|2 and π2|2 on C and D respectively (illustrated
in Figure 1(b)).

A (1, 0, 0, 0)

B (0, 1, 0, 0)

C (0, 0, 1, 0)

D (0, 0, 0, 1)

J

(a) Joint distribution

A (1, 0, 0, 0)

B (0, 1, 0, 0)

C (0, 0, 1, 0)

D (0, 0, 0, 1)

C2

A (1, 0, 0, 0)

B (0, 1, 0, 0)

C (0, 0, 1, 0)

D (0, 0, 0, 1)

C1

(b) Conditional distributions

A (1, 0, 0, 0)

B (0, 1, 0, 0)

C (0, 0, 1, 0)

D (0, 0, 0, 1)

(c) Marginal distribution

Figure 1. The three distributions of categorical variables X1 and X2, each with two
levels. In (a) the joint distribution of X1 and X2 is seen as weights π11, π12, π21

and π22 on A, B, C and D, with resultant J . In (b) the conditional distribution
of X2 when X1 = 1 is seen as weights π1|1 and π2|1 on A and B, having resultant
C1, while the the conditional distribution of X2 when X1 = 2 is weights π1|2 and
π2|2 on C and D, having resultant C2. In (c) the marginal distribution of X1 is
seen as weights π1+ and π2+ on edges AB and CD.

Joint distributions lying on AB oblige X1 to equal one, so arguably line segment AB
corresponds to X1 = 1. Similarly, line segment CD corresponds to X1 = 2. For this reason
the marginal distribution of X1, (π1+, π2+), can be represented as these weights on edges
AB and CD, pictured by weighting these edges in Figure 1(c).

From the definition of conditional probability we have that

(π11, π12, π21, π22) = π1+(π1|1, π2|1, 0, 0) + π2+(0, 0, π1|2, π2|2)
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or
J = π1+C1 + π2+C2

In this special case where the joint distribution J and the conditional distributions C1 and
C2 are known, the marginal distribution of X1 can be represented as the weights π1+ and
π2+ on C1 and C2 (still on AB and CD respectively) having resultant J .

Figure 1 in fact illustrates these ideas using the frequency table of the Australia survey
data shown in the right panel of Table 2. Here we can represent the joint distribution of
Income and Attitude as

(0.2886, 0.2483, 0.2942, 0.1689) ∈ R4

which corresponds to point J in the tetrahedron. The distributions of Attitude conditional
on Income Low and Income High can be represented by C1 = (0.5375, 0.4625, 0, 0) and C2 =
(0, 0, 0.6353, 0.3647) respectively. Since J = 0.5369C1 + 0.4631C2, the marginal distribution
of Income, (0.5369, 0.4631), can be specialized now as weights 0.5369 and 0.4631 on C1 and
C2 having resultant J .

Fienberg and Gilbert [3] showed that the loci of all points corresponding to independence
of rows and columns in a 2×2 table is a portion of a hyperbolic paraboloid in the tetrahedron,
illustrated in Figure 2. In the figure, the point J (the joint distribution of Income and
Attitude) is seen to be a small distance away from the independence surface; further analysis
would confirm that, with a sample size as large as 894, this indicates dependence between
Income and Attitude. Loosely speaking, for a given sample size the further J is from the
independence surface, the greater the dependence between X1 and X2.

B 

C 

D 

J 

A

Figure 2. A graphic illustrating the locus of all points corresponding to independent 2×2
tables (a portion of a hyperbolic paraboloid) and the joint distribution J of Income and

Attitude in the tetrahedron ABCD.

4 Tables of higher dimension

For a general contingency table, the three distributional types can be pictured in a higher
dimensional simplex, having as many vertices as cells of the table. The joint distribution
appears as weights on all vertices of the simplex. Conditioning on the levels of a subset of
the variables partitions all vertices of the simplex; the convex hull of each partition set forms
a face of the simplex. A distribution conditional on levels of the chosen variables appears as
weights on vertices of the associated face. The marginal distribution of the random variables
used for conditioning appears as weights on the simplicial faces determined by the partition
sets. For example, for a 4 × 4 table with variables X1 and X2, the joint distribution is
the weights on the sixteen vertices of the simplex S15. To picture the distribution of X2
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conditional upon X1, the vertices of S15 are partitioned into four sets of four using the levels
of X1. Four faces of S15 are then constructed as convex hulls of each set of vertices; the
distribution of X2 conditional upon a given level of X1 is weights on the vertices of the
associated face. The marginal distribution of X1 is weights on the four faces. These ideas
are illustrated in Figure 3.

J

Figure 3. A schematic illustration showing that for a multi-way table the joint distribu-

tion J appears as weights on all vertices of a higher dimensional simplex; the resultant

is a point in the simplex. Conditioning on values of a subset of all variables leads to a
partitioning of the vertex set. Such a partition is shown as the four shaded simplexes.

A conditional distribution is a weighting of the vertices of a partition set, for example, a
weighting on the vertices of the upper shaded simplex. The associated marginal distri-

bution of the subset of variables is the weighting of the facial simplexes formed by the

partition, shown here using shading. The diagram presented here is strictly appropriate
for a 4× 4 table.

5 Conclusion

The three distributional types associated with a 2 × 2 table have been pictured in a tetra-
hedron. The joint distribution appears as weights on all vertices of the tetrahedron with
resultant a point in the tetrahedron. A conditional distribution can be viewed as weights
on vertices of an edge of the tetrahedron with resultant a point in the edge. A marginal
distribution can be viewed as weights on the edges containing the conditional distributions.
These ideas directly generalize to multi-way tables.
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Einstein’s Heroes: Imagining
the World Through the

Language of Mathematics

Robyn Arianrhod
University of Queensland Press 2003

ISBN 0-7022-3408-7

Robyn Arianrhod’s Einstein’s Heroes is a
popular-level book describing the work of
some of the main intellectual influences on
Einstein. The scientist that figures most
prominently in the book is James Clerk
Maxwell. Indeed, I think the book could
also have been called something like: The
Life and Ideas of Maxwell. But the book
is more than just a biography: Arianrhod
also has a larger aim in the book. Her aim,
roughly speaking, is to explore the idea that
there is “something special” about the lan-
guage of mathematics that reveals hitherto
inaccessible levels of reality to us. So Arian-
rhod is also examining broadly “philosoph-
ical” ideas in her book. Einstein’s Heroes
begins with a brief chapter in which the
larger themes of the book are introduced.
She starts with the story of a white child
raised as an aboriginal, who had come to
see and think about the world in a different
way through learning to speak a different
language. She then moves on to an ac-
count of Newton’s main ideas. This takes
up roughly the first quarter of the book. In
the bulk of the book, Maxwell is the cen-
tral figure. Arianrhod does not merely give
us an exposition of his scientific ideas, but
also describes his life and career, and his
interactions with his contemporaries. The

later chapters describe the influence that
Maxwell’s ideas had on Einstein, and on
more recent developments. She also returns
to the more general themes of language,
representation and reality. Any popular
book on science must avoid two potential
dangers. On the one hand, it must avoid
excessive dryness and technicality: that will
only turn potential readers away. But on
the other hand it must also avoid treat-
ing the material in such a loose, vague or
merely metaphorical way that readers come
away without any real understanding of the
science discussed. Arianrhod has avoided
both these dangers very well indeed. She
explains concepts of mathematics and ge-
ometry, and many aspects of the ideas of
Newton and Maxwell, with crystal clarity
and a high level of rigour. But she is also
careful to frequently leaven the more tech-
nical material with anecdotes about, for
example, Maxwell’s personal life and in-
teresting asides in to the history of ideas.
In these respects her book compares rather
favourably, I think, with some other popular
books about physics. This achievement is
particularly impressive when one notes that
the primary focus of her book – Maxwell’s
electromagnetism equations – do not on the
face of it seem like promising material for
a book of interest to the general reader.
Despite all this, I do have one very mi-
nor quibble with the book. I’m afraid I
found some of her claims about the nature
of the relationship between language and
the world, and about the special status of
mathematical language, a little unconvinc-
ing. But this is a very minor blemish. If the
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way this book manages to combine clarity
and rigour with “general interestingness” is
any indication of how Arianrhod conducts
her teaching, then her students at Monash
are very fortunate indeed.

John Wright
School of Liberal Arts, University of Newcastle,
Callaghan, NSW 2308

E-mail : John.Wright@newcastle.edu.au
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Automatic Sequences: Theory,
Applications, Generalizations

Jean-Paul Allouche and Jeffrey Shallit
Cambridge University Press 2003

ISBN 0-521-82332-3

Beautifully presented in a concise and schol-
arly manner, this book develops the fas-
cinating theory of sequences generated by
one of the most basic models of compu-
tation; namely, finite automata. General-
izations of such sequences, including Stur-
mian words and k-regular sequences, are
also considered, and the strength of the the-
ory is made evident through selected ap-
plications in number theory (in particular,
formal power series and transcendence in
positive characteristic), physics, and com-
puter science. A topic such as this incor-
porates results from both mathematics and
computer science, and consequently, papers
on the subject are widespread in the liter-
ature, having been studied under different
guises and with inconsistent notation. Al-
louche and Shallit, however, manage to suc-
cessfully combine a myriad of concepts from
a range of seemingly disparate disciplines to
form a coherent and extremely informative
resource for anyone from the professional
researcher to the inquisitive undergraduate
student.

Chapters 1 through to 5 provide us
with the required background knowledge on

stringology, number theory and algebra, nu-
meration systems, finite automata, and au-
tomatic sequences. The book then delves
into interesting generalizations of automatic
sequences, such as the class of morphic se-
quences, of which automatic sequences form
a sub-class. Other generalizations include
characteristic words, multi-dimensional se-
quences, and sequences over infinite alpha-
bets. Of particular interest to experts in
this field are the relatively new results on
transcendence of formal power series and
automatic real numbers, given in Chapters
12 and 13. And the enthusiastic reader is
sure to revel in the total of 460 exercises
and 85 open problems, which, together with
a very comprehensive list of references and
bibliographical notes, certainly invoke the
urge for further exploration.

Applicable to practically all areas of
mathematics and computer science, this
book is sure to become a much celebrated
text on infinite sequences of symbols and
their applications. A worthy addition to
every mathematician’s bookcase!

Amy Glen
School of Mathematical Sciences, Discipline of Pure

Mathematics, University of Adelaide, SA 5005
E-mail : aglen@maths.adelaide.edu.au

� � � � � �

Option Theory with Stochastic
Analysis: An Introduction
to Mathematical Finance

F.E. Benth
Springer Heidelberg 2004

ISBN 3-540-40502-X

The book under review was written as a text
for an introductory level course (although
we read in the Preface that it was used
“in a course for students. . . preparing for a
master in finance and insurance mathemat-
ics”) on option theory (in continuous time

mailto:John.Wright@newcastle.edu.au
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and mostly within the Black–Scholes frame-
work), with an objective to “relax the math-
ematical rigour to focus on ideas and tech-
niques”. There already exist several rather
good books devoted to that topic and com-
piled with similar intentions. One could still
argue, however, that financial mathemat-
ics students with various backgrounds might
benefit from new approaches and simplified
presentations, especially of the continuous
time theory.

The main body of the text consists of five
chapters: Introduction, Statistical Analy-
sis of Data from the Stock Market, An In-
troduction to Stochastic Analysis, Pricing
and Hedging of Contingent Claims, and Nu-
merical Pricing and Hedging of Contingent
Claims. Unfortunately, one can find rather
serious deficiencies in all of them. The over-
all impression of the reviewer is that, de-
spite some positive features (e.g. its small
volume), the book is not well written and
contains quite a few misleading and even
wrong statements.

It would take too much space to give a
detailed analysis of the exposition or to list
all the deficiencies noticed by the reviewer in
the text. The following small sample, how-
ever, could give you some flavour of what
one can find there.

On p. 8, in the introduction to prob-
ability theory, we read: “We can find the
expectation of a random variable X condi-
tional on the event A ⊂ Ω as

E [X|A] = E [1AX].”

First the reviewer decided that that must
have been just a typo. However, after hav-
ing seen (on p. 47) that “from Jensen’s in-
equality (see [47, Thm. 19, p. 12]) it holds
that

|E [Z|Fs]| ≤ E [|Z| |Fs] ≤ E [|Z|],

which shows that the conditional expecta-
tion is finite under this moment condition”,
the reviewer is not so sure about that.

One could say a lot about the way the au-
thor introduces covariance/correlation and

also makes claims about normally dis-
tributed random variables (before giving the
definition of the univariate normal distribu-
tion — and that of the multivariate normal
distribution he doesn’t give at all). We just
note that the author refers to

X
d=µ + σY

as a “factorization (sic!) of a normal vari-
able into a linear combination of a constant
and a standard normal variable” (p. 9) and
then talks about “powerful statistical dis-
tributions” (p. 11). And, referring to the
sample mean and variance, the author says
that “it is standard to use these two estima-
tors for the empirical mean and variance of
the sample”.

On p. 36 we read that “the limit in (3.3)
converges in variance, and thus for every
ω ∈ Ω” (sic!). [In fact, there is a foot-
note commenting on the last statement, but
it doesn’t make things look much better.]
On p. 39 we discover that, for any twice
differentiable function, one can write down
Taylor’s expansion formula with a cubic re-
mainder term. Furthermore, we learn on
p. 41 that a semimartingale is a process
that “can be decomposed into an Itô in-
tegral and a standard integral” (sic! and
no further comments), and all this happens
prior to the introduction of the notion of
martingale (which is also done in quite a
dangerous way).

From the author’s discussion of com-
pleteness/incompleteness and arbitrage on
pp. 86–91, we learn that “completeness
comes from the fact that we need to be able
to trade in every source of noise” and also
that “the Lévy process introduces noise that
cannot be traded”, and also read that an
n×m matrix is “non-singular exactly when
n = m (being quadratic)” (?!). Further,
we also learn that “if we had completeness
in the markets for derivatives, options and
claims would not exist simply because they
would be redundant. We could achieve ex-
actly the same by entering into the claim’s
replicating portfolio”. The last is as mean-
ingful as the claim that, if the flour were
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available in all food stores, bakeries would
become redundant as everybody could bake
bread for themselves.

The above-mentioned examples of poor
handling of even relatively basic material
are typical for the book. The overall level
and logic of exposition are scarcely any bet-
ter.

Note in conclusion that the book ap-
peared in the Springer Universitext series,
that (unlike, say, the Springer Undergrad-
uate Mathematics Series) apparently lacks
an advisory board—at least, the reviewer
failed to find anything in the book about
who was responsible for selecting the text
for publication.

K. Borovkov
Department of Mathematics and Statistics, Univer-
sity of Melbourne, Parkville VIC 3010

E-mail : K.Borovkov@ms.unimelb.edu.au

� � � � � �

Mathematics for Finance:
An Introduction

to Financial Engineering

M. Capiński and T. Zastawniak
Springer Heidelberg 2003

ISBN 1-85233-330-8

As the authors modestly announce at the
very beginning of the Preface, the book “is
an excellent financial investment. For the
price of one volume it teaches two Nobel
Prize winning theories”—and these are the
arbitrage-free pricing of derivative securities
and Markowitz portfolio optimization (and
the Capital Asset Pricing Model). There are
eleven chapters in the book: Introduction;
A Simple Market Model; Risk-Free Assets;
Risky Assets; Discrete Time Market Mod-
els; Portfolio Management; Forward and
Futures Contracts; Options: General Prop-
erties; Option Pricing; Financial Engineer-
ing; Variable Interest Rates; Stochastic In-
terest Rates. So one can see that the bulk

of the text is devoted to the former theory,
although, in the reviewer’s opinion, the 35
pages devoted to portfolio management are
quite instructive and constitute a valuable
part of the book.

The level of exposition is pretty ba-
sic, with results for continuous time be-
ing mostly just outlined. That makes the
book accessible to second year undergrad-
uate students (and not only for students
of mathematics, but hopefully also for stu-
dents of business management, finance and
economics). According to the authors, its
contents could be covered in about 100 class
hours. Prerequisites include elementary cal-
culus (mostly used to find extrema of dif-
ferentiable functions), some probability the-
ory (“familiarity with the CLT would be a
bonus”) and elements of linear algebra (op-
erations with matrices, solving systems of
linear equations).

To keep the exposition at a low level, the
authors had to state some key results (e.g.
the Fundamental Theorem of Asset Pricing,
even in the case of a simple discrete time
market) without proving (or even properly
explaining) them. This makes the task of
(really) “understanding the underlying the-
ory” pretty hard for the reader, but, on the
other hand, with its rather extensive dis-
cussion of the general properties of options
(Chapter 7) and a careful explanation of a
large number of other important concepts,
the book can still serve as a valuable intro-
duction into the area.

There are a lot of (mostly numerical) sim-
ple examples and about 190 “doable” exer-
cises dispersed throughout the book, solu-
tions to all of the exercises occupying about
40 pages at the end of the text—which
makes the book suitable for self-study. On
the other hand, the reviewer has got an im-
pression that the authors may have over-
done it here (as the abundance of exam-
ples/exercises sometimes creates a situation
where one can’t see the forest for the trees).

Having said that, the overall impression
of the book is quite positive. The reviewer

mailto:K.Borovkov@ms.unimelb.edu.au
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can only congratulate the authors with suc-
cessful completion of a difficult task of writ-
ing a useful textbook on a traditionally hard
topic.

K. Borovkov
Department of Mathematics and Statistics, Univer-
sity of Melbourne, Parkville VIC 3010

E-mail : K.Borovkov@ms.unimelb.edu.au
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Analysis on Lie Groups
with Polynomial Growth

N. Dungey, A. ter Elst and D. Robinson
Progress in Mathematics Vol. 214

Springer Heidelberg 2003
ISBN 0-8176-3225-5

Consider the heat equation on R, ∂tϕt +
Hϕt = 0, where H denotes the Laplacian∑d

i=1 ∂2
t . One of the greatest achievements

of Joseph Fourier was the solution of this
equation to obtain ϕt(x) = (Gt ∗ ϕ0)(x).
Here, G is the Gaussian (4πt)−d/2e−|x|

2/(4t).
As is well-known, Gt can be considered
as the semi-group kernel generated by the
semi-group etH . Since ||Gt||∞ = (4πt)−d/2,
it follows that heat disperses at a rate pro-
portional to V (t)−1/2, where V (t) is the vol-
ume of the ball of radius t.

Much effort has been expended over the
past few decades to exploring these sim-
ple observations for Lie groups other than
R and for operators other than the Lapla-
cian. It has been understood for some time
that Lie groups of polynomial growth i.e.
groups where there is a G-invariant met-
ric such that measure of the balls grows in
a polynomial fashion, are the natural set-
ting for generalisation of many of these the-
orems. Groups such as non-compact semi-
simple Lie groups, where the balls grow ex-
ponentially, require different methods.

Recent work, starting with the French
school of Nicholas Varopoulos, Laurent

Saloff-Coste and Thierry Coulhon, inves-
tigated the situation first for nilpotent
groups, and later for more general solvable
groups. Derek Robinson and his collabo-
rators Tom ter Elst, Georgios Alexopou-
los, and Nick Dungey, have made signifi-
cant progress in recent years, and have given
characterisations of groups where the ker-
nels associated with general strongly ellip-
tic second order operators satisfy Gauss-
ian bounds, as well as giving estimates for
Riesz kernels and other derivatives. This
monograph is aimed at providing an up-
to-date comprehensive survey of this work.
It is a natural companion piece to Davies’
Heat kernels and spectral theory (1989),
to the book of Varopoulos, Saloff-Coste
and Coulhon Analysis and Geometry on
Groups (1992), or to Saloff-Coste’s Aspects
of Sobolev-type inequalities (2002).

After a brief introductory chapter, the
book gives a careful outline of the theory
of Lie groups, derivations, elliptic, subellip-
tic and strongly elliptic operators and their
associated kernels. The important tech-
niques of analysis which will be used in the
text: the Carnot-Carathéodory metric, the
method of transference and the de Giorgi es-
timates are introduced (although the proof
of the latter is put off to an Appendix.) The
point of the de Giorgi estimates is to use en-
ergy estimates on the stationary solutions of
the heat operator associated with a subel-
liptic operator, in order to deduce Gaussian
bounds.

Chapter III gives an analysis of the struc-
ture theory of solvable groups, introduc-
ing the nilshadow QN and the semi-direct
shadow GN = QN o M associated with a
solvable group G. It is proved that G can
be realised as a quotient of a larger group G̃,
whose nilshadow is a stratified group. For
groups of polynomial growth, M is a com-
pact group, and the strategy of proof is to
use transference from the (stratified) nilpo-
tent groups to get Gaussian bounds for G.

mailto:K.Borovkov@ms.unimelb.edu.au


268 Book Reviews

The next chapter contains, in some
senses, the heart of the matter. Homogeni-
sation theory in Rn is a classical method
for treating subelliptic operators with oscil-
latory coefficients, estimating them by di-
lation followed by a form of averaging of
the spectrum. Alexopoulos saw how to ex-
tend this to solvable groups, starting from
a subelliptic operator H on G to which
one associates a subelliptic operator Ĥ0 on
L2(GN ): actually, this is constant in the M
directions, and can be reduced to an oper-
ator Ĥ on QN . It turns out that Ĥ is a
limit of dilates of H, and this enables one
to establish Gaussian bounds, first for the
nilshadow, and then for G itself. The fun-
damental equality is of the form

|Kt(g)| ≤ Ct−D/2e−b(|g|′)2/t

where Kt is the kernel associated to the
subelliptic operator H, c and d are con-
stants, and | · |′ is the Carnot-Carathéodory
distance on G. This is an exact analogue
of the results of Fourier quoted above! To
a great extent, the methods of this chap-
ter are based on work of Alexopoulos, who
first obtained these results for sublaplacians
on groups of polynomial growth, and then
generalised them to solvable groups.

The stage is then set to extend this el-
egant theory. In Chapter V, the authors
show how to obtain bounds like

|AαKt(g)| ≤ Ct−|α|/2V ′(t)−1/2eωte−b(|g|′)2/t

where Aα is a derivative of order |α| of Kt.
If |α| = 1, the bound is optimal, although it
can be improved to a Gaussian bound if G
is near-nilpotent, i.e., a semi-direct product
of a compact group and a nilpotent group.
The authors prove their main structure the-
orem: Gaussian bounds hold for derivatives
of Kt if and only if G is near-nilpotent.
There are also other equivalent conditions,
which I shall not detail here. In particu-
lar, this implies that it is not possible to get
Gaussian bounds on the derivatives of K for
a general solvable group.

The last chapter extends the theory to
study the asymptotics of semigroups, us-
ing homogenisation theory and Gaussian
bounds. The main theorems are recent work
of Robinson, Dungey, Duong and other col-
laborators, in the basic direction of estab-
lishing a functional calculus for Kt. Again,
the central idea is to reduce the proof to
certain estimates on QN . The main theo-
rems give Lp-multiplier bounds, both from
above and below, on fractional powers of
H. Again, there is a classification theo-
rem: Lp bounds hold for derivatives of the
semi-group St associated to H if and only
of Gaussian bounds hold.

It is a good moment for this theory to be
given a decent exposition, and who better
than these authors to do it? The book con-
tains a veritable wealth of examples, and
a thorough exploration of the formidable
array of analysis which has been assembled
to attack these problems. It will be an
invaluable research tool, and a wonderful
textbook for anyone wishing to get a han-
dle on the area.

Anthony H. Dooley
School of Mathematics, University of New South

Wales, Sydney 2052
E-mail : a.dooley@unsw.edu.au
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Graphs on Surfaces
and Their Applications

S. Lando and A. Zvonkin
Encycl. Math. Sci. 141
Springer Heidelberg 2004

ISBN 3-540-00203-0

This fascinating book is concerned with a
modern approach to topological graph the-
ory, with a particular focus on the numer-
ous unexpected applications to, and inter-
relationships with, other fields of mathe-
matics and also quantum physics, guiding
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the reader to the cutting edge of current re-
search.

The basic objects of study in the book
are: constellations, which are finite se-
quences of permutations; Riemann surfaces
and their representations as ramified cover-
ing spaces of the two dimensional sphere;
various classes of embedded graphs such as
trees, cacti, etc.

There is a nice discussion of the combi-
natorial and geometric consequences of the
profound Belyi theorem, relating Riemann
surfaces that are defined over the algebraic
numbers, to meromorphic functions having
three critical values.

The method of matrix integrals turns out
to have an unexpected relevance to the enu-
meration of graphs, and is the focus of a
couple of chapters in the book. The method
has its origins in certain matrix models of
quantum physics, where the fields are ma-
trix valued. It turns out that in such matrix
models, the partition function is the gener-
ating function for certain classes of graphs.
Some hints are given on methods of calcu-
lating these matrix integrals.

The book contains an account of the
work of Harer and Zagier, which used the
method of matrix integrals as a tool for
computing the Euler characteristic of mod-
uli spaces of algebraic curves. There is also
a useful sketch of Kontsevich’s deep proof
of Witten’s remarkable conjecture relating
matrix models, the KdV hierarchy and the
intersection theory of moduli spaces of alge-
braic curves.

The book also relates the enumeration of
graphs to algebraic geometry and singular-
ity theory via the Lyashko-Looijenga map-
ping. A beautiful extension of the Belyi the-
orem is discussed, involving an action of the
braid group on constellations and the topo-
logical classification of meromorphic func-
tions having four critical values.

The final chapter deals with the rela-
tionship of graphs to Vassiliev knot invari-
ants and link invariants, via the structure of
Hopf algebras on chord diagrams.

The book ends with a useful crash course
on the representation theory of finite groups
and their relevance to the enumeration of
constellations, in the form of an appendix
written by Don Zagier.

The book contains numerous diagrams,
examples and exercises, making it appeal-
ing to both students and researchers.

Mathai Varghese
School of Pure Mathematics, University of Ade-

laide, Adelaide, SA 5005
E-mail : mathai.varghese@adelaide.edu.au
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Chaos,
A Mathematical Introduction

J. Banks, V. Dragan and A. Jones
Cambridge University Press 2003

ISBN 0-521-531047

The study of one-dimensional discrete dy-
namics, or first order difference equations,
has shown that profound complexity can
be derived from simple models. The field
has matured considerably since pioneering
work by Metropolis, Stein and Stein, May,
Feigenbaum and others in the 1970s. One-
dimensional dynamics is treated in most of
the many books on dynamical systems, a
classic example being [1]. Several books
totally devoted to one-dimensional discrete
dynamics also exist, including [2] and [3].
These two research monographs give an ex-
pert coverage of the extremely deep results
in the field which have attracted the interest
of many prominent mathematicians.

On the other hand, the beauty of one-
dimensional dynamics is that some of its
concepts and results are accessible at an
elementary level. This explains why some
coverage of the area is now standard in the
undergraduate curriculum. Like many top-
ics in dynamical systems, the excitement
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and significance of cutting-edge research re-
sults can be conveyed without an enor-
mous amount of preparatory material. The
present book fits into this category. It is
pitched at the undergraduate level, for sec-
ond and third year students, and is based on
a course given at La Trobe University. As
the authors state in the preface, chaos the-
ory “uses many of the mathematical con-
cepts and techniques from other parts of
undergraduate mathematics”. In my opin-
ion, this is one of the great strengths of this
book: it is a wonderful example of how first
year calculus results can be employed to
obtain nontrivial results in one-dimensional
dynamics. It simultaneously reinforces an
appreciation and understanding of the re-
sults themselves whilst teaching the student
about the dynamics.

The first six chapters deal with standard
material, introducing (periodic) orbits and
their stability, cobweb diagrams and itera-
tion. In the process, the ideas of limits, con-
vergence and differentiability are reinforced.
In particular, the treatment in Chapter 5 of
stability of periodic orbits emphasizes how,
around a periodic point, the map fn is lo-
cally dominated by an affine map, the sta-
bility of which is treated separately in Chap-
ter 4.

The unique strength of the book is re-
vealed in its second half. In Chapter 7, the
important concept of wiggly iterates for a
one-dimensional mapping f is introduced.
It means that fn, n ≥ 1, has 2n−1 humps
with the base of each hump decreasing to
0 as n → ∞. The case of the logistic map
x 7→ 4x(1 − x) is an example. The idea of
wiggly iterates forms the basis of a signif-
icant discussion of the ingredients of chaos
in Chapters 8 and 9. The three-faceted defi-
nition of chaos used here follows that of De-
vaney in [1] (although it should be noted
that La Trobe mathematicians showed over
a decade ago that one of these facets is re-
dundant and implied by the other two). It is
shown in Chapter 9 that wiggly iterates for

a map implies sensitive dependence on ini-
tial conditions everywhere, transitivity and
a dense set of periodic points. Conversely,
the presence of any one of these properties
implies a (symmetric) one-hump map has
wiggly iterates.

Chapter 10 shows that the most signifi-
cant way that f fails to have wiggly iterates
is because it, or some power of it, has a wog-
gle. A woggle is a fat wiggle (and so, in time,
one may wonder if this term will also be
appropriated to describe ageing children’s
entertainers). A sufficient condition to not
have a woggle is for the so-called Schwarzian
derivative S(f) to be negative. This is a
lovely Chapter which motivates the usually
mysterious concept of S(f) and also shows
how it is preserved under composition. The
mean value theorem is used extensively in
the proofs.

Chapters 11 and 12 give a nice cover-
age of (topological) conjugacy, i.e. the idea
of relating one map to another in terms of
an invertible continuous coordinate trans-
formation. This idea is very important in
dynamics (and, of course, in mathematics
more generally). It allows a choice of a
canonical representative for the conjugacy
class, or a normal form. To illustrate this,
the authors prove that the tent map is rep-
resentative of all one hump maps with wig-
gly iterates. Along the way in Chapter
12, the concepts of Cauchy sequences, com-
pleteness and uniform convergence are in-
troduced and used.

Finally, in Chapter 13, the notion of an
invariant set for a one-hump map is intro-
duced. This allows extensions of the results
of previous chapters to one-hump maps that
expansively map the unit interval into a
range bigger than the domain. Again, hav-
ing wiggly iterates turns out to be a key
concept as it implies that the largest invari-
ant set for the one-hump map is a Cantor
set and that the dynamics on this Cantor
set is chaotic.

The authors should be commended for
managing to steer a course through simple
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mathematics so as to recover some of the im-
portant results in one-dimensional dynam-
ics. The book is well-written with a great
set of illuminating and searching problems.
Plus there are many great illustrations. The
book is consistent with the pedagogical ap-
proach of learning mathematics through ex-
tensive problem-solving that is a hallmark
of the La Trobe teaching method. I can see
various uses for this book. The obvious one,
consistent with its origins, is to form the ba-
sis of a stand-alone second or third year one-
semester course in one-dimensional chaos.
Parts of it could also be used to make nice
learning modules that could be inserted into
the advanced stream of a calculus course,
nicely reinforcing those results with dynam-
ical applications. Finally, for bright under-
graduates who need to be extended, parts

of it could be given as a reading course for
independent study.
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“Visiting scientist”

Back in 1964 it was big news when interna-
tional scientists were visiting Australia. The
following news item appeared in the very first
edition of The Australian, which celebrated its
40th anniversary on the 1st of July this year.
Imagine today to have your guests announced
in a similar fashion.

The Australian, 15 Jul 1964 (Contributed by Kim Burgess)

Completed PhDs

Deakin University:
• Dr Azmeri Khan, Many-sample location and scale tests with quantile-function error

distributions, supervisor: Prof. Lynn Batten.
Macquarie University:

• Dr William B. Hart, Evaluation of the Dedekind Eta function, supervisor: Prof. Alf
van der Poorten.

Murdoch University:
• Dr Alexandra Bremner, Localised splitting criteria for classification and regression

trees, supervisor: Dr Ross Taplin.
University of Queensland:

• Dr Birgit Loch, Surface fitting for the modelling of plant leaves, supervisors: John
Belward and Jim Hanan.
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University of Western Australia:
• Dr John Bamberg, Innately transitive groups, supervisor: Prof. C. E. Praeger.
• Dr Devin John Kilminster, Modelling dynamical systems via behaviour criteria, su-

pervisor: Dr Kevin Judd.
• Dr Maska Law, Flocks, generalised quadrangles and translation planes from BLT-

sets, supervisor: Dr T. J. Penttila.
• Dr Sacha Daniel Roscoe, Algorithms for detection of geometrical features, supervisor:

Prof. J. L. Noakes.
• Dr Tian Khoon Lim, Edge-transitive homogeneous factorisations of complete graphs,

supervisors: Prof. C. E. Praeger, Dr C. H. Li.
• Dr Ricky O’Brien, Modelling the transport and reaction of enzymes in germinating

barley, supervisors: Dr N. Fowkes, Dr S. Wang.
• Dr Tomomichi Nakamura, Modelling nonlinear time series using selection methods

and information criteria, supervisors: Prof. A. Mees, Dr Kevin Judd.
• Dr Mahmoud El-Hirbawy, Calculation of electromagnetic fields of power transmis-

sion lines using finite difference techniques, supervisor: Dr Les Jennings.

New Books

R.Y. Rubinstein (Technion) and D.P. Kroese (University of Queensland), The Cross-Entropy
Method: A Unified Approach to Combinatorial Optimization, Monte Carlo Simulation,
and Machine Learning, (Springer-Verlag 2004), 320 pages, ISBN 0-387-21240-X.

A. Baddeley and E.B. Vedel Jensen, Stereology for statisticians, (Chapman & Hall/CRC,
In press, late 2004).

Awards and other achievements

• Dr Hans Gottlieb of Griffith University has been awarded a DSc by the University
of Melbourne for a thesis entitled “Studies in Vibrations and Related Phenomena”.

• The book ‘Einstein’s Heroes’ by Dr Robyn Arianrhod of Monash University has
been shortlisted for the Age Book of the Year Prize in the Non-fiction section.

• Professor Adrian Baddeley of the University of Western Australia was presented the
Pitman Medal for 2004 by the Statistical Society of Australia (SSA). The Pitman
Medal is the highest honour that can be bestowed by the SSA, and it is awarded for
achieving high distinction in Statistics which enhances the international standing of
Australia in this discipline.

• Dr Akshay Venkatesh, who completed his honours degree at the University of West-
ern Australia, has been awarded a Clay Research Fellowship.
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Appointments

Curtin University:
• Professor Lou Caccetta’s term as Head of the Department of Mathematics and

Statistics has expired. The new head will be Professor K.L. Teo who will join the
department in January 2005. During the interregnum Dr Peg-Foo Siew is acting
Head.

• Mrs. Pam Hollis has resigned.
Macquarie University:

• Dr Frank Valckenborgh commenced on 21 June 2004 till the end of 2006 as MU
Research Fellow, under supervision of Associate Professor John Corbett.

• Dr Sergey Panin will commence on 1 October 2004 as MU Research Fellow under
supervision of Professor Paul Smith.

• Dr Thorsten Palm will commence in August 2004 as a Scott Russell Johnson Memo-
rial Fellow with the Centre of Australian Category Theory.

Melbourne University:
• At the Department of Mathematics and Statistics, Dr Heng-Soon Gan has been

appointed as Operations Research Consultant and Dr Meei Ng has been promoted
to Senior Lecturer.

• At the Australian Mathematical Sciences Institute, Nancy Lane has been appointed
as ICE-EM Manager, Thomas Montague has been appointed as Industry/Marketing
Director, and Raoul Callaghan has been appointed as IT Manager.

University of Queensland:
• Drs Joseph Grotowski and Tony Roberts have accepted Lecturer C positions and

commence in February 2005. Dr Grotowski is currently an Associate Professor at
City University in New York while Dr Roberts is a Lecturer B at QUT in Brisbane.

• Dr Andrew Blinco has resigned his Lecturer A position to work as trainee actuary
at SUNCORP.

• Dr Phil Isaac has been appointed as a Lecturer A until December 31, 2004.
• Dr Abdollah Khodkar has resigned his position at the University of Queensland

to take up an Assistant Professorship in the Department of Mathematics State
University of West Georgia, USA.

University of Western Australia:
• Dr Alice Niemeyer was promoted to Senior Lecturer in February.
• Dr Nazim Khan has been appointed as Lecturer/Consultant.
• Dr Maska Law has been appointed as a Research Associate.
• Dr John Bamberg has been appointed as a Research Fellow.

Introducing Mathematics-in-Industry Information Site

Cambridge University Press has announced the launch of a new website, Mathematics in
Industry Information Site. MIIS is a joint venture of the Oxford Centre for Industrial and
Applied Mathematics, The Smith Institute for Industrial Mathematics and System Engi-
neering, and Cambridge University Press/European Journal of Applied Mathematics. It
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contains records of Study Groups, Workshop reports, interactive elements, a combination
of preprint server, notice board, and help facility that will help mathematicians and scien-
tists/engineers in Universities and those in industry. All this is free.

MIIS aims to be a window on what mathematics can do for industry and how indus-
try can be a source of new ideas for mathematics. It is an on-line resource of choice for
Industrial Mathematics. The ANZIAM MISGs have been invited to participate. Visit
http://misg2005.massey.ac.nz.

Graeme Wake
Centre for Mathematics in Industry, Massey University

Director, MISG2005

Visiting mathematicians

Visitors are listed in the order of the last date of their visit and details of each visitor are
presented in the following format: name of visitor; home institution; dates of visit; principal
field of interest; principal host institution; contact for enquiries.

Etienne Ghys; ENS-Lyon; 18 September to 3 October; Geometry and Dynamical Systems;
LTU; Grant Cairns

Marcel Nicolau; Universitat Autonoma de Barcelona; 18 September to 3 October; Differen-
tial Geometry; LTU; Grant Cairns

Prof. Tomaso Poggio; Massachussets Institute of Technology; 1 to 10 October; –; UWA;
Prof. Lyle Noakes

Dr Soenke Blunck; University de Cergy-Pontoise; 1 September to 15 October; Analysis and
Geometry; ANU; Prof. Alan McIntosh

Dr Max Neunhoeffer; University of Aachen; 4 to 30 October; –; UWA; Prof. Cheryl Praeger
and Dr Alice Niemeyer

Dr Alan Camina; University of East Anglia; 4 to 31 October; –; UWA; Prof Cheryl Praeger
Prof. Liu; Oufu Normal University (China); July to October 2004; Functional Analysis and

Partial Differential Equations; CUT; Dr Peg-Foo Siew and Dr Yong Hong Wu.
Prof. Ury Passy; Technion-Israel Institute of Technology; 1 August to 1 November; – ; UMB;

Moshe Sniedovich
Prof. Samuel Muller; U Bern; 27 October to 1 November; Statistical science; ANU; Prof.

Alan Welsh
Prof. Kirk Lancaster; Wichita State University; 18 October to 6 November 2004; Nonlinear

and Applied Analysis Program; ANU; Dr Ben Andrews
Prof. H.W. Capel; University of Amsterdam; 1 October to 12 November; ARC CoE for

Mathematics and Statistics of Complex Systems; LTU (Bundoora); Prof. R. Quispel
Prof. Denis White; University of Toledo; 3 to 24 November; Analysis and Geometry; ANU;

Prof. Alan Carey
Mike Thorne; British Columbia Cancer Research Centre; July to November 2004; Combina-

torics of Finite Sets, Bioinformatics; CDU; Dr Ian Roberts
Prof. Lincheng Zhao; University of Science & Technology of China; October to November;

–; UWA, Dr Jiti Gao
Prof. Z.M. Guo; Donghua U; September to November 2004; –; UNE; –

http://misg2005.massey.ac.nz
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Prof. Bill Lampe; University of Hawaii; 7 November to 11 December; Universal algebra,
lattice theory; LTU; Dr Brian Davey

Prof. David Pike; Memorial University of Newfoundland; 15 October to 11 December; com-
binatorial designs and graph theory; UQL; Elizabeth Billington

Prof. Chengxiu Gao; Wuhan University; 15 September to 15 December; –; UMB; Dr Sanming
Zhou

Dr Miroslav Haviar; M. Bel University, Slovakia; 18 October to 18 December; Universal al-
gebra, duality theory; LTU; Dr Brian Davey

Prof. Chaiho Rim; Chonbuk National University; 1 December to 22 December; –; UMB;
Paul Pearce

Dr Rachel Camina; DPMMS Centre for Mathematical Sciences, Cambridge; 17 August to 27
December 2004; –; UWA; Prof. Cheryl Praeger and Dr Alice Niemeyer

Dr Michael Levitan; USA; January to December 2004; – ; UWA
Prof. Dongsheng Tu; Queen’s U; 1 February to 31 December; Statistical science; ANU; Profs.

Peter Hall and Sue Wilson
Mr Bard Stove; University of Bergen; 4 October to 31 December; –; UWA; Dr Jiti Gao
Prof. Giuseppe Mussardo; SISSA, Trieste; 1 November 2004 to 11 January 2005; –; UMB;

Paul Pearce
Prof. Gi-Sang Cheon; Daejin U, South Korea; 15 January 2004 to 15 January 2005; linear

algebra and combinatorics; ANU; Dr Ian Wanless
Prof. Ralph Stohr; UMIST; 27 August 2004 to 27 January 2005; Algebra and Topology;

ANU; Dr Laci Kovacs
Prof. Chaohua Dong; China; 1 February 2004 to 31 January 2005; – ; UWA
Prof. Karl Hofmann; Technische Universitat Darmstadt; 1 October 2004 to 31 January 2005;

topological groups and semigroups; UB; Sidney A. Morris
Prof. Dale Rolfsen; University of British Columbia; 1 November 2004 to 31 January 2005;

–; UMB; Hyam Rubinstein
Prof. Jean Bertoin; University Pierre et Marie Curie; 14 January 2005 to 14 February 2005;

Stochastic Analysis; ANU; Prof. Ross Maller
Wahib Arroum; University of Southampton; 1 October 2004 to 31 March 2005; –; UMB;

Owen Jones
Dr Alex Lindner; Technischen University; 16 January to 12 April 2005; Stochastic Analysis;

ANU; Prof. Ross Maller
Prof. Akos Seress; Ohio State University; July 2004 to July 2005; –; UWA; Prof. Cheryl

Praeger
Prof. Wen-Han Hwang; Feng Chia University; February to August 2005; Statistical Science;

ANU; Prof. Richard Huggins
Kim Levy; Universite de Montreal; 11 August 2004 to 1 August 2005; –; UMB; Felisa

Vazquez-Abad
Prof. Robert Lipster; Tel Aviv University; 1 October 2004 to 30 September 2005; Stochastic

Processes; MNU; Prof. Fima Klebanar
Eloim Gutierrez; Universite de Montreal; 10 September 2004 to 1 December 2005; –; UMB;

Felisa Vazquez-Abad
Dr Shenglin Zhou; Shantou University; October 2004 to October 2006; –; UWA; Prof. Cheryl

Praeger
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Conferences

The Centre of Excellence for Mathematics and Statistics of Complex Systems
Workshop on Metapopulations

2 September, University of Queensland, Brisbane
Web: http://www.maths.uq.edu.au/~pkp/MetaPop04.html

Computational Techniques And Applications Conference: CTAC 2004
27 September – 1 October 2004, The University of Melbourne
Web: http://www.conferences.unimelb.edu.au/CTAC2004/

48th Australian Mathematical Society Annual Conference (2004)
28 September – 1 October 2004, RMIT, Melbourne
Web: http://www.ma.rmit.edu.au/austms04/

International Conference on Mathematical Inequalities and their Applications
6 – 8 December 2004, Victoria University, Melbourne
Web: http://rgmia.vu.edu.au/conference

6th International Conference on Optimization: Techniques and Applications
9 – 11 December 2004, University of Ballarat
Web: http://www.ballarat.edu.au/icota

2004 World Conference in Natural Resource Modelling
12 – 15 December 2004, RMIT, Melbourne
Web: http://www.ma.rmit.edu.au/2004RMAconference

The First International Workshop on Intelligent Finance (IWIF 1)
13 – 14 December 2004, Crown Promenade Hotel, Melbourne
Web: http://www.iwif.org

The 2004 NZIMA Conference in Combinatorics and its Applications and The
29th Australasian Conference in Combinatorial Mathematics and Combinatorial
Computing (29ACCMCC) (Joint Conference)

13 – 18 December 2004, Lake Taupo, New Zealand
Web: http://www.nzima.auckland.ac.nz/combinatorics/conference.html

Geometry: Interactions with Algebra and Analysis
January – June 2005, Auckland
Web: http://www.math.auckland.ac.nz/Conferences/2005/geometry-program

Mathematics-in-Industry Study Group 2005
24 – 28 January 2005, Massey University at Albany, Auckland, New Zealand
Web: http://misg2005.massey.ac.nz

http://www.maths.uq.edu.au/~pkp/MetaPop04.html
http://www.conferences.unimelb.edu.au/CTAC2004/
http://www.ma.rmit.edu.au/austms04/
http://rgmia.vu.edu.au/conference
http://www.ballarat.edu.au/icota
http://www.ma.rmit.edu.au/2004RMAconference
http://www.iwif.org
http://www.nzima.auckland.ac.nz/combinatorics/conference.html
http://www.math.auckland.ac.nz/Conferences/2005/geometry-program
http://misg2005.massey.ac.nz
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ANZIAM 2005: The annual ANZIAM Applied Mathematics Conference
30 January – 3 February 2005, Napier, New Zealand
Web: http://www.math.waikato.ac.nz/anziam05

The Annual ANZIAM Applied Mathematics Conference and Annual Meeting of
ANZIAM for 2005 is sponsored by the Royal Society of New Zealand. The an-
nual conference of ANZIAM is an established annual gathering of applied math-
ematicians, scientists and engineers with wide-ranging interests. It provides an
interactive forum for presentation of results and discussions by students, aca-
demics and other researchers on applied and industrial problems derived in
many scientific fields and amenable to quantitative description and solution.
The deadline for registration is December 1.

49th Annual Meeting of the Australian Mathematical Society
26 – 30 September 2005, The University of Western Australia
Director: Lyle Noakes
E-mail : lyle@maths.uwa.edu.au
Web: http://www.maths.uwa.edu.au/~austms05/index.html

http://www.math.waikato.ac.nz/anziam05
mailto:lyle@maths.uwa.edu.au
http://www.maths.uwa.edu.au/~austms05/index.html
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AustMS bulletin board

AustMS Accreditation

The secretary has announced the accreditation of:

Dr Dirk Kroese, University of Queensland, as an Accredited Member (MAustMS).

Rules governing AustMS Grants for Special Interest Meetings

The Australian Mathematical Society sponsors Special Interest Meetings on specialist topics
at diverse geographical locations around Australia. This activity is seen as a means of
generating a stronger professional profile for the Society within the Australian mathematical
community, and of stimulating better communication between mathematicians with similar
interests who are scattered throughout the country.

These grants are intended for once-off meetings and not for regular meetings. Such
meetings with a large student involvement are encouraged. If it is intended to hold regular
meetings on a specific subject area, the organisers should consider forming a Special Interest
Group of the Society. If there is widespread interest in a subject area, there is also the
mechanism for forming a Division within the Society.

The rules governing the approval of grants are:
(a) each Special Interest Meeting must be clearly advertised as an activity supported

by the Australian Mathematical Society;
(b) the organizer must be a member of the Society;
(c) the meeting must be open to all members of the Society;
(d) registration fees should be charged, with a substantial reduction for members of the

Society. A further reduction should be made for members of the Society who pay the
reduced rate subscription (i.e. research students, those not in full time employment
and retired members);

(e) a financial statement must be submitted on completion of the Meeting;
(f) any profits up to the value of the grant are to be returned to the Australian Math-

ematical Society;
(g) on completion, a Meeting Report should be prepared, in a form suitable for publi-

cation in the Australian Mathematical Society Gazette;
(h) a list of those attending and a copy of the conference Proceedings (if applicable)

must be submitted to the Society;



280 AustMS bulletin board

(i) only in exceptional circumstances will support be provided near the time of the
Annual Conference for a Special Interest Meeting being held in another city.

In its consideration of applications, Council will take into account locations around Aus-
tralia of the various mathematical meetings during the period in question. Preference will
be given to Meetings of at least two days duration. The maximum allocation for any one
Meeting will be $2500, with up to $12,000 being available in 2004. There will be six-monthly
calls for applications for Special Interest Meeting Grants, each to cover a period of eighteen
months commencing six months after consideration of applications.

Elizabeth J. Billington
AustMS Secretary
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