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Pantographs and cyclicity

John Boris Miller∗

Abstract

Every parallelogram Λ generates a doubly-infinite family of quadrilaterals
called its pantograph. The types of quadrilaterals so arising can be char-
acterised by tiling the plane. The family contains a single infinity of cyclic
quadrilaterals. The locus of their circumcentres is a rectangular hyperbola or
orthogonal line-pair passing through the vertices of Λ.

Any non-degenerate parallelogram Λ = FGHI generates in its plane a doubly-
infinite system of quadrilaterals called its pantograph, denoted by Q(Λ). Its ele-
ments are just those plane quadrilaterals having the vertices of Λ as the midpoints
of their sides, taken in order. More precisely, let P be any point in the plane,
and draw the straight line segment PQ having I as its midpoint, from Q draw a
segment QR with F as its midpoint, draw RS with G as its midpoint, and finally
join SP. It is easily verified that SP has H as its midpoint. (This is true even
if P is not in the plane of Λ. Then Ω = PQRS is a quadrilateral of Q(Λ), and
every element of Q(Λ) can be constructed in this way. Λ is called the median
parallelogram of Ω. Clearly Ω is uniquely determined by specification of any one
of its vertices. The diagonals of Ω are parallel to the sides of Λ respectively and
twice their length, and the area of Ω is twice that of Λ. See [1], where it was shown
how, in the representation of quadrilaterals explained there, the members of Q(Λ)
are representable by the points of a surface Σ of degree 12 in the Euclidean space
E6, modulo an equivalence. In what follows we suppose that the vertices of Λ and
Ω are related as described above.
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Figure 1. The three non-degenerate types of quadrilaterals
and their median parallelograms.

Of interest is the location within Q(Λ) of the cyclic quadrilaterals; these are rep-
resentable by a curve C in E6 of degree 24 on Σ. This high degree may be a
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multiple of the effective degree, but it suggests an order of complexity which is
belied by the apparent simplicity of the geometry. We show here how the cyclic
quadrilaterals can be located more directly by means of a rectangular hyperbola
in the plane of Λ. This does not in itself contradict the assertion of the degree of
C, for the representations are different.

Tiling of the plane

In order to distinguish the different types of quadrilaterals in Q(Λ) (the nonde-
generate types (convexes, darts, zigzags) and the partially degenerate types (flags,
triangles, . . . ; see [1]), we first ask: For what locations of a specified vertex is the
member of Q(Λ), having that vertex, of a particular type? It turns out that the
answer can be given in terms of tiling.

We tile the plane using copies of Λ in the obvious manner. The tiles are isomorphic
copies of Λ∪ inside (Λ), any distinct two being disjoint or having an edge or vertex
as intersection. It is sufficient, for two quadrilaterals to be of the same type, that
their specified vertices are interior to one and the same tile.
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Figure 2. Tiling of the plane near Λ, when P is the specified vertex.

There is only one tile, t(P) = HIJK, for which Ω is convex. All other tiles on the
cross through t(P) produce darts, and all remaining tiles give rise to zigzags. If P
belongs to the boundary of t(P) then Ω is a triangular degenerate. Of course, if
another vertex is specified then the labelling of tiles is different, in an obvious way.

Cyclic quadrilaterals in Q(Λ)

We suppose that Λ = FGHI is a given nondegenerate parallelogram, and seek
to characterise the cyclic members of Q(Λ). They may be convex or zigzag, but
cannot be a dart or degenerate.

Theorem 1. If Ω is a cyclic quadrilateral in Q(Λ), and O is the centre of its
circumcircle, then angles ∠FOG, ∠HOI are

• supplementary if O is inside Λ
• equal if O is outside Λ

and the same is true for the angles ∠FOI, ∠GOH.
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Proof. Suppose that O is inside Λ. PQ, QR, RS and SP, being chords of the
circle, have their right bisectors meet at O, creating cyclic quadrilaterals FOGR,
HOIP, so angles ∠FOG, ∠R are supplementary, and so are ∠HOI, ∠P. But since
Ω is cyclic, angles ∠P and ∠R are also supplementary. The result follows. If O is
outside, the proof is analogous. See Figure 3.
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Figure 3. Illustrating Theorem 1 and Lemma 1.

Lemma 1. If O is the centre of the circumcircle of Ω as in Theorem 1, then O is
inside Ω if and only if it is inside Λ.

Proof. When Ω is convex the parallelogram Λ is inside Ω, and the geometry is as
shown in Figure 3, from which the lemma’s statement is immediate. The reader
may like to draw the corresponding figures when Ω is a zigzag. If O is on a side
of Ω then that side is a diameter and O coincides with a vertex of Λ. Note that O
cannot be an internal point of a side of Λ.

We propose now to prove the converse of Theorem 1. The arguments here are more
delicate, and involve various cases. For ease of exposition an enabling lemma is
postponed until after the main result.

Theorem 2. Let Λ = FGHI be a parallelogram. If O is any point inside Λ and
such that angles ∠FOG, ∠HOI are supplementary, or outside Λ and such that
these angles are equal, then O is the centre of the circumcircle of some cyclic
quadrilateral Ω of Q(Λ).

Proof. Join O to F, G, H, I, the vertices of Λ. Through these points draw lines
perpendicular to OF, OG, OH, OI respectively, and call the intersection points of
adjacent lines R, S, P, Q (see Figure 4).

Case 1. The point O is inside Λ and the angles ∠FOG, ∠HOI are supplementary.
Then so are angles ∠P, ∠R, and Ω = PQRS is therefore cyclic. We shall suppose
first that Ω is convex.
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Figure 4. Cases (α) and (β).

It remains only to prove that O is its circumcentre. This will ensure that F, G,
H, I are the midpoints of the sides and that Ω ∈ Q(Λ). Suppose on the contrary
that the circumcentre is another point O′. Drop perpendiculars O′F′ . . . , onto the
corresponding sides with feet F′, . . . , thereby making these points the midpoints
of the sides of Ω and making Λ′ = F′G′H′I′ the median parallelogram of Ω; that
is ΩQ(Λ′), and Λ′ is inside Ω.

Suppose O′ were outside Λ′, and therefore outside Ω, by Lemma 1. Then by The-
orem 1 the angles ∠F′O′I′, ∠G′O′H′ are equal. But these are equal respectively
to ∠FOI, ∠GOH, which are supplementary by assumption. Thus all four angles
∠P, ∠Q, ∠R, ∠S are rightangles, Ω is a rectangle and therefore its circumcentre
O′ is inside Ω and hence inside Λ′ by Lemma 1 again, a contradiction. So O′ is
indeed inside Λ′.

The discussion now separates into several cases. Point O′ determines a parti-
tion of the inside of Ω into four disjoint open regions, ins(O′F′RG′) etc., together
with their boundaries. Setting aside for the moment the cases where O lies on a
boundary, suppose without loss of generality that O ∈ ins(O′F′RG′). Then

FG < F′G′. (1)

For a proof of this seemingly obvious fact see Lemma 2 below. Now, the position
of O implies that O′ belongs to the inside of one of OFQI, OIPH or OHSG. We
consider these cases separately.

(α) Let O′ ∈ ins(OIPH). Then I′H′ < IH by Lemma 2, so FG < F′G′ = I′H′ <
IH. But FG = IH, being opposite sides of the parallelogram Λ. Hence this
case is not possible.

(β) Let O′ ∈ ins(OFQI). This subcase is more delicate, relying on the ways in
which two parallelograms can intersect. Note that FG is outside Λ′, and
FG < F′G′. Likewise F′I′ does not meet Λ, and F′I′ < FI; on the other hand
IH meets I′H′ and GH meets G′H′. Moreover all vertices of Λ are outside
Λ′, and vice versa: for all sides of Ω are outside both parallelograms except
at their vertices. The two parallelograms cannot intersect in this way, so the
case is not possible.
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(γ) Let O′ ∈ ins(OHSG). This case is similar to (β).

Thus in all subcases, we conclude (except where O or O′ lies on the boundary) that
O �= O′ is impossible, and O is indeed the centre of the circumcircle. We invite
the reader to verify the boundary cases (which must follow however by appeals to
continuity), and then to adapt the proof above in the case where Ω is a zigzag.
Then finally the reader can try his or her hand at Case 2.

Case 2. O is outside Λ and angles ∠FOG, ∠HOI are equal. The proof in this
case is in the same vein as Case 1.

Lemma 2 is the enabling lemma used in the above proof.

Lemma 2. Let ABCD be a quadrilateral in which angles ∠A and ∠C are right
angles, and let K be any point inside ABCD. Let MK and NK be the feet of the
perpendiculars from K onto CD and AD respectively. Then MKNK < CA, and the
segments MKNK and CA do not meet.

Proof. The case where B is obtuse is illustrated in Figure 5. Let M1 be any chosen
point on CD; the points K for which the construction gives MK = M1 all lie on the
perpendicular to CD at M1. Suppose that this perpendicular meets DA (not DA
produced) in U1. Then lengths M1NK have upper bound M1U1, corresponding to
K = U1. If M0 is the foot of the perpendicular from A to CD then M1U1 < M0A
since these two lines are parallel, and

MKNK < M1U1 < M0A < CA.

It is clear that MKNK and CA cannot intersect. If K lies inside M0ABC the proof
is similar. The case where ∠B is acute and ∠D is obtuse is handled in a like
manner.
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Figure 5. For Lemma 2.

Locus of circumcentres of cyclic quadrilaterals in Q(Λ)

We shall call any point O which is the circumcentre of a cyclic quadrilateral in
Q(Λ) a circumcentre for Λ, and write Cen(Λ) for the set of all such points. The
reader can easily verify the following theorem.
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Theorem 3. Each vertex of Λ is a circumcentre for Λ, and these are the only
points on Λ which are circumcentres.

For example, to find the cyclic quadrilateral with centre G, draw lines α through
I perpendicular to IG, β through F perpendicular to FG, and γ through H per-
pendicular to HG; then in the notation of Figure 1, Q = α ∩ β, P = α ∩ γ, and
R,S are such that RF = FQ and SH = HP.

Theorems 1, 2 and 3 characterise completely the points of Cen(Λ). The angle
properties in Theorems 1 and 2 will now allow us to calculate the locus of cir-
cumcentres. We have to find those points O inside FGHI at which each pair of
opposite sides subtends supplementary angles. This can be done as a somewhat
irksome exercise in analytic geometry.

Let O be a circumcentre lying inside Λ. First observe that if Γ denotes the circle
through O, F and G then O lies also on a circle Γ′ of equal radius through I,H:
this is equivalent to the property of supplementary.
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Figure 6. Circles Γ and Γ′.

Write, for the sidelengths and angle measure,

f = FG = HI, g = GH = IF, ω = angle ∠FGH,

and assume without loss of generality that g ≤ f and 0 < ω < π/2. Let X denote
the point of intersection of the diagonals of Λ, take X as the origin for coordinate
axes Xξ, Xη with Xξ parallel to and in the sense FG. Using the geometry of circles
Γ,Γ′ we find, for the coordinates (ξ, η) of O,

(ξ2 − η2) sinω − 2ξη cosω − 1
4 [(f

2 − g2) sinω] = 0. (2)
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Let the axes be rotated clockwise through an angle (π −ω)/2 to new axes Xλ,Xµ;
the equation becomes

λµ = E2, where E :=
√

1
8 (f

2 − g2) sinω. (3)

Λ is a rhombus if and only if f = g. This and a little further calculation leads to
the following theorem, where we write S = sin(ω/2), C = cos(ω/2):

Theorem 4. When Λ is not a rhombus, the locus Cen(Λ) of circumcentres is a
rectangular hyperbola (2) through the vertices of Λ, with centre X and asymptotes

λ = Sξ − Cη = 0 and µ = Cξ + Sη = 0.

When Λ is a rhombus, Cen(Λ) is an orthogonal line-pair, namely the lines con-
taining the diagonals of Λ.
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Figure 7. The rectangular hyperbola Cen(Λ), and an arbitrarily chosen point O on it.

Now suppose that Λ is not a rhombus. A typical point on Cen(Λ) is O = (ξ, η) ≡
O(t) where

ξ = E(St + Ct−1), η = E(−Ct + St−1). (4)

As t grows from 0 to +∞, O describes the right-hand arm of the hyperbola down-
wards; as t grows from −∞ to 0, O describes the left-hand arm downwards.

To find the radius r(t) of the circumcircle (call it Θ(t)), we draw the lines FR
perpendicular to OF and GR perpendicular to OG: the radius we seek is OR (see
Figure 3). In principle, calculating the coordinates of R is quite straightforward;
but it is in fact a formidable piece of algebra, at the end requiring finding the
factors of a quartic in t whose coefficients feature the five related constants E, f ,
g, S, C. When Λ is a rhombus the parametrisation of the line-pair is different but
the subsequent calculations are simpler. The eventual result is:
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Theorem 5. When Λ is not a rhombus, the radius of the circumcircle Θ(t) having
centre O with parameter t as in (4) is given by

r(t) =
√

E2C−2t2 + 1
2 (f

2 + g2) + E2S−2t−2.

When Λ is a rhombus, the circumcircle with centre O(u) on diagonal line GI(λ =
Cu, µ = Su) has radius

√
f2 + u2S−2, and that with centre O(t) on diagonal line

FH(λ = Cu, µ = Su) has radius
√

f2 + u2C−2.

We can easily prove the following converse of Theorem 4:

Theorem 6. Let H be any rectangular hyperbola in the ξXη plane with equation
λµ = constant referred to some axes λXµ, where Xλ is obtained by a clockwise
rotation through an angle φ, π/4 < φ < π/2. If G is any point on H and in the
first quadrant for ξXη, there exists a unique parallelogram Λ = FGHI, with FG
parallel to and in the direction of Xξ, such that H = Cen(Λ).
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