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An epidemic model approximating
the spread of the common cold

J. Gani∗ and R.J. Swift∗∗

Abstract

An approximation to the simple stochastic epidemic is presented which leads
to a binomial type process for the number of susceptibles X(t) at time t ≥ 0.
The expectation of X(t) is compared with that of the exact simple epidemic,
and the duration T of the epidemic is discussed.

Introduction

A simplified model for the spread of the common cold is the simple epidemic de-
scribed by Bailey [2] and Daley and Gani [3]. This assumes the homogeneous
mixing of cold-free susceptibles X(t), where X(0) = N , and infectives with the
cold Y (t), where Y (0) = I. As examples, we may consider a family of six members
setting off the epidemic with N = 5 and I = 1, or alternatively, a classroom of 21
members, starting with N = 20, I = 1. In the deterministic version of the model,
which is characterised by the differential equations

dX
dt

= −βXY , dY
dt

= βXY ,

it is well known that for the infection parameter β = 1,

X(t) =
N(N + I)

N + Ie(N+I)t , Y (t) =
I(N + I)e(N+I)t

N + Ie(N+I)t , (1)

with an epidemic curve, representing the rate of spread of the infection,

w = XY = −dX(t)
dt

=
NI(N + I)2e(N+I)t

(N + Ie(N+I)t)2
. (2)

Bailey [2, p. 35] provided graphs of w when N = 10, I = 1 and N = 20, I = 1;
these graphs are redrawn in Figure 1.
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Figure 1. The deterministic epidemic curve for two initial susceptible
population sizes: (a) N = 10, I = 1; (b) N = 20, I = 1.

The simple stochastic epidemic

In a stochastic formulation of the simple epidemic, X(t) and Y (t) are considered
to be random variables (RVs), where the probabilities

Pi(t) = P{X(t) = i | X(0) = N}
of the Markov chain {X(t); t ≥ 0} in continuous time will satisfy the equations

dPi(t)
dt

= −i(N + I − i) Pi(t) + (i+ 1)(N + I − i− 1) Pi+1(t) , 0 ≤ i ≤ N − 1 ,

dPN (t)
dt

= −iN PN (t) . (3)

Writing the probability generating function (PGF) of X(t) as

φ(z, t) =
N∑

i=0

Pi(t)zi , 0 ≤ z ≤ 1

with φ(z, 0) = zN , we can derive the partial differential equation (PDE)

∂φ

∂t
= z(z − 1)

∂2φ

∂z2 − (z − 1)(N + I − 1)
∂φ

∂z
(4)

which yields on differentiation with respect to z, when z = 1,

d
dt

E[X(t)] = − E[X(t)](N + I − E[X(t)]) + var[X(t)] (5)

as against the deterministic

dX(t)
dt

= −XY = −X(N + I −X) .

Bailey [2] derived the PGF φ, the exact solution of equation (4), as well as the
moment generating function (MGF) of X(t) in terms of hypergeometric functions.
He also obtained the approximate solution using a perturbation technique that
made a small change in the states of the process by letting n = N + ε where ε > 0.
This gives an approximate value for the PGF φ as

φ(z, t) =
N∑

j=0

dje−j(n+1−j)t
2F1(−j, j − n− 1,−n, z) , (6)
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where

dj =
(−1)jN ! (n− 2j + 1)n!

j!(N − j)! (n−N)!
∏N

r=0(n− j − r + 1)
,

and 2F1(−j, j − n− 1,−n, z) is the hypergeometric function defined by the series

2F1(a, b, c, z) =
∞∑

�=0

(a)� (b)k

(c)�

z�

�!

with (a)� = a(a+ 1)(a+ 2) · · · (a+ �− 1) and (a)0 = 1.

Bailey [2] and Daley and Gani [3] provide details of this solution and both show
that the approximation tends to the exact solution as ε goes to zero.

The expected number of susceptibles for the simple stochastic epidemic is obtained
from (6) as

E[X(t)] =
∂φ(1, t)
∂z

=
N∑

j=0

dje−j(n−j+1)t
∞∑

k=1

(−j)k(j − n− 1)k

(−n)k(k − 1)!
.

The epidemic curve for the simple stochastic epidemic process is found as

w = −d E[X(t)]
dt

which is graphed in Figure 2 for N = 10, I = 1 and N = 20, I = 1, with ε = 0.001.

In the next section, we propose a much simpler alternative approximation in which
the RV Y (t) is replaced by its deterministic value. This will provide a more readily
tractable model for the epidemic.

An approximate simple stochastic epidemic

In the previous section, (5) shows that if var[X(t)] is small compared to the prod-
uct X(N + I − X), then the deterministic model for the number of susceptibles
and the expected number of susceptibles for the stochastic model will be close.
Thus, we use the idea of replacing an RV by its deterministic value as the basis of
an approximation to the simple stochastic epidemic.
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Figure 2. The stochastic epidemic curve for two initial susceptible population
sizes: (a) N = 10, I = 1; (b) N = 20, I = 1. In both graphs ε = 0.001.
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Specifically, for the transition of the number of susceptibles from i to i − 1, we
replace the probability i(N + I − i)δt+ o(δt) by the probability

i

(
(N + I)Ie(N+I)t

N + Ie(N+I)t

)
δt+ o(δt) .

This transforms the process X(t) into a pure death process with a time-dependent
death parameter

μ(t) =
I(N + I)e(N+I)t

N + Ie(N+I)t (7)

and binomial type PGF

F (z, t) =
(

(z − 1) exp
(

−
∫ t

0
μ(v) dv

)
+ 1

)N

=
(

(z − 1)(N + I)
N + Ie(N+I)t + 1

)N

, (8)

where∫ t

0
μ(v) dv = ln

(
N + Ie(N+I)t

N + I

)
and exp

( ∫ t

0
μ(v) dv

)
=
N + Ie(N+I)t

N + I
.

(9)
Further details on birth–death processes with time-dependent parameters are given
by Allen [1].

Note that the expectation E[X(t)] of this approximate process takes exactly the
deterministic value in (1), so that the epidemic curve for this approximate simple
stochastic epidemic is precisely that given by (2).

We now compare this expectation with the exact expectation derived by Bailey
for N = 10, I = 1 and N = 20, I = 1. These graphs are presented in Figure 3.
Note that the approximate expectations of the numbers of susceptibles are un-
derestimates of the exact values by just over 1 when N = 10, and about 2 when
N = 20.

Duration of the epidemic

The simple stochastic epidemic process evolves by unit decrements at the times
tN , tN−1, . . . , t1 with tN+1 = 0, as shown in Figure 4. The duration time T of the
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Figure 3. The expected value E[X(t)] of the exact stochastic simple epidemic is com-
pared with the equivalent expected value for the approximate stochastic simple epidemic
for two initial population sizes of susceptibles: (a) N = 10, I = 1; (b) N = 20, I = 1.
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Figure 4. The simple stochastic epidemic process.

epidemic, is given by T =
∑N

i=1 Ti where the Ti = ti − ti+1, (i = 1, 2, . . . , N) are
independent exponentially distributed random variables, with

E[Ti] =
1

i(N + I − i)
,

so that

E[T ] =
N∑

i=1

1
i(N + I − i)

. (10)

To find the duration T̃ of the approximate simple stochastic epidemic, we write
the PGF F (z, t) in (8) as

FX(z, t) =
(
z(N + I) + I(e(N+I)t − 1)

N + Ie(N+I)t

)N

which gives that

P1(t) = P{X(t) = 1 | X(0) = N} =
N(N + I)IN−1(e(N+I)t − 1)N−1

(N + Ie(N+I)t)N
.

The probability density function of the RV T̃ for the approximate simple stochastic
epidemic is given by

f(t) = P1(t)(N + I − 1) =
(
NIN−1(N + I)(N + I − 1)(1 − e−(N+I)t)N−1

e(N+I)t(I +Ne−(N+I)t)N

)
,
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so that the expected duration is found to be

E[T̃ ] =
∫ ∞

0
tf(t) dt

=
∫ ∞

0
t

(
NIN−1(N + I)(N + I − 1)(1 − e−(N+I)t)N−1

e(N+I)t(I +Ne−(N+I)t)N

)
dt

=
(
N

I

)
(N + I)(N + I − 1)

N−1∑
j=0

(
N − 1
j

)
(−1)j

×
∫ ∞

0
te−(N+I)(j+1)t

(
1 −

(
N

I

)
e−(N+I)t

)−N

dt

=
(
N(N + I − 1)
I(N + I)

) N−1∑
j=0

∞∑
k=0

(
N − 1
j

) (
N + k
k

)
(−1)j+k

(
I

N

)k 1
(j + k + 1)2

.

(11)

While our model leads to simpler transient probabilities, the expected duration
given in (11) has a more complicated structure than that shown in (10).

Table 1 compares this approximation for the expected duration with the exact
expected duration from (10), we see that for large N , the approximate duration is
very close to the exact value.

Table 1. Expected duration times of the exact and approximate simple
stochastic epidemic process with I = 1.

Initial bumber of susceptibles N = 10 N = 20 N = 100 N = 500

Exact duration 0.5325 0.3426 0.10272 0.02711
Approximate duration 0.4667 0.3116 0.0994 0.02636

It should be pointed out that some asymptotic results are available for the distri-
bution of T ; for I = 1, Bailey [2] points out that the variable

W = (N + 1)T − 2 lnN

has the approximate distribution function

H(w) = 2e− 1
2 wK1(2e− 1

2 w) ,

where K1 is the modified Bessel function of the second kind. (See [4] for the
original formulae for the distribution of W .)
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