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Minimal faithful permutation degrees
of finite groups

Neil Saunders∗

Abstract

We calculate the minimal degree for a class of finite complex reflection groups
G(p, p, q), for p and q primes and establish relationships between minimal
degrees when these groups are taken in a direct product.

Introduction

The minimal faithful permutation degree μ(G) of a finite group G is the least non-
negative integer n such that G embeds in the symmetric group Sym(n). That is,
μ(G) is the degree of the smallest faithful permutation representation of G, where
a permutation representation is a group homomorphism from G to Sym(X) for
some set X.

It is well known that when a group G acts on a finite set X, the G-orbits induce
an equivalence relation on X and we can write

X = X1 � . . . � Xr,

where each Xi represents a G-orbit.

The restriction of G to one of its orbits on Xi is transitive and we can easily verify
that this action is equivalent to a right action on a set of cosets G/Gi where Gi is
the stabiliser of a point in Xi.

Specifically, fix a point xi ∈ Xi and define a map θ from Xi to G/Gi by θ(x) = Gih
where h ∈ G and xih = x. It is easy to see that Figure 1 commutes for all x ∈ Xi

and g ∈ G.
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The kernel of the action of G on G/Gi is the subgroup
⋂

g∈G g−1Gig called the
core of Gi, denoted by core(Gi). This is the largest normal subgroup of G that is
contained in Gi. We call Gi core-free if core(Gi) is trivial.

Given that each permutation representation is a disjoint union of transitive rep-
resentations which are equivalent to right actions on a set of cosets, we may ab-
breviate the information defining this permutation representation of G on X by
the list {G1, . . . , Gr} where each Gi represents the stabliser of a point in the orbit
Xi. We will often denote such a collection of subgroups by R and refer to it as the
representation of G. The elements of R are called transitive constituents and if R
consists of just one subgroup G0 say, then we say that R is transitive, in which
case G0 is core-free by faithfulness.

We may now restate the definition of the minimal faithful permutation degree of
a finite group G.

μ(G) is the smallest value of
∑n

i=1 |G : Gi| for a collection of
subgroups R = {G1, . . . , Gn} satisfying

⋂n
i=1 core(Gi) = {1}

Thus the problem of finding the minimal permutation degree of a finite group
presents a dichotomy relating to its lattice of subgroups. On the one hand we
want to include as many subgroups in the collection so we can satisfy the condition
that the intersection of their cores has to be trivial. On the other hand, we would
like this collection to be as small as possible and the subgroups to be as large
as possible so the the sum of their indices is minimised. If any member of R
is core-free, then the other members of R are superfluous, so in fact R is then
transitive.

The study of this topic dates back to Johnson [2] where he proved that one can
construct a minimal faithful representation {G1, . . . , Gn} consisting entirely of so
called primitive groups. These are groups which cannot be expressed as the inter-
section of groups that properly contain them.

We give a few examples of calculating the minimal degree when we have full access
to the subgroup lattice.

Example 1. Let G = Cpm the cyclic group of order pm where p is a prime number
and m an non-negative integer. Then the lattice of subgroups forms a chain so the
identity subgroup is the only core-free subgroup of G. For example, the lattice of
subgroups for Cp3 is shown in Figure 2.

Figure 2. L(Cp3)

It follows that the minimal faithful representation for any cyclic group of prime
power order pm is given by the identity subgroup and so μ(G) = pm.
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Example 2. Let G = D4 the dihedral group of order 8. Then its lattice of sub-
groups is as shown in Figure 3, where the normal subgroups are represented by
filled dots and each edge represents a subgroup of index two.

Figure 3. L(D4)

Suppose R is a minimal faithful collection of subgroups of D4. By examining the
lattice of subgroups, if R contained a normal subgroup and R did not contain the
trivial subgroup, then it would also have to contain a non-normal subgroup. All
non-normal subgroups are core-free of index 4 and so R is transitive. Therefore
μ(D4) = 4.

Example 3. Let G = Q8 = 〈x, y | x4 = 1, x2 = y2, xy = x−1〉, the quaternion
group of order 8. Its lattice of subgroups is shown in Figure 4 and all subgroups
are normal.

Figure 4. L(Q8)

Thus Q8, like cyclic groups of prime power order, has a unique minimal normal
non-trivial subgroup. Hence, any minimal faithful collection of subgroups for Q8
must consist of only one subgroup, namely the identity. Therefore μ(Q8) = 8.

Examples 1 and 3 are scenarios where the minimal faithful degree of the group G
is given by the Cayley or regular representation; that is, representing the group G
acting on itself by right multiplication. Johnson [2, Theorem 1] classifies all cases
where this occurs. Note that the four-group also has a minimal faithful represen-
tation which is not transitive.

Theorem 1. The regular representation of a group G is minimal if and only if G is

• cyclic group of prime power order,
• a generalised quaternion two-group, or
• the four-group.
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The groups G(m, p, n)

In this section we follow the notation of [6].

Let m and n be positive integers, let Cm be the cyclic group of order m and
B = Cm × · · · × Cm be the direct product of n copies of Cm. For each divisor p of
m define the group A(m, p, n) by

A(m, p, n) = {(θ1, θ2, . . . , θn) ∈ B | (θ1θ2 . . . θn)m/p = 1}.

It follows that A(m, p, n) is a subgroup of index p in B and the symmetric group
Sym(n) acts naturally on A(m, p, n) by permuting the coordinates.

G(m, p, n) is defined to be the semidirect product of A(m, p, n) by Sym(n). It
follows that G(m, p, n) is a normal subgroup of index p in the wreath product
Cm � Sym(n) = (Cm × · · · × Cm)︸ ︷︷ ︸

n times

�Sym(n) and thus has order mnn!/p.

It is well known that these groups can be realised as finite subgroups of GLn(C),
specifically as n × n matrices with exactly one non-zero entry, which is a complex
m-th root of unity, in each row and column such that the product of the non-zero
entries is a complex (m/p)th root of unity. Thus the groups G(m, p, n) are some-
times referred to as monomial reflection groups. For more details on the groups
G(m, p, n), see [3], [1].

Direct products

The primary motivation for the author studying these monomial reflection groups
is due to one of the central themes of Johnson [2] and Wright [7]. While it is clear
that for any two finite groups G and H,

μ(G × H) ≤ μ(G) + μ(H), (1)

Johnson and Wright investigated under what conditions equality holds in (1).
Johnson [2] proved that equality in (1) holds whenever G and H have coprime
orders and Wright [7] proved that equality holds whenever G and H are p-groups
and hence nilpotent groups.

Wright went further with this investigation constructing a class of finite groups
C with the property that for any group G ∈ C, G has a nilpotent subgroup G1
such that μ(G1) = μ(G). It can easily be seen that C is closed under taking direct
products and so any two groups in C yield an equality in (1). For if G and H are
elements of C, then

μ(G) + μ(H) = μ(G1) + μ(H1) = μ(G1 × H1) ≤ μ(G × H),

and so μ(G × H) = μ(G) + μ(H) and we can take (G × H)1 = G1 × H1.

Wright proved that this class C contains all nilpotent, symmetric, alternating and
dihedral groups, however the extent of this class is still unknown. At the end of
his paper and in Johnson’s paper, they both pose the question:

When is μ(G×H) < μ(G)+μ(H) for two finite groups G and H?
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Wright even asks whether equality is true for all finite groups. The referee to
Wright’s paper provided an example of when strict inequality holds and attached it
as an addendum. The example was of degree 15 and involved the group G(5, 5, 3),
though this group was simply given in terms of permutations on a set of 15 letters.

It was observed by the referee that G(5, 5, 3) has minimal degree 15 and more-
over possesses a non-trivial centraliser in Sym(15) which is isomorphic to C5 and
intersects trivially with it. Therefore

μ(G(5, 5, 3)) = μ(G(5, 5, 3) × CSym(15)(G(5, 5, 3))) = 15

and so we immediately have a strict inequality to (1) by taking G and H to be
G(5, 5, 3) and CSym(15)(G(5, 5, 3)) respectively.

In [4], the author proved that a similar result occurs with the groups G(4, 4, 3)
and G(2, 2, 5), that is μ(G(4, 4, 3)) = μ(G(4, 4, 3) × CSym(12)(G(4, 4, 3))) = 12 and
μ(G(2, 2, 5)) = μ(G(2, 2, 5) × CSym(10)(G(2, 2, 5))) = 10, and so we obtain two
more examples of strict inequality in (1). The author does not know whether 10
is the smallest degree for which strict inequality occurs.

Further, in [5] the author proved that for p and q distinct odd primes

μ(G(p, p, q)) = μ(G(p, p, q) × CSym(pq)(G(p, p, q))) = pq

except when p ≡ 1 mod 3, thus demonstrating that the groups G(p, p, q) provide
an infinite family of examples for when strict inequality holds in (1). In the next
section, we give a brief outline to the proof of this result; for more details and
explicit proofs, see [5].

μ(G(p, p, q)) for p > q

In this section we denote G(p, p, q) by G and A(p, p, q) by A throughout. We
assume p and q are odd primes such that p > q and exploit the action of Sym(q)
on A to prove that every minimal faithful representation of G is given by a core-
free subgroup.

Observe that we may treat A as a semi-simple Sym(q)-module of dimension q − 1
over the finite field Fp since p does not divide the order of Sym(q). The following
is a well-known result from modular representation theory.

Proposition 1. Sym(q) acts irreducibly and faithfully on A.

Proof. We show that the submodule generated by an arbitrary non-trivial ele-
ment is the whole of A. Let w =

∏q
i=1 θλi

i be a non-trivial element of A so
that

∑q
i=1 λi = 0. It is enough to prove that we can obtain the basis elements

c1 = θ1θ
−1
2 , . . . , cq−1 = θq−1θ

−1
q of A via the action of Sym(q) on w.

Fix a non-zero λi. There is another non-zero λj such that λi−λj 	= 0. For suppose
λi = λk for all non-zero λk. Then

w =
( ∏

j∈I

θj

)λi

,
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where I is a subset of {1, 2, . . . , q}. So
∑

j∈I λi = |I|λi = 0 in Fp. However since
p > q, this implies that λi = 0, a contradiction.

Choose two non-zero λi and λj with λi −λj 	= 0. Then applying the transposition
(i j) to w we have

w(i j) = θλ1
1 . . . θ

λj

i . . . θλi
j . . . θλq

q ,

so
w(w(i j))−1 = θ

λi−λj

i θ
λj−λi

j = (θiθ
−1
j )λi−λj .

Therefore, θiθ
−1
j is contained in A and by applying the appropriate permutation

to it, we can obtain all the basis elements c1, . . . , cq−1 as required. So Sym(q) acts
irreducibly on A.

Now suppose that the action of Sym(q) on A has a kernel. This kernel must be a
normal subgroup of Sym(q) and since q 	= 4, the only possibility is the alternating
group Alt(q). However, it can easily be verified that the q-cycle b = (1 2 . . . q),
which is an even permutation, does not commute with any non-trivial element of
A. Therefore Sym(q) acts faithfully on A.

Corollary 1. A is the unique minimal normal subgroup of G.

Proof. Certainly A is a normal subgroup of G and since Sym(q) acts irreducibly
on it, it is a minimal normal subgroup.

Suppose N is a non-trivial normal subgroup of G which does not contain A. By
minimality of A we must have A ∩ N = {1}. It follows that AN = A × N , that is
AN is the internal direct product of A and N .

Let a ∈ A and n = a′σ ∈ N \ A, where a′ ∈ A and σ ∈ Sym(q). Then n = a−1na
so a′σ = a−1a′σa = a′a−1σa, and so σ = a−1σa. That is, σ commutes with a.
But a is arbitrary so σ is contained in the kernel of the action of Sym(q) on A.
Therefore σ is trivial and n = a′ contradicting that n /∈ A.

Therefore A is contained in every non-trivial normal subgroup of G and is thus
the unique minimal normal subgroup of G.

It follows now that any minimal faithful representation of G must be transitive,
that is, given by a single core-free subgroup. We use this fact to prove the minimal
degree of G is pq.

Let L be a core-free subgroup of G such that |G : L| = μ(G). Since A is an ele-
mentary Abelian p-group of rank q − 1, μ(A) = p(q − 1) and since G is a proper
subgroup of the wreath product Cp �Sym(q) which has minimal degree pq, we have
the upper and lower bounds

p(q − 1) ≤ μ(G) ≤ pq.

Via some arguments in linear representation theory involving duality, (see [5]) we
can in fact prove (for p 	≡ 1 mod 3) that any core-free subgroup of G has index at
least pq and so μ(G) = pq.

For the case q = 3 and p ≡ 1 mod 3 the calculation is easier. Observe that in this
case, the group G(= G(p, p, 3)) is isomorphic to (Cp × Cp) � Sym(3). Let c1, c2
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generate the base group A and a = (1 2), b = (1 2 3) generate Sym(3). Then b
and a act on the base group A as follows:

ca
1 = c−1

1 , ca
2 = c1c2, cb

1 = c2, cb
2 = c−1

1 c−1
2 ,

and this action induces a two dimensional Sym(3)-module structure on A. It is
well known that when p ≡ 1 mod 3, there is a cube root of unity ζ3 in the field
Fp. Observe that ζ2

3 + ζ3 + 1 = 0. Consider the element c1c
−ζ3
2 . We have

(c1c
−ζ3
2 )b = cζ3

1 cζ3+1
2 = (c1c

−ζ3
2 )ζ3 ,

so c1c
−ζ3
2 is an eigenvector for b with eigenvalue ζ3. It is easily verified that c1c

−ζ3
2

is not an eigenvector for a and so the subgroup L = 〈c1c
−ζ3
2 , b〉 forms a core-

free subgroup of G of order 3p. Since G has order 6p2, we have |G : L| = 2p, so
μ(G) = 2p.

Combining this with the previous arguments we have proved:

Theorem 2. Let p and q be odd primes with p > q. Then

μ(G(p, p, q)) =

{
pq if q ≥ 5, or q = 3 and p ≡ 2 mod 3
2p if q = 3 and p ≡ 1 mod 3.
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