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In 1963, Edwin E. Moise published Elementary Geometry from an Advanced Stand-
point and his book became a classic. Roads to Infinity could well be entitled
Advanced Logic from an Elementary Standpoint and deserves the same outcome.
Its subtitle is actually The Mathematics of Truth and Proof, which well describes
its content.

The book consists of eight short chapters. Each chapter begins with a natural
mathematical question involving logic or sets and proceeds with the historical
sequence of responses to that question. For example, Chapter 1 concerns Cantor’s
Diagonal Argument that there can be no countable list of real numbers and deals
with the existence and construction of transcendentals, with applications to the
cardinality of subsets, to measurability of sets of reals and to unprovability. Traces
of the diagonal argument recur throughout the book.

Other chapters deal with ordinals, formal sys-
tems and non-decidability, computability and
large cardinal axioms. One reason I call the book
‘elementary’ is that certain technical details, such
as Gödel’s arithmetisation of predicate logic and
the Proper Forcing Axiom to show independence
of additional set theoretic axioms, are relegated
to the References. On the other hand, the reasons
for these omissions are carefully explained and a
simple overview is always presented.

One of the most enjoyable features is Stillwell’s
use of techniques of logic and set theory to
solve real mathematical problems, concerning
properties of measurability and the unsolvability
of the word problem for semigroups and groups.
He is particularly concerned with theorems that
are true, but not provable within the theory in
which they are stated. For example, one result in
elementary number theory is Goodstein’s Theorem: take any positive integer n and
express it in complete 2-adic form, i.e. as a sum of powers of 2 in which the powers

themselves are also in 2-adic form, for example, 34 = 22
2
+1 +2. Now replace each

2 by 3, subtract 1 and write the result in 3-adic form, in this case 333+1+2. Repeat
the procedure, replacing 3 by 4 and so on. Although the numbers you get seem
to increase rapidly, Goodstein’s theorem states that after finitely many steps, you
reach zero. This remarkable result has an even more remarkable proof. Suppose
nj is the j-adic number constructed from n at the jth step. Replace each j in nj

by ω, to get nj(ω), a countable ordinal in Cantor Normal Form. This sequence
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of ordinals satisfies nj ≤ nj(ω) and nj(ω) > nj+1(ω), because of the subtraction
of 1 in moving from nj to nj+1. But there is no infinite properly descending chain
of ordinals, so after finitely many steps, you get 0 ≤ nj ≤ nj(ω) = 0. Warning:
don’t try this at home. Stillwell points out that the least j for which 4j = 0 is
3 · 2402653211 − 1.

Another enjoyable feature is Stillwell’s uniform coverage of unprovability, unde-
cidability and non-computability, leading naturally to the introduction of large
cardinals. For example, inaccessible cardinals, which cannot be proved to exist
in Zermelo–Fraenkel set theory with the axion of choice, are introduced to prove
the consistency of ZFC, and so of predicate logic. Furthermore, he illustrates
unprovability using natural mathematical examples such as the Paris–Harrington
Theorem of combinatorics. Other examples, from graph theory, are Kruskal’s
theorem that for every infinite sequence (Tk) of trees there are indices i and j such
that Ti embeds in Tj , and what Stillwell calls ‘the hardest theorem in graph theory’,
the Graph Minor Theorem, which is Kruskal’s Theorem with ‘tree’ replaced by
‘finite simple graph’.

Among the many innovative features of the book is Stillwell’s decision to abandon
material implication in formal predicate logic, replacing the proposition P ⇒ Q
by its classical equivalent (not P or Q), and modus ponens as a rule of inference by
the corresponding branching rules of Gentzen’s Natural Deduction. The advantage
is that no formula appears in a proof other than one which is already a fragment
of the hypothesis or the conclusion. Consequently, proofs are algorithmic. The
disadvantage is that proofs are no longer linear, but have the form of a directed
tree. Nevertheless, this proof tree is locally finite: its root is the conclusion of
the theorem, each edge represents one of the rules of inference, and its leaves are
tautologies of the form P ∨¬P . Thus the validity of each leaf implies the validity of
the root. This procedure mimics the way in which Gentzen proved the consistency
of Peano arithmetic.

Another unusual feature is Stillwell’s emphasis on the ‘forgotten heroes’ of Logic:
Emil Post who anticipated both Gödel and Turing, and Gerhard Gentzen who saw
how to bypass Gödel’s Incompleteness Theorems by introducing proofs based on
induction on ordinals larger than ω, which enabled his proof of consistency for
arithmetic and later led to consistency proofs for set theory.

The omission of complete proofs mentioned earlier and of exercises means that
the book must be supplemented in order to become a textbook for a course in
logic. But that is not its stated intention. Rather, it is suitable for self-study
by a diligent student in mainstream mathematics and it is excellent background
material for computer scientists and mathematicians in other fields. The historical
notes alone are worth perusing by anyone who is interested in the development of
mathematical ideas.
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