J. Austral. Math. Soc.  72 (2002), 13-21
A problem on rough parametric Marcinkiewicz functions

Yong Ding
  Department of Mathematics
  Beijing Normal University
  Beijing, 100875
  P. R. China
  dingy@bnu.edu.cn
Shanzhen Lu
  Department of Mathematics
  Beijing Normal University
  Beijing, 100875
  P. R. China
  lusz@bnu.edu.cn
and
Kozo Yabuta
  School of Science
  Kwansei Gakuin University
  Uegahara 1-1-155
  Nishinomiya 662-8501
  Japan
  yabuta@kwansei.ac.jp


Abstract
In this note the authors give the $L^2(\mathbb{R}^n)$ boundedness of a class of parametric Marcinkiewicz integral $\mu^\rho_{\Omega,h}$ with kernel function $\Omega$ in $L\log^+  L(S^{n-1})$ and radial function $h(|x|)\in l^\infty(L^q)(\mathbb{R}_+)$ for $1<q\le\infty$. As its corollary, the $L^p(\mathbb{R}^n)$ ($2\le p<\infty$) boundedness of $\mu^{\ast,\rho}_{\Omega,h,\lambda}$ and $\mu^\rho_{\Omega,h,S}$ with $\Omega$ in $L\log^+  L(S^{n-1})$ and $h(|x|)\in l^\infty(L^q)(\mathbb{R}_+)$ are also obtained. Here $\mu^{\ast,\rho}_{\Omega,h,\lambda}$ and $\mu^\rho_{\Omega,h,S}$ are parametric Marcinkiewicz functions corresponding to the Littlewood-Paley $g^*_\lambda$-function and the Lusin area function  S, respectively.
Download the article in PDF format (size 81 Kb)

TeXAdel Scientific Publishing ©  Australian MS