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Abstract

We prove that polynomial rings in one indeterminate over nil rings are antiregular radical and uniformly
strongly prime radical. These give some approximations othK's problem. We also study the
uniformly strongly prime and superprime radicals of polynomial rings in non-commuting indeterminates.
Moreover, we show that the semi-uniformly strongly prime radical coincides with the uniformly strongly
prime radical and that the class of semi-superprime rings is closed under taking finite subdirect sums.

2000Mathematics subject classificatioprimary 16N20, 16N40, 16N80.

1. Introduction and preliminaries

Kothe’s Problemié the sum of two nil left ideals r%) is perhaps the most challenging
problem in ring theory. It was posed in 1930 at the genesis of radical th&pry [
This problem has many equivalent formulations. One of the most interesting, which
stimulated many further studies, is the following one due to Kreripa [

DoesR € .+ imply that the polynomial rindgR[x] in indeterminatex over R is
in _#,where.4" and _¢# denote the classes of nil rings and Jacobson radical rings,
respectivel®

In [11] it has been proved thaeR € .4 implies R[X] € ¥, where¥ stands for
the Brown-McCoy radical. This result can be viewed as an approximatiomthfeks’
Problem from above, becaugé C ¢. One can try to improve this approximation
replacing? with some other radicals containing’. Among the most natural radicals
to consider are:
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e TheBehrens radical#. This is the upper radical determined by the class of
rings possessing a non-zero idempotent.

e Theantiregular radicalZ v. This is the upper radical determined by the class
v of all von Neumann regular rings.

e The uniformly strongly prime radical. A ring R is said to beuniformly
strongly prime if there exists a finite subsét of R, called auniform insulator such
thatx Fy # 0 whenever 0% x, y € R. The uniformly strongly prime radical is the
upper radical determined by the class of uniformly strongly prime riggs [

e The superprime radical A ring R is said to be fight) superprime[15] if
every non-zero idedl of R contains an elemeimt such thatg(a) = 0, whererg(a)
denotes the right annihilator afin R. Thesuperprime radicab is the upper radical
determined by the class of all superprime rings.

The relations among these radicals are well known (see for instafpednd we
summarize them in the following proposition.

PrROPOSITIONL.1. /" C Z C B C 9, #B C %v, V' C o C u. Moreover
G|\ %v,9 |u,Zv| u, Z | u,where| stands for the relatiohnot comparable

COROLLARY 1.2. B CUvNY% CYand%vN¥% C Uv.

PROOF. LetV be a countably infinite dimensional space over the two element field
GF(2) and letT be the ring of finite valued linear transformations\6f Further,
let t be the linear transformation of such thatt(e,,) = 0 andt(en_1) = e,
n=12...,wherefe,e,...}is abasis olV. LetR be the subring of the ring
of linear transformations of generated byl U {t}. It is not hard to check thaR
is a subdirectly irreducible ring with heart equalToand R/ T is nilpotent. Since
T contains idempotentR ¢ #. As R/T is a non-zero nilpotent ring anR is
subdirectly irreducible, we conclude thete %/ v. ClearlyR € ¢. The rest follows
immediately from Propositiod. L O

The upper radical#s determined by the class of rings which contain no non-zero
nil left ideals or, equivalently, no non-zero nil right ideals is calledltwer strong
radical determined by4". Clearly,.+" C .45 and Kothe's problem is equivalent to the
equality.4” = _45. In this context it is natural to ask whethegg behaves similarly to
4 when one takes polynomials. 1tQ, Corollary 3.3], it was observed that from the
results of [L1] it follows that if L is a nil leftideal of a ringR, then(L + L R)[X] € ¥.
This and the well-known fact (see for instan@®) [that the clas§R | R[x] € ¢} is
radical easily imply that for everyfi-radical ringR, R[x] € 4. We shall show that
the same holds ¥ is replaced byZ v or u (for u we in fact get more, namely that
polynomial rings in non-commuting indeterminates over ringsfinare inu).
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We do not know whether for every nil ririg the polynomial ringR[x] belongs tar.
However we show that it does not hold for polynomial rings in sets of non-commuting
indeterminates. We also answer some questions raisé&fidgoficerningu ando .

Given aringR, R* will denote the ring obtained by adjoining an identityRo

Throughout this papeR[x] denotes the polynomial ring in an indeterminatver
aringRandR(X) denotes the ring of polynomials in non-commuting indeterminates
from a setX. If X = {x}, then obviouslyR(X) = R[x].

2. The antiregular radical

The following theorem gives in particular an approximation oth€’s problem by
the antiregular radical.

THEOREM 2.1. For every.#¢-radical ring R, R[X] € Z v.

PrOOF. Note first that ife is a right identity of a ringA, that is,ae = a for every
a € A, thenr(e) is anideal ofA. Indeed, ifb € r,(e), thenAb = Aeb= 0. Clearly,
a —eac ra(e) for eacha € A. Hencee + r(e) is an identity of A/ra(e). ThusA
can be mapped homomorphically onto a ring with an identity. Consequénigynot
Brown-McCoy radical.

Suppose now thaR[x] ¢ % v. Then there exists a surjective homomorphism
f : R[x] — B such that 0# B € v. Since von Neumann regular rings contain
no non-zero nilpotent ideals, applying the Andrunakievich Lemma, one gets that
ker f is an ideal ofR*[x]. Consequently(R N kerf)[x] < kerf. Let f be the
canonical homomorphism d®[x], whereR = R/(R N ker ), onto B induced by
f. SinceR e .4 and R is a non-zero homomorphic image &, R contains a
non-zero nil left idealL. Obviously f(r) # 0 for somer € L. SinceB is von
Neumann regular, there exists an idempotert B such thatB f (r) = Be. Now
f(Rn[x]) = f(RIx]r) = f(RIx])f(r) = Bf(r) = Be. Obviouslye is a right
identity of Be, so Beis not Brown-McCoy radical and consequentRr)[x] is not
Brown-McCoy radical. On the other hanBy is a nil ring, so by 11, Corollary 3],
the polynomial ring Rr)[x] is Brown-McCoy radical, a contradiction. O

3. The uniformly strongly prime radical

THEOREM3.1. (i) Given a setX, a ring R is uniformly strongly prime if and
only if the polynomial ringR(X) is uniformly strongly prime.
(i) ForeveryringRand every seX, u(R(X)) = u(R)(X).
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PrROOF. (i) Suppose thaRis a uniformly strongly prime ring with uniform insulator
F. Leta=) am andb =} b;n;, wherea, b; € Randm;, n; are monomials, be
non-zero elements dR(X). Suppose that, andn; are some of monomials of the
least degree for whica, # 0 andb; # 0. Thena; Fb; # 0, which easily implies that
alsoaFb # 0. HenceF is a uniform insulator foR(X).

Assume now thatR(X) is uniformly strongly prime with a uniform insulator
G={0....0 Letgs =D rumy, ..., G = > ramy, wherer;; € Randm;
are monomials. The sét of all r; is finite and it is clear that iaFb = 0 for some
a,b € R, then alscaGb = 0. SinceG is a uniform insulator inRR({X) we conclude
thata = 0 orb = 0. ThusF is a uniform insulator folR.

(i) If u(R) = 0, thenR is a subdirect sum of uniformly strongly prime rings.
Clearly R(X) is a subdirect sum oR (X). Hence by (i) we get thai(R(X)) = 0.

It remains to prove that iR is uniformly strongly prime radical, then so R(X).
Suppose thaR(X) contains a proper idedlsuch thatR(X) /I is uniformly strongly
prime. Note that is also an ideal oR*(X). Let¢ be the canonical homomorphism
of R*(X) onto R*(X)/I. Clearly R(X)/I is generated by (R)¢(T), whereT is
the free monoid generated by. Let F = {f;,..., f,} be a uniform insulator of
R(X)/I. Eachf; is a finite sum of elements of the forag m;;, wherea;; € ¢(R)
andm;; € ¢(T). ltis clear that the set of all;; is a uniform insulator ot (R), so

¢ (R) is uniformly strongly prime. This contradicts the assumption Bistuniformly
strongly prime radical. O

PROPOSITION3.2. Suppose thaBis a multiplicative semigroup with 0. Bis nil,
then for every finite (non-empty) subgebf Sand everya € Sfor whichaFa # 0
there existd € Ssuch thataba # 0and|abaFaba < |aFal).

PROOF. Suppose thaF = {x;,...,X,} andaFa # 0. We can assume that
axa # 0. Letk be a natural number such th@x,)* # 0 but (ax)*** = 0. If
(ax,)*a # 0, then forb = x,(ax,)** (for k = 1 we takeb = x,), aba= (ax) a # 0

andabaFabac aba{x,, ... , Xx,}aba, so we are done. Ifax)a = 0, thenk > 2
and forb = x,(ax)*?, aba # 0 andabaxaba = (ax)*aba = 0. Hence again
labaFaba < |aFal. The result follows. O

CoRrOLLARY 3.3. (i) If Sis a non-zero nil semigroup with 0, then for every
finite subsef of Sthere is a non-zera € Ssuch thaaFa = 0.

(i) If Risaring generated by a nil subsemigro8pf the multiplicative semigroup
of R, thenR € u.

PrOOF. Statement (i) is a direct consequence of Propositian
(i) Let ¢ be a ring homomorphism dR onto R'. Obviously R’ is generated by
¢(S). Take anyry,...,r, € R. Forevery 1< i < nthereis afinite seffs;} € ¢(S)
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and integerss; such that; = },e;s;. Since the semigroup(S) is nil, by (i),
¢(S) = 0 orthereis O£ a € ¢(S) such thatas;a = 0 for alli, j. Hencearia =0
forall1 <i < n. This shows thaR’ is not uniformly strongly prime. Consequently,
R e u. Il

Clearly Corollary3.3 (ii) implies that.4" € u (see for exampleld]). In fact it
gives more.

COROLLARY 3.4. 4Z C u.

PrOOF. Obviously it suffices to prove that if a rinB has a non-zero nil left ideal
L, thenu(R) # 0. Note that{lr || € L,r € R} is a nil subsemigroup of the
multiplicative semigroup oR generatind- R* as a ring. Hence by Corolla:.3 (ii),
LR* € u. Consequently,  LR* C u(R). O

Theoren?.1, TheorenB.1and Propositiori.1along with the quoted result ot []
yield

COROLLARY 3.5. If R € .47, thenR[Xx] € v N% N u. The positive solution of
Kothe’s Problem would imply thaR[x] € _# N u for every nil ringR.

Thus Corollary3.5provides also another equivalent formulation aftké’s Prob-
lem: DoesR € .4 imply R[x] € _# Nu?
The position of the radical classes discussed so far is given in the following diagram:

U v 9 %

|
B UvNYG N

Olson, Le Roux and Heyma®] defined a ringR to be semi-uniformly strongly
primeif every non-zero ideal of R contains a finite subsét, called aninsulator of
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I, such that for every G2 i € |, iFi # 0. They proved that the class of all semi-
uniformly strongly prime rings is weakly special. The upper radicadletermined by
this class could be potentially another radical to examine when approximaithg'k ™
Problem. However, as we shall show, it coincides with the uniformly strongly prime
radical. This answers a question raiseddh [

We shall need the following two lemmas proved by Handelmag]in [

LEMMA 3.6 ([3, Lemma 7]).If a semiprime ringR contains no infinite direct sums
of non-zero ideals, themR satisfies the ascending and descending conditions on
annihilators of ideals.

LEMMA 3.7 ([3, Lemma 8]).1f | is a non-zero ideal in a semiprime rirfgand the
annihilator | of | is maximal among annihilators of ideals R, thenR/1 is a prime
ring.

PrOPOSITION3.8. The radicalu’ coincides with the uniformly strongly prime rad-
ical u.

PrOOF. It suffices to prove that every semi-uniformly strongly prime riRgan be
homomorphically mapped onto a non-zero uniformly strongly prime ring. Cldarly
is semiprime and contains no infinite direct sum of non-zero ideals. Hence applying
Lemma3.6 and Lemma3.7 we obtain thaiR contains a non-zero ide& such that
R/K is a prime ring. We claim thaR/K is uniformly strongly prime. LetF
be an insulator oK. We shall prove thaF + K is a uniform insulator ofR/K.
Suppose thak,y € R\ K andxFy € K. LetP = {r € R| xFr € K} and
L ={r e R|rFP c K}. ClearlyP andL are right and left ideals dR, respectively,
and both of them strictly contaik. Hence 0 KL € KNL and0# PK € PNK,
so P N K andL N K are non-zero right and left ideals &f, respectively. Since
R/K is a prime ring ank is isomorphic to an ideal of that rindg is a prime ring.
Consequently, @ (PNK)(LNK) C LNPNK. Nowforevery0£t e LNPNK,
tFt = 0. HenceF is not an insulator oK, a contradiction. O

4. The superprime radical

Clearly .4+ € o but we do not know whethert; € . We also do not know
whether if R € .47, then R[x] € o. This would improve the approximation of
Kothe’s Problem. It is not hard to check that for every rirghe ring M (R) of
countable matrices ové® which have only finitely many non-zero entries issinand
if R e 45 then alsoM(R) € 4. In particular, ifR € .4 thenM(R) € 4. The
problem whethefor everyR € .4 alsoM (R) € .4 is equivalent to Kthe’s problem
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([6, 13)). Itis clear that ifR is locally nilpotent, therM (R) € .4". There also exist
not locally nilpotent ringsR such thatM (R) € .4". As it was noted in] and in [L,
Lemma 59] ifR is Golod’s example of] (recall that this is an example of a nil ring
which is not locally nilpotent), theR[x] € .4, which implies thaM (R) € .4". An
example of a ringR for which M (R) is nil andR[x] is not nil was constructed irip].
Note that for every rindR and every seX, M(R)(X) >~ M(R(X)) € o. These show
that there are many nil ringR such that for every seX, R(X) € o. We shall show
that there are also nil rings for which it does not hold.

A ring R is called (ight) strongly primeif every non-zero ideal oR contains
a finite subsef such that the right annihilatatz(F) of F in R is equal to zero.
Obviously every strongly prime ring is prime and every superprime ring is strongly
prime.

If Ris a finitely generated non-nilpotent ring, then applying Zorn’s lemma one can
find in Ran ideal maximal with respectto the propertytRatg | foralln=1, 2, ...
(Zorn’s lemma applies because BN are finitely generated rings). ObvioudRy/| is
a prime ring. For every ideal of R strictly containingl there is a natural number
n such thatR" € J. The ringR" is generated by a finite set, sdy, Clearly for
arbitraryx € R, Fx € | if and only if R"X € |. This easily implies thaR/| is
strongly prime.

There are finitely generated non-nilpotent nil rings. Hence the foregoing remark
implies that there exist strongly prime nil rings.

Now we shall prove

THEOREMA4.1. If Ris a strongly prime ring, then for every sitwith | X| > 2, the
ring R(X) is superprime.

PrROOF. Let | be a non-zero ideal ifR*(X) contained inR(X) and letm be a
monomial of least degree such that for somg0® € R, rq,...,r, € Rand some
monomialsmy, ... ,my,, rm+rym; +--- +r,m, € |. The setd consisting of all
coefficients ofm in elements belonging tb is a non-zero ideal oR*. SinceR is
strongly prime there are elemerds ... ,a € J such thatrgx({a;,... ,a}) = 0.
Suppose that they appear as coefficienaoh polynomialsf,, ..., fy € |. Letx
andy be two distinct elements iX. Thenf = fixy'+ fox?y" " 14.. .+ fixly e . We
claimthat gx, (f) = 0. Indeed, if for somg € R(X), fg = 0, thenf§ = 0, wheref
andg are the least components bfandg with respect to the gradation &(X) given
by the degree. Suppose thiat= b, p; + - - - + by p, whereb, € Randp, are distinct

monomials and similarlg = ¢,q;+- - - +¢sqs. Note thafay, ... ,a} S {bs,...,b}.
Moreoverp;q; = p,q, if and only if pp = p, andqg; = q,,. This shows thalb,c; =0
foralli, j. Consequentlyg; € rr({ay, ... , &}) = 0andg = 0, a contradiction. Now

it suffices to apply the Andrunakievich lemma to get that every non-zero id&gDof
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contains an elemensuchthat g, (i) = 0. This proves thaR(X) is superprime. O

Olson, Re Roux and Heyma#f][defined a ringR to be fight) semi-superprime
if for every non-zero ideal of R there exists € | such thatr,(i) = 0. They
proved that all semi-superprime rings are finite subdirect sums of superprime rings
and asked whether the converse holds. We shall show that it is indeed the case. Sinc
all superprime rings are semi-superprime it suffices to prove the following

THEOREM4.2. Every ring which is a subdirect sum of two semi-superprime rings
is semi-superprime.

PrROOF. It is clear that every semi-superprime rifiyycontains no infinite direct
sum of non-zero ideals. Note that idealsR®fire precise)R ® R°P-submodules of
R. Hence the Goldie dimension & as R ® R°°-module is finite. Thus a direct
sumR; @ --- & R, of uniform R ® R°P-submodules oR is an essentiaR ® R°P-
submodule ofR. Since the class of semi-superprime rings is hereditary and consists
of semiprime rings, an idedl of Ris uniform as arR ® R°P-module if and only ifl
is a prime ring. Clearly prime semi-superprime rings are superprime. Consequently,
every semi-superprime ring contains a direct surh, @ - -- @ |, of idealsl; which
are superprime rings and such tha® - - - @ |, is an essential ideal dR.

Suppose now thaR is a subdirect sum of two semi-superprime rings, thaRis,
contains ideald, J such thatl N J = 0 andR/I and R/J are semi-superprime
rings. Sincel is isomorphic to an ideal irR/J and R/J is semi-superprimel
contains an essential direct sum® - - - @ |, of ideals which are superprime rings.
Applying the Andrunakievich lemma it is not hard to show thatlattan be chosen
to be ideals oRR. Note thatifl,,4, ... , Iy are non-zero ideals iR such that the sum
li+- -+ I+ lhpa +- -+ lyisdirect, ther(l + 1,0 /1 +---4+ (1 +1;)/1 isadirect
sum of non-zero ideals dr/I. Thust — n does not exceed the Goldie dimension
of the (R/I) ® (R/1)°P-moduleR/I. Consequently, we can assume thatlakre
superprime rings anty & --- @ |, is an essential ideal dR. Note that ifM is an
ideal of I, & --- & I, thenM N I; # 0 if and only if 7; (M) # 0, wherer; is the
natural projection of; ®--- @ I, ontol;. If T isanon-zeroideal ity @ - -- @ I, then
(TNl)®---®(T Nl is an essential ideal in. Indeed, ifM C T is a non-zeroideal
of L ®--- & I, thenw; (M) £ 0 for somei, so 0 M N Il; € T N I;. Take now any
non-zeroideaK in Rand putlT = KN, ®---®1;). Sincel;®--- ® |, is essential
in Rand R is semiprime,T is essential irK. Note that since all; are superprime,
for everyi forwhichT N1; # Othereis am; € T NI; suchthat, (a) = 0. Then for
a=> a,ry@ =0,whereU =(TNIl)d---d(TnNI). Howevell is essential
in T andT is essential irK, soU is essential irkK. NowU Nrg(a) =ry(a) =0, so
r« (@U = 0. Hence, sinct) is semiprime and essential i, rx (a) = 0. The result
follows. O
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