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Abstract

An algebraA is homogeneousif the automorphism group ofA acts transitively on the one dimensional
subspaces ofA. SupposeA is a homogeneous algebra over an infinite fieldk. Let La denote left
multiplication by any nonzero elementa ∈ A. Several results are proved concerning the structure ofA in
terms ofLa. In particular, it is shown thatA decomposes as the direct sumA = kerLa ⊕ Im La. These
results are then successfully applied to the problem of classifying the infinite homogeneous algebras of
small dimension.
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1. Introduction

The algebras to be discussed are assumed to be finite dimensional over a fieldk and
are not necessarily associative. We call an algebraA nontrivial if dim A > 1 and
A2 6= 0. Also, Aut.A/ will denote the group of algebra automorphisms ofA.

An algebraA is homogeneousif Aut.A/ acts transitively on the one-dimensional
subspaces ofA. This is a very strong condition indeed and the known examples fall
into two easily described classes. The existence of homogeneous algebras depends
critically on the choice ofk, the field of scalars, and a number of results are known
classifying these algebras according to the field. Kostrikin [5] showed how to con-
struct homogeneous algebras of any dimension over the finite field GF(2). Work by
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Shult [7], Gross [3] and Ivanov [4] showed that ifk is finite, then there are no algebras
other than those constructed by the method of Kostrikin. Djokovi´c [1] completely
classified homogeneous algebras over the reals and found only 3 examples, one each
in dimensions 3, 6 and 7. It was shown by Sweet [10] that there are no non-trivial
examples whatsoever when the scalar field is algebraically closed.

The first general study of homogeneous algebras was carried out by Sweet [9],
and subsequently the authors [6, 8] have completely classified the non-trivial algebras
of dimensions 2, 3 and 4 over any field. There it has been shown that no examples
exist other than those found by Kostrikin and by Djokovi´c. Recently, motivated by
the examples over the reals, Djokovi´c and Sweet [2] have shown that all non-trivial
homogeneous algebras over any infinite field satisfyx2 = 0 for all x ∈ A, and hence
are anti-commutative.

The main purpose of this paper is to prove the following structure theorem which
applies to homogeneous algebras over any infinite field. For anya ∈ A, La : A → A
will denote left multiplication bya.

THEOREM. Let A be a non-trivial homogeneous algebra over an infinite field. Then
for anya ∈ A\{0}, A = kerLa ⊕ Im La.

This theorem has a number of interesting consequences regarding the possible
structure of infinite homogeneous algebras which will provide important tools in our
continuing program of classifying these algebras.

In all that follows, A will be a non-trivial homogeneous algebra over an arbitrary
infinite fieldk.

2. Results and proofs

One of the immediate consequences of homogeneity (see [9]) is that all left multi-
plications are projectively similar. More precisely, for anya;b ∈ A, if Þ ∈ Aut.A/
mapsa to ½b, thenÞLaÞ

−1 = ½Lb. This fact has been exploited very successfully
in [6] and [8] to classify the homogeneous algebras of dimensions 2, 3 and 4. In
particular we use the matrix representation ofLa with respect to some suitably chosen
basis. Note that ifa;b ∈ A\{0} then rankLa = rankLb. Also if some coefficient of
the characteristic polynomial ofLa is zero then the corresponding coefficient of the
characteristic polynomial ofLb is also zero.

THEOREM 2.1. Let A be a nontrivial homogeneous algebra over an infinite fieldk.
If a ∈ A, thenLa has no nonzero eigenvalues ink.

PROOF. In [2] it is proved that any homogeneous algebraA over an infinite field
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has the property thatx2 = 0 for all x ∈ A. The theorem then follows from Theorem 3
of [8].

Our main result, which is Corollary2.3, follows from the following theorem.

THEOREM 2.2. Let A be a nontrivial homogeneous algebra over an infinite fieldk.
If a;b ∈ A\{0} andab = 0, thenIm La = Im Lb.

PROOF. Choose a basisB = {b1;b2; : : : bn} of A such that{b1;b2; : : : bs} is a basis
of kerLa and choose another basisC = {c1; c2; : : : cn} such thatci = abi for s< i ≤ n.
Then the matrix ofLa with respect to the basesB andC is

[
Os O
O Ir

]

wherer = n − s is the rank ofLa. Let x ∈ A be arbitrary and let

[
X1 X2

X3 X4

]

be the matrix ofLx with respect toB andC. Since the rank ofLx + t La = Lx+ta

cannot exceedr for all t ∈ k, we conclude thatX1 = O. Hencex.kerLa/ =
Lx.kerLa/ ⊂ Im La. But x is arbitrary and soA.kerLa/ ⊂ Im La. Sinceb ∈ kerLa,
Ab = Im Lb ⊂ Im La. But rankLa = rankLb and so ImLa and ImLb have the same
dimension. It follows that ImLa = Im Lb.

COROLLARY 2.3. Let A be a nontrivial homogeneous algebra over an infinite field
k. If a ∈ A\{0}, thenA = kerLa ⊕ Im La.

PROOF. Let b ∈ kerLa ∩ Im La. If b 6= 0, then Theorem2.2 implies that ImLa =
Im Lb. But thenb ∈ Im Lb, which contradicts Theorem2.1. Hence kerLa ∩ Im La =
{0} and soA = kerLa ⊕ Im La.

Let A be a nontrivial homogeneous algebra over a fieldk and leta ∈ A. If k is
finite it was shown by Shult [7] that La is either invertible or nilpotent. Ifk is infinite
the first case is impossible sincea2 = 0. Also, if k is infinite the above corollary
implies that the second case is also impossible. In fact, we have a slightly stronger
result.

COROLLARY 2.4. Let A be a nontrivial homogeneous algebra over an infinite field
k. If a ∈ A\{0}, then La cannot have a nonzero nilpotent block in its rational
canonical form.
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Corollary2.3says thatA can be written as a direct sum of the subspaces kerLa and
Im La. We now show that kerLa is actually a subalgebra.

THEOREM 2.5. Let A be a nontrivial homogeneous algebra over an infinite fieldk.
If a ∈ A\{0}, thenkerLa is a zero subalgebra.

PROOF. Assumea ∈ A\{0} and letx ∈ A\{0} be arbitrary. Using Corollary2.3,
decomposeA into A = kerLa ⊕ Im La. Then using a corresponding basis

La =
[

O O
O A1

]
and Lx =

[
X1 X2

X3 X4

]
:

Using the rank argument as in Theorem2.2, we conclude thatX1 = O for all x ∈ A.
Now let b ∈ kerLa\{0}. Then

Lb =
[

O B2

B3 B4

]
:

But ab = 0 and so ImLa = Im Lb by Theorem2.2. This implies thatB2 = O. Also
Corollary 2.3 implies thatA1 is nonsingular and soB4 is also nonsingular sinceLa

andLb are projectively similar.
AssumeB3 6= O. Then there existsc ∈ kerLa such thatbc = d ∈ Im La\{0}.

SinceB4 is nonsingular the equationB4x = d must have a unique solutione ∈ Im La.
But thenbc = be and sob.c − e/ = 0. It follows that ImLb = Im Lc−e. Since
c ∈ kerLa, we again can assume that

Lc =
[

O O
C1 C2

]
:

On the other hand,

Le =
[

O E2

E3 E4

]
:

But now ImLc−e = Im.Lc − Le/ = Im Lb = Im La, and this implies thatE2 = 0. But
e ∈ Im La ande2 = 0 and soE4 is singular. This is impossible sinceLe is projectively
similar to La.

HenceB3 = O and therefore kerLa is a zero subalgebra.

COROLLARY 2.6. Let Abe a nontrivial homogeneous algebra over an infinite fieldk.
If a;b ∈ A\{0} andab = 0, thenkerLa = kerLb. Also, denotingkerLa\{0} by K ?

a,
the setsK ?

a partition A\{0}.
PROOF. Assumex ∈ kerLb. Sincea ∈ kerLb, Theorem2.5 implies thatax = 0,

and sox ∈ kerLa. Hence kerLb ⊂ kerLa and similarly kerLa ⊂ kerLb. Hence
kerLa = kerLb. The proof of the second conclusion is similar.
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Theorem2.5shows that each kerLa is a subalgebra. We now show that each ImLa

is not a subalgebra.

THEOREM 2.7. Let A be a nontrivial homogeneous algebra over an infinite fieldk.
Let a;b ∈ A\{0}. If Im La = Im Lb, thenkerLa = kerLb.

PROOF. By using an argument similar to that found in Theorem2.5it can be shown
thatab = 0 and then the result follows directly from Corollary2.6.

COROLLARY 2.8. Let Abe a nontrivial homogeneous algebra over an infinite fieldk.
If a ∈ A\{0}, thenIm La is not a subalgebra.

PROOF. Assume ImLa is a subalgebra. LetA = kerLa ⊕ Im La. Supposeb ∈
Im La\{0}. Then as before

Lb =
[

O O
B3 B4

]
:

This implies that ImLa = Im Lb and so kerLb = kerLa. Thusb ∈ kerLa ∩ Im La

which is impossible.

It is natural to look at the action of an automorphism on kerLa and ImLa. The
next result is well known and the proof is easy.

REMARK. Let A be any algebra over a fieldk. If a ∈ A\{0}, Þ ∈ Aut.A/ and
Þ.a/ = b, thenÞ.kerLa/ = kerLb andÞ.Im La/ = Im Lb.

COROLLARY 2.9. Let Abe a nontrivial homogeneous algebra over an infinite fieldk.
If Þ ∈ Aut.A/, a ∈ A\{0} andÞ.kerLa/ ∩ kerLa 6= 0, thenÞ.kerLa/ = kerLa and
Þ.Im La/ = Im La.

PROOF. The proof follows easily from the above theorem using Corollary2.6and
Theorem2.5.

We now show that Aut.A/ cannot be abelian ifA is a nontrivial homogeneous
algebra over an infinite fieldk (the result is false whenk is finite). Let Z .Aut.A//
denote the center of Aut.A/.

THEOREM 2.10. Let A be a nontrivial homogeneous algebra over an infinite fieldk.
If Þ ∈ Z .Aut.A// anda ∈ A\{0}, thenÞ.kerLa/ = kerLa andÞ.Im La/ = Im La.
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PROOF. LetÞ ∈ Z .Aut.A//. We define a new multiplicationa ◦ b on A to make a
new algebraAÞ as follows:

a ◦ b = aÞ.b/:

Then if
 ∈ Aut.A/


 .a ◦ b/ = 
 .a Þ.b// = 
 .a/ 
 .Þ.b// = 
 .a/ Þ.
 .b// = 
 .a/ ◦ 
 .b/
and so
 ∈ Aut.AÞ/. ThusAÞ is a homogeneous algebra. Hence

a ◦ a = aÞ.a/ = 0:

ThusÞ.a/ ∈ kerLa, ∀a ∈ A, and the result follows from Corollary2.9.

COROLLARY 2.11. Let A be a nontrivial homogeneous algebra over an infinite
fieldk. ThenAut.A/ is not abelian.

PROOF. This follows immediately from Theorem2.10.

The remaining theorems use the direct sum decomposition to study the possible
dimension of kerLa.

THEOREM 2.12. Let A be a nontrivial homogeneous algebra over an infinite fieldk.
If a ∈ A\{0}, thendim.kerLa/ < .1=2/dim.A/.

PROOF. Let t=dim.kerLa/ andn= dim.A/. Assumet≥n=2. Let{a1;a2; : : : ;at}
be a basis of kerLa and decomposea as A = kerLa ⊕ Im La. It follows from
Theorem2.5that eachLai

is of the form

Lai
=

[
O O
O Ai

]
:

whereAi is a nonsingular.n − t/ × .n − t/ matrix.
Sincet ≥ n=2 there exists a nontrivialb = x1a1 + x2a2 + · · · + xt at such that

Lb =




O O
? : : : ?

? : : : ?

O
:::

:::

? : : : ?

0 : : : 0 bnn



:

But thenbnn = 0 by Theorem2.1, and henceLb is not projectively similar toLa. This
is a contradiction and hencet < n=2.
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THEOREM 2.13. Let A be a nontrivial homogeneous algebra over an infinite fieldk.
If n = dim A is odd andn > 3, then fora ∈ A\{0}, dim.kerLa/ < .n − 1/=2.

PROOF. By Theorem2.12we know thatt = dim.kerLa/ < n=2 and so it suffices
to show thatt 6= .n−1/=2. Assume otherwise. DecomposeA asA = kerLa ⊕ Im La.
Let b ∈ Im La and letB = {b;b2; : : : ;bt} be a basis for kerLb. Eachbi can be written
uniquely as

bi = ai + b′
i ;

whereai ∈ kerLa andb′
i ∈ Im La. Let B′ = {b;b′

2; : : : ;b′
t }. We claim thatB′ is an

independent set. For suppose½1b + ½2b′
2 + : : : + ½tb′

t = 0. Then

a.½1b + ½2b′
2 + · · · + ½t b

′
t/ = a.½1b + ½2b2 + · · · + ½tbt / = 0:

So½1b + ½2b2 + · · · + ½t bt ∈ kerLa ∩ kerLb = {0}. But B is an independent set, and
so B′ must also be an independent set.

Let c be any vector in the complement of the span ofB′ in Im La. ThenB′ ∪ {c}
is a basis of ImLa. Now bi b′

i = bi ai ∈ Im La and so using any basis for kerLa and
B′ ∪ {c} as a basis of ImLa, we have

Lbi
=




0 0 : : : 0 bi 1

0 0 : : : 0 bi 2

O
:::

:::
:::

:::

0 0 : : : 0 bit

? ?




and Lc =
[

O C1

C2 ?

]
:

Sincec 6∈ kerLa, the columns ofC2 are independent and so rankC2 = t . Also
c 6∈ kerLa implies thatC1 6= 0 and so rankC1 = 1. Sincen > 3 this implies that
there exists a nonzerob′ in the span ofB′ such that

Lb′ =
[

O O
? ?

]
:

Sinceb′ 6∈ kerLa this is impossible.

Our final result involves a lower bound for dim.kerLa/. First we need the well-
known result described in the following lemma.

LEMMA 2.14. Let M be ann × n matrix with entries from a fieldk. SupposeM is
skew-symmetric andmii = 0 for 1 ≤ i ≤ n. If n is odd, thenM is singular.
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THEOREM 2.15. Let A be a nontrivial homogeneous algebra over an infinite fieldk.
Let a ∈ A\{0}. If dim A is even, thendim.kerLa/ > 1.

PROOF. Suppose dimA = n and leta ∈ A\{0}. Then decomposeA as

A = kerLa ⊕ Im La:

Let {a;e2; : : : ;en} be the corresponding basis and assume dim.kerLa/ = 1. We
consider the top rows ofLe2; Le3; : : : ; Len

. SinceA is anticommutative these rows are
of the form

R2 : 0 0 e23 e24 e25 : : : e2n

R3 : 0 −e23 0 e34 e35 : : : e3n

R4 : 0 −e24 e34 0 e45 : : : e4n

:::
:::

Rn : 0 −e2n −e3n −e4n −e5n : : : 0 :

Considerx2R2 + x3R3 + · · · + xn Rn = 0. This is a homogeneous linear system
of the formMx = 0, whereM is a .n − 1/ × .n − 1/ skew-symmetric matrix, with
mii = 0 (we discard the first column). By Lemma2.14, M is singular and so the
system has nontrivial solutions. Thus there exists a nonzerox ∈ Im La such that

Lx =
[

0 0 · · · 0
? ?

]
:

Again this is impossible sincex 6∈ kerLa. This completes the proof.

3. Homogeneous algebras of small dimension

The general results described in the previous section are strong enough to limit
the possible existence of homogeneous algebras having small dimension. Their real
strength lies in the fact that they do not depend on the choice of the scalar field. These
theorems allow us to dramatically shorten the work involved in classifying dimensions
2, 3 and 4, (as reported in [6] and [8]) and to make some additional useful observations.

We first briefly describe the only known examples of infinite homogeneous algebras.
These exist over the real field and are described by Djokovi´c in [1]. In that paper,
he shows that there are only 3 such algebras. The first two are well-known: the 3-
dimensional algebra consisting of the pure quaternions and the 7-dimensional algebra
consisting of the pure octonions. In both cases the multiplication is redefined to make
x2 = 0. There is also a 6-dimensional algebraT = C

3 considered as a real vector
space with multiplication as follows: forx = .x1; x2; x3/ andy = .y1; y2; y3/, let

x · y = (
x2y3 − x3y2; x3y1 − x1y3; x1y2 − x2y1

)
:



[9] Homogeneous algebras 55

We conclude with a summary of the results of applying Theorems2.12, 2.13
and2.15 to algebras of dimension up to 7. It may be that any further progress on
classification will depend on specifying the scalar fieldk.

• Dimension 2 By Theorem2.15, dim.kerLa/ = 2 = dim.A/. Thus there
are no non-trivial homogeneous algebras over any infinite field. This result was first
shown in [9].

• Dimension 3 By Theorem2.12, we must have dim.kerLa/ = 1. Such an
algebra exists as described above (also over certain other fields; see [6].

• Dimension 4 By Theorem2.12, dim.kerLa/ < 2, but by Theorem2.15,
dim.kerLa/ > 1. Therefore there are no non-trivial homogeneous algebras over any
infinite field. This is an improvement on the authors’ work in [8].

• Dimension 5According to Theorem2.13, the only possibility for a homoge-
neous algebra is to have dim.kerLa/ = 1. This case has not yet been resolved, but
we conjecture no such algebra exists over any infinite field.

• Dimension 6According to Theorems2.12and2.15, the only possibility is for
dim.kerLa/ = 2. Such an algebra does exist over the reals, as described above.

• Dimension 7By Theorem2.13, there are two possibilities: dim.kerLa/ = 1
or 2. The case of dim.kerLa/ = 1 can occur: the algebra of pure octonions described
above. The case of dim.kerLa/ = 2 is unresolved, but we again conjecture no such
algebra exists over any infinite field.
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