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Abstract

We investigate the location and separation of zeros of certain three-term linear combination of translates
of polynomials. In particular, we find an interval of the formI = [−1; 1 + h], h > 0 such that for a
polynomial f , all of whose zeros are real, and½ ∈ I , all zeros of f .x + 2ic/+ 2½ f .x/+ f .x − 2ic/ are
also real.

2000Mathematics subject classification: primary 26C10, 30C15.

1. Introduction

Given the location of the zeros of a polynomial or entire function, it is important
to have corresponding information about the zeros of other functions which may be
derived from the given one. For instance Rolle’s theorem says that if all the zeros
of a polynomial lie on the real axis, then the zeros of the derivative also lie on the
axis, and lie one in each interval between successive zeros. We showed in [3] that the
separation, measured by

Ž. f / := min
j
.aj − aj −1/; where f .x/ =

n∏
j =1

.x − aj /; a1 < a2 < · · · < an;

is increased by differentiation, and more generally in [4] that for realk there is some
explicit constantcn.k/ > 1, for which

Ž. f ′ − k f / ≥ cn.k/Ž. f /:
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Another operation which has been considered in this context is translation. For
instance P´olya showed in [2, Lemma II, page 316], that forc> 0 and� ∈ C, |� | = 1,
f� .x/ := f .x + ic/+ � f .x − ic/ has only real zeros whenf does, and we showed
in [5] that the separation is also increased:

Ž. f� / > Ž. f /;

again with explicit estimates for the amount of the increase. If we apply this result
twice, using� , �̄ = e±iÞ; Þ ∈ R, we find that whenf has only real zeros then the
same is true forf .x + 2ic/+ 2 cosÞ f .x/+ f .x − 2ic/. Equivalently the map

f .x/ → T½ f .x/ := f .x + 2ic/+ 2½ f .x/+ f .x − 2ic/;(1)

where−1 ≤ ½ ≤ 1, c > 0, preserves the reality of the zeros off and increases their
separation. For convenience we shall replace 2c by c in (1) from now on.

In this paper we extend the range of these results to values of½ which lie outside
the interval[−1;1]. The motivation for doing this comes from the study of Mellin
transforms in which given a function

F.x/ =
∫ ∞

0

t i x�.t/dt

we are interested in applying multipliers of the form.t + r 2=t/ and.t + 1=r 2t/ with
realr to the integrand. This gives∫ ∞

0

t i x.t + r 2=t/.t + 1=r 2t/�.t/dt = F.x + 2i /+ .r2 + r −2/F.x/+ F.x − 2i /

= F.x + 2i /+ 2½F.x/ + F.x − 2i /;

where necessarily½ > 1.
More precisely we shall find neighbourhoods of 1 and∞ such that for these values

of ½, all the zeros ofT½ are real. (It is not possible to do this near−1 since two zeros
are lost at−∞.) The size of the neighbourhood of 1 turns out to depend only on the
degree of the polynomial, and not on the values ofc or Ž, as Theorem5 shows. We
shall also estimate the separation of the zeros for½ > 1.

Our results also relate to P´olya’s generalisation of the Hermite-Poulain theorem—
see [1], particularly Lemma I*, page 228. This lemma states that if� is in the
Laguerre-P´olya classL P, andg is a polynomial with real coefficients, then, withD
denoting the operation of differentiation,�.D/g has at least as many real zeros as does
g. In our context we haveT½ f = 2.½+cos.cD// f , and so�.z/ = ½+cos.cz/ ∈ L P
if and only if −1 ≤ ½ ≤ 1. In contrast, our Theorem5 states that for suitablef , T½
also preserves the zeros off in some neighbourhood to the right of 1. In addition,
our Theorem7 constructs, for any given½ > 1, a polynomial with real zeros such
thatT½ f has some non-real zeros; this gives further information about the size of the
neighbourhood of 1, and shows that the restriction onf cannot be omitted entirely.
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2. Location of zeros

Let f .x/ := ∏n
1.x − aj /, wherea1 < a2 < · · · < an ∈ R. For givenc > 0 and

x ∈ R, let

aj + ic − x := r j e
i � j ; r j > 0; 0< � j = cot−1

(
aj − x

c

)
< ³:

Note that (i) each� j is a continuous strictly increasing function ofx with � j .−∞/ = 0,
� j .aj / = ³=2, � j .+∞/ = ³ and (ii) that³ > �1 > �2 > · · · > �n > 0. Then

T½ f .x/ = f .x + ic/+ 2½ f .x/+ f .x − ic/

=
n∏
1

.x + ic − aj /+
n∏
1

.x − ic − aj /+ 2½
n∏
1

.x − aj /

=
n∏
1

(−r j e
−i � j
)+

n∏
1

(−r j e
i � j
)+ 2½

n∏
1

.−r j cos� j /

= 2
n∏
1

.−r j /

[
cos

n∑
1

� j + ½

n∏
1

cos� j

]
:

The following result follows at once from this expression:

LEMMA 1. Real zeros ofT½ f occur where�1 + ½�2 = 0, where

�1.x/ := cos
n∑
1

� j .x/; �2.x/ :=
n∏
1

cos� j .x/;

and sinceT½ f has degreen (or n − 2 in case½ = −1) all zeros ofT½ f will be real if
n (or n − 2) real zeros can be identified.

Let bj ;1 ≤ j ≤ n, be the points at which
∑n

1 �i = . j − 1=2/³ , that is, the
zeros of�1. Note that�1 → 1 as x → −∞ and �1 → .−1/n as x → +∞.
Note also thatb1 < a1 < an < bn, since for instance�1 = ³=2 at a1 and so∑n

1 � j = ³=2 at some point less thana1. Let c1; c2; : : : ; cn−1 be the points at which∑n
1 � j = ³;2³; : : : ; .n − 1/³ , that is, the successive maxima and minima of�1. Let

c0 = −∞; cn = +∞. Note that�1 is strictly monotone from each.cj −1; cj / onto
.−1;1/ since each� j is an increasing function ofx. More detailed information on the
relation betweenbj , cj and the rootsaj of f is contained in Lemma3 below.

For �2, observe that�2 → 1 asx → −∞, that�2 → .−1/n asx → ∞, that�2

changes sign at eachaj , and that|�2| < 1 for all realx. Let h j = sup{|�2.x/| : aj <

x < aj +1}, 1 ≤ j ≤ n − 1 with h j = |�2.dj /|. Also let h0 = �2.b1/;hn = |�2.bn/|.
Note thath0;h1; : : : ;hn are all in the interval.0;1/. Let h∗ = min0≤ j ≤n h j ;h∗ =
max0≤ j ≤n h j .
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LEMMA 2. T½ f has only real zeros if either(i) −1 ≤ ½ ≤ 1=h∗ or (ii) |½| ≥ 1=h∗.

PROOF. (i) For −1 < ½ < 1, observe that|½�2| < |�2| < 1 for all x. Hence since
the graph of�1 goes from−1 to 1 on each interval.cj −1; cj /, 1 ≤ j ≤ n, it follows
from the the intermediate value theorem that there is at least one root of�1 + ½�2

in each of these intervals. Since there aren such intervals and at mostn zeros, the
result follows in this case. If½ → −1 the result remains true since the roots vary
continuously with½, though the two extreme zeros tend to±∞.

For positive½, �1 and−½�2 have opposite sign outside[b1;bn] (recall the earlier
observation thatb1 < a1 < an < bn.) Forx ∈ [b1;bn] and 1≤ ½ < 1=h∗ we still have
|½�2.x/| < 1 and hence there is exactly one root in each interval.cj −1;cj / as before.
The result when½ = 1=h∗ again follows as a limiting case.

(ii) If |½| > 1=h∗, then we reverse the roles of�1; ½�2 in the above argument. The
function½�2 now goes from a value less than−1 to a value greater than 1 on each
interval.dj −1;dj / (with d0 = b1 anddn = bn), and so must intersect�1 there. Since
there aren such intervals we have located the required number of real roots. The
result when|½| = 1=h∗ follows once more as a limiting case.

Lemma2 shows the existence of some range of values of½ > 1 for which the zeros
of T½ f are real. (The condition is that½|�2| ≤ 1 on [b1;bn]; compare Lemma4 (i)
below.) However as it stands, it does not give useful quantitative information, since
estimation ofh j may involve the lengths of any of the intervals.aj ;aj +1/. To make
further progress we need more detailed information about the location of zeros ofT½ f
for which the following definition is required:

DEFINITION. For eachj;1 ≤ j ≤ n, let I j := [aj − ¼ j ;aj + ¹ j ], where¼ j ; ¹ j are
non-negative numbers, which are defined by the requirement that the angles� j to the
right of aj sum to³=2 ataj −¼ j , and the complementary angles³ − � j to the left of
aj sum to³=2 ataj + ¹ j . More formally, we require that

n∑
k= j

�k = ³

2
; at x = aj − ¼ j and

j∑
k=1

.³ − �k/ = ³

2
; at x = aj + ¹ j :

Since as has been noted, each�k is an increasing function ofx from R onto.0; ³/,
and � j = ³=2 at aj , each of¼ j ; ¹ j is well defined. (Note that in particular that
a1 − ¼1 = b1;an + ¹n = bn and that¹1 = ¼n = 0.) Let I := ⋃n

1 I j .
The following result describes the arrangement of these intervals, and their relation

to the pointsbj where�1 = 0.

LEMMA 3. (i) The end points of the intervalsI j form strictly increasing sequences:

aj − ¼ j < aj +1 − ¼ j +1 and aj + ¹ j < aj +1 + ¹ j +1 for 1 ≤ j ≤ n − 1:
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(ii) For eachj , 1 ≤ j ≤ n, we havebj ∈ I j ; more precisely

aj − ¼ j ≤ bj ; with strict inequality whenj > 1; and

aj + ¹ j ≥ bj ; with strict inequality whenj < n:

Moreover, if for somek, ak ≤ bj ≤ ak+1, thenbj ∈ Ik ∪ Ik+1. (This includes both of
the extreme casesk = 0, andk = n; if k = 0 there is noak to the left ofbj and the
claim is simply thatbj ∈ I1 = [b1;a1], similarly if k = n, thenbj ∈ In = [an;bn].)

(iii) At any point not inI , �1 and�2 have strictly the same sign.

PROOF. (i) follows since each� j > 0 and
∑n

j �i = ³=2 ataj −¼ j while
∑n

j +1 �i =
³=2 ataj +1 − ¼ j +1.

For (ii) we see that
∑n

1 �i = ³=2 at b1 and ata1 − ¼1, so b1 = a1 − ¼1 as
already noted. In general, forj ≥ 2 we have

∑n
j �i = ³=2 at aj − ¼ j and so∑n

1 �i = ³=2 + ∑ j −1
1 �i < ³=2 + . j − 1/³ . But

∑n
1 �i = . j − 1=2/³ at bj , so

aj − ¼ j < bj . The inequalityaj + ¹ j ≥ bj is proved similarly, and sobj ∈ I j .
If ak ≤ bj ≤ ak+1, then eitherj ≤ k, when sinceaj + ¹ j ≤ ak + ¹k andbj ∈ I j we

have alsobj ∈ Ik, or j ≥ k + 1 whenbj ∈ Ik+1 follows similarly.
(iii) For x =∈ I , suppose thatak < x < ak+1 (which includes the extreme cases

mentioned in the statement of the lemma). Sincex =∈ I , we must haveak + ¹k < x <
ak+1 − ¼k+1. Then from the definition of¹k; ¼k+1 we see that atx,

0< p :=
n∑

i =k+1

�i < ³=2 and 0< q :=
k∑

i =1

.³ − �i / < ³=2:

Hence
∑n

i =1 �i = k³+.p−q/ must lie strictly between.k−1=2/³ and.k+1=2/³
and so�1.x/ = cos.

∑n
i =1 �i / has the sign.−1/k . But this is also the sign of�2 on the

interval.ak;ak+1/, so�1 and�2 have the same sign.

LEMMA 4. .i/ If 0 ≤ ½|�2| ≤ 1 on I , then all zeros.pj /
n
1 of T½ f are real and

lie in I .
.ii/ For each zeropj of T½ f there is someak with

|ak − pj | ≤ 2cmax.k;n + 1 − k/=³:

.iii / sup{|�2.x/| : x ∈ I } ≤ 1=
√

1 + ³2=4n2.

PROOF. (i) We know from Lemma 2 that there is one zeropj in each interval
.cj −1; cj / and we shall assume without loss of generality that�1 is increasing on this
interval. Suppose thatak ≤ bj ≤ ak+1; (including, as above, the extreme cases when
k = 0 or k = n). We consider separately the two cases when (a)Ik ∩ Ik+1 6= ∅, and
(b) Ik ∩ Ik+1 = ∅.
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In case (a) we have[ak;ak+1] ⊂ Ik ∪ Ik+1, and suppose first thatcj −1 ≤ ak.
Then�1.ak/ ≤ �1.bj / = 0 = −½�2.ak/. Otherwise ifcj −1 ≥ ak, then�1.cj −1/ =
−1 ≤ −½�2.cj −1/, since cj −1 is now in Ik. Hence if r := max.ak; cj −1/, then
�1.r / ≤ −½�2.r /. Similarly if s := min.ak+1; cj /, then�1.s/ ≥ −½�2.s/. Hence from
the intermediate value theorem, there is a zeroof�1 = −½�2 on[r; s] ⊂ [ak;ak+1] ⊂ I
as required.

In case (b) whenIk∩ Ik+1 = ∅ we can assume without loss of generality thatbj ∈ Ik.
Now if cj ≤ ak + ¹k then we can argue as in case (a) that there is a zero in[r; cj ] ⊂ Ik,
wherer := max.ak; cj −1/. But if cj > ak + ¹k, then we know from Lemma3 (iii) that
�1;−�2 have opposite signs offI , and so�1.ak + ¹k/ ≥ 0 ≥ −½�2.ak + ¹k/ and there
is a zero in[r;ak + ¹k] ⊂ Ik. This proves (i).

(ii) We have shown in (i) that eachpj lies in someIk, so it is enough to prove the
inequalities

¼ j < 2c.n − j + 1/=³; ¹ j < 2cj=³:

But atx = aj − ¼ j , we have

³

2
=

n∑
k= j

�k <

n∑
k= j

tan�k ≤ .n − j + 1/ tan� j = .n − j + 1/c

¼ j

which gives the result for¼ j , and the result for¹ j is similar.
(iii) For each pointx ∈ I , we havex ∈ Ik for somek and so

|x − ak| ≤ max.¼k; ¹k/ ≤ 2cn=³:

Thus atx we have

| cos�k| = |x − ak|√
.x − ak/

2 + c2
≤ 1√

1 + ³2=4n2
;

and so

sup{|�2.x/| : x ∈ I } ≤ 1√
1 + ³2=4n2

:(2)

We now come to our main result on the zeros ofT½ f .

THEOREM 5. If 1 ≤ ½ ≤ √
1 + ³2=4n2, thenT½ f has only real zeros whose sepa-

ration satisfies

Ž.T½ f / ≥ 2d

³
tanh

(³c

d

)
cos−1

(
½√

1 + ³2=4n2

)

whered = Ž. f / = min j .aj − aj −1/.
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The reality of the zeros follows at once from Lemma4, since the restriction on
½ ensures that½|�2| ≤ 1 on I . The proof of the estimate will follow after we have
established Lemma6 below.

The following example shows that there can be no corresponding result for infinite
products, without further restrictions on the location of their zeros.

EXAMPLE. Let f .x/ = ∏∞
1

{
.1 − x=n/ex=n

}
. ThenT½ f has some non-real roots

for any½ > 1.

In this example we have�n = cot−1{.n − x/=c} and we writen ± ic = x + rne±i �n

as in Lemma1. Then

T½ f .x/ =
∞∏
1

{(
1− x + ic

n

)
e.x+i c/=n

}
+

∞∏
1

{(
1 − x − ic

n

)
e.x−i c/=n

}

+ 2½
∞∏
1

{(
1 − x

n

)
ex=n

}

=
∞∏
1

{rn

n
ex=n+i .c=n−�n/

}
+

∞∏
1

{rn

n
ex=n−i .c=n−�n/

}
+ 2½

∞∏
1

{rn

n
ex=n cos�n

}

= 2
∞∏
1

{rn

n
ex=n

} [
cos

( ∞∑
1

(
�n − c

n

))
+ ½

∞∏
1

cos�n

]
;

where it is easily checked that the sums and products are absolutely convergent
as grouped. This gives an obvious extension of Lemma1. We shall show that
the sum

∑∞
1 .�n − c=n/ → −∞ as x → −∞; this will establish the result since

�1 = cos
(∑∞

1 .�n − c=n/
)

oscillates infinitely often between 1 and−1, while�2 =∏∞
1 cos�n → 1 asx → −∞ since each term→ 1 and the product is absolutely

convergent. Thus as soon as½ > 1, some real intersections of�1 and−½�2 will be
replaced by corresponding non-real roots. It remains to show that

∑∞
1 .�n − c=n/ →

−∞ asx → −∞.
GivenK > 0, chooseN ≥ 3 such that (i)

∑∞
N+1.�n −c=n/ < 1 and (ii)

∑N
1 c=n >

2K . Since each�n → 0 asx → −∞ we can choosex sufficiently large and negative
such that�n < 1=N for n = 1;2; : : : ; N. Then for suchx we will have

∞∑
1

(
�n − c

n

)
=

N∑
1

�n −
N∑
1

c

n
+

∞∑
N+1

(
�n − c

n

)
< 1 − 2K + 1

which is less than−K when K > 2. This shows that
∑∞

1 .�n − c=n/ → −∞ as
x → −∞ as required.

The following estimate for the rate of increase of the sum of the angles� j is needed
to complete the proof of Theorem5.
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LEMMA 6. For all x ∈ R,

d

dx

(
n∑

j =1

� j

)
<
³

d
coth

(³c

d

)
;

whered = Ž. f / = min.aj − aj −1/.

PROOF. We have� j = cot−1..aj − x/=c/ and hence� ′
j = c=.c2 + .aj − x/2/. Let

h = min j |aj − x|. Since the zeros are separated by at leastd = Ž. f / the sum
∑n

1 �
′
j

is bounded above by

∞∑
j =−∞

c

c2 + .h + jd/2
= ³

d

sinh.2³c=d/

cosh.2³c=d/ − cos.2³h=d/

≤ ³

d

sinh.2³c=d/

cosh.2³c=d/ − 1
= ³

d
coth

(³c

d

)
:

We can now complete the proof of Theorem5.

PROOF. Put½0 = √
1 + ³2=4n2 and let¦ denote any real number in.1; ½0/. Then

for x ∈ I and 1≤ ½ ≤ ¦ we have from (2) that

½|�2.x/| ≤ ½=½0 ≤ ¦=½0 < 1:

In particular, each zeropj −1 of T½ f lies in that part of the interval.cj −1; cj / on which
|�1.x/| ≤ ¦=½0. It follows that between pj −1 and cj the sum

∑
� j must increase

by at least cos−1.¦=½0/. Similarly betweencj and pj the sum
∑
� j must increase

by at least cos−1.¦=½0/, and so on[pj −1; pj ] the sum
∑
� j must increase by at least

2cos−1.¦=½0/.
But �1.x/ = cos

(∑
� j

)
and so |�′

1.x/| ≤ ∑
� ′

j ≤ .³=d/ coth.³c=d/ from
Lemma6. Hence an increase inx of at least1 is required to make

∑
� j increase by

2 cos−1.¦=½0/ where

1
³

d
coth

(³c

d

)
≥ 2 cos−1

(
¦

½0

)
:

Hence the separationŽ.T½ f / is at least.2d=³/ tanh.³c=d/ cos−1.¦=½0/ and putting
½ = ¦ gives the required result.

We complement Theorem5 with the following result which shows that for½ > 1,
some restriction onf is necessary to ensure reality of the zeros ofT½ f .

THEOREM 7. Given any½ > 1, there is a polynomialf with real distinct zeros such
that not all zeros ofT½ f are real.
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PROOF. Consider first f .x/ = xn, where all zeros are at the origin. With the
notation of Lemma1, we have all� j = � := cot−1.x=c/, 0< � < ³ , and so the zeros
of T½ f are where cos.n�/ + ½.cos�/n = 0.

We see by inspection of the graphs of cos.n�/ and−½.cos�/n that when½ = 1
there are two real zeros on the interval[³=2n;3³=2n]. However if½ is increased so
that−½.cos�/n = −1 at� = 3³=2n then these real zeros are lost. Thus we have to
show that for any½ > 1 we can choosen so that½.cos.3³=2n//n > 1. This follows
at once since.cos.3³=2n//n → 1 asn → ∞, and we can estimate the size ofn from
the elementary inequalities

(
cos

(
3³

2n

))n

>

(
1 − 1

2

(
3³

2n

)2
)n

> 1 − 9³2

8n
:

Thus given½ > 1, we can say that not all zeros ofT½.xn/ are real if

½ >
1

1 − 9³2=8n
; or equivalently n >

9³2½

8.½− 1/
:

Finally to find an example with distinct roots, we can replacexn by a polynomial
n zeros equally spaced on[−h;h] say, and takeh sufficiently close to zero.

It would be interesting to find which of the estimates 1+O.n−2/given by Theorem5,
or 1+O.n−1/ for the example of Theorem7 is closer to the correct order of magnitude
for the value of½ required to make the zeros ofT½ f real.
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