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Abstract

In this paper we define and study a generalized Drazin inversexD for ring elementsx, and give a
characterization of elementsa, b for whichaaD = bbD. We apply our results to the study of EP elements
in a ring with involution.
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1. Introduction

This paper is motivated by a recent work of Castroet al. [2], which investigates the
necessary and sufficient conditions for square complex matricesA, B to have the same
eigenprojection at 0. This problem, under more restrictive conditions onA, B was
first considered by Hartwig [7] more than 20 years ago.

The formulation of the problem for elements of rings requires the definition of an
appropriate analogue of the eigenprojection, the so-called spectral idempotent, well
known in the case of Banach algebras. We also define and investigate a generalized
Drazin inverse for elements of rings that possess a spectral idempotent. The main result
of this paper is a characterization of ring elements with equal spectral idempotents.

In rings with involution we can define the Moore–Penrose inverse and EP elements,
that is, ring elements for which the Drazin and Moore–Penrose inverse exist and
coincide. We give a new characterization of EP elements based on our main theorem.
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2. Quasipolar elements in rings

In this paper ‘ring’ means an associative ring with unit 16= 0. LetR be a ring.
The group of invertible elements is denoted byR−1.

For any elementa ∈ R we define thecommutantand thedouble commutantof a by

comm.a/ = {x ∈ R : ax = xa};
comm2.a/ = {x ∈ R : xy = yx for all y ∈ comm.a/}:

The Jacobsonradical ofR is the two-sided ideal

R
rad = {a ∈ R : 1 +Ra ⊂ R−1}:

DEFINITION 2.1 (Harte [5]). An elementa ∈ R is quasinilpotentif, for every x ∈
comm.a/, 1+ xa ∈ R−1. The set of all quasinilpotent elements ofR will be denoted
byRqnil. The set of all nilpotent elements will be written asRnil .

Clearly,R rad ⊂ Rqnil. Further,Rnil ⊂ Rqnil as

.1 + xa/−1 =
k−1∑
i =0

.−1/i xi ai

if a ∈ R is nilpotent of indexk and x ∈ comm.a/ (see also [5, Theorem 3 and
Theorem 4]). We note that in a ring, unlike in a Banach algebra, the sum of two
commuting quasinilpotent elements need not be quasinilpotent. However, we have
the following implication:

a ∈ R−1 and b ∈ Rqnil ∩ comm.a/ H⇒ a + b ∈ R−1:(2.1)

For a Banach algebraR it is well known [4, page 251] that

a ∈ Rqnil ⇐⇒ lim
n→∞

‖an‖1=n = 0:

DEFINITION 2.2. An elementa ∈ R is quasipolarif there existsp ∈ R such that

p2 = p; p ∈ comm2.a/; ap ∈ Rqnil; a + p ∈ R−1:(2.2)

If a is quasipolar andap ∈ Rnil with the nilpotency indexk, we say thata is polar
of orderk. Any idempotentp satisfying the above conditions is called aspectral
idempotentof a. (The term ‘quasipolar’ comes from [5], and ‘spectral’ idempotent
is borrowed from spectral theory in Banach algebras [4]. We shall see later that
quasipolar elements are exactly the ones which are ‘generalized Drazin invertible’—
Theorem4.2.)
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PROPOSITION2.3. Any quasipolar elementa ∈ R has a unique spectral idempotent
denoted bya³ .

PROOF. Suppose thatp, q are spectral idempotents of a quasipolar elementa ∈ R.
Then

1 − .1 − p/q = 1− .1 − p/.a + p/−1.a + p/q

= 1− .1 − p/.a + p/−1aq = 1 − b.aq/:

Sincep ∈ comm2.a/, we haveb ∈ comm.aq/; aq ∈ Rqnil implies 1− b.aq/ ∈ R−1.
Then

1− .1 − p/q = 1 − .1 − p/2q2 = .1 − .1 − p/q/.1 + .1 − p/q/:

The invertibility of 1− .1− p/q implies that.1− p/q = 0, that is,q = pq. Similarly
we prove that.1 − q/p ∈ R−1, andp = qp = pq. Thenp = q.

REMARK 2.4. From [8, Theorem 3.2] it follows that the conditiona + p ∈ R−1 in
(2.2) can be replaced by 1− p ∈ .Ra/ ∩ .aR/.

The uniqueness of the spectral idempotent is used to prove the following result
valid in rings with involution (see Section5).

PROPOSITION2.5. LetR be a ring with involution. Thena is quasipolar if and only
if a∗ is quasipolar. In this case and.a∗/³ = .a³ /∗.

PROOF. Froma + a³ ∈ R−1 andaa³ = a³a ∈ Rqnil we obtaina∗ + .a³ /∗ ∈ R−1

anda∗.a∗/³ = .a∗/³a∗ ∈ Rnil by applying the involution.

For polar elements we can relax the condition thatp double commutes witha:

PROPOSITION2.6. Leta ∈ R, and letp ∈ R be such that

p2 = p; p ∈ comm.a/; ap ∈ Rnil; a + p ∈ R−1:(2.3)

Thena is polar andp = a³ .

PROOF. SinceRnil ⊂ R
qnil, we only need to prove thatp ∈ comm2.a/. For

ap ∈ Rnil there existsk ∈ N such that.ap/k = ak p = 0. Setb = .a + p/−1.1 − p/;
thenab = ba = 1 − p. Let x ∈ comm.a/. We have

xp− pxp = .1 − p/xp = .1 − p/kxp = bkakxp = bkxak p = 0;

which impliesxp = pxp. Similarly we show thatpx.1 − p/ = 0, andpx = pxp.
This provespx = xp, andp ∈ comm2.a/.

Observe that in general double commutativity ofp with a is necessary.
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3. Results on regular elements of rings

An elementa ∈ R is regular (in the sense of von Neumann) if it has aninner
inversex, that is, if there existsx ∈ R such thataxa = a. Any inner inverse ofa will
be denoted bya−. The set of all regular elements ofR will be denoted byR−. Given
a ∈ R, we define the sets

aR = {ax : x ∈ R}; Ra = {xa : x ∈ R};
a0 = {y ∈ R : ay = 0}; 0a = {y ∈ R : ya = 0};

whereaR andRa can be considered as finitely generatedR-modules; the same is
true ofa0 and 0a if a ∈ R− (see Proposition3.1below). When considering a matrix
A, these sets reflect, respectively, the column space ofA, the row space ofA, the
kernel of A, and the kernel ofAT. However, we will work with these sets with no
reference to rank, dimensional analysis or orthogonality. IfM ⊂ R, we can define

MR = {mx : m ∈ M; x ∈ R}; M 0 = {x ∈ R : Mx = {0}};

similarly we defineRM and 0M .
Some properties of these sets, established by Hartwig in [6, Proposition 6], will be

needed in the following section. We include proofs for the sake of completeness.

PROPOSITION3.1. Givena, b ∈ R− and A, B ⊂ R, we have

.i/ .1 − a−a/R = a0;
.ii/ a0 = .Ra/0;
.iii / Ra = 0.a0/ = 0..Ra/0/;
.iv/ A ⊂ B H⇒ 0 A ⊃ 0B.

PROOF. (i) As a..1 − a−a/y/ = 0, we have.1 − a−a/y ∈ a0. Conversely, if
ax = 0, then.1 − a−a/x = x which impliesx ∈ .1 − a−a/R.

(ii) Clearly, a0 ⊂ .Ra/0. The reverse inclusion is immediate when we takex = 1
in .Ra/0 = {y ∈ R : xay = 0 for all x ∈ R}.

(iii) Let ya ∈ Ra. Then yax = 0 for any x ∈ a0, and ya ∈ 0.a0/. Hence
Ra ⊂ 0.a0/.

Conversely lety ∈ 0.a0/. Thenyx = 0 for all x ∈ a0. As y = ya−a + y.1− a−a/
and 1− a−a ∈ a0 by (i) above, we havey.1− a−a/ = 0, andy = ya−a ∈ Ra. This
proves0.a0/ ⊂ Ra.

(iv) is obvious.
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4. The g-Drazin inverse in rings

The original definition of the ‘pseudoinverse’ was given by Drazin [3] for elements
of semigroups and polar elements of rings. It was generalized byHarte [5] to quasipolar
elements, and studied by the first author in [8] in Banach algebras. In this section we
survey the properties of the generalized Drazin inverse (called g-Drazin inverse) for
quasipolar elements of rings; many of the results will appear in this setting for the first
time.

DEFINITION 4.1. An elementa ∈ R is generalized Drazin invertible(or g-Drazin
invertible for short) if there existsb ∈ R such that

b ∈ comm2.a/; ab2 = b; a2b − a ∈ Rqnil:(4.1)

Any elementb ∈ R satisfying these conditions is ag-Drazin inverseof a. We denote
the set of all g-Drazin invertible elements ofR by RgD. If a2b − a in the above
definition is nilpotent, thena is calledDrazin invertibleand b is called aDrazin
inverseof a. The set of all Drazin invertible elements ofR will be denoted byRD.
The following result ensures that these concepts are well-defined.

THEOREM 4.2. An elementa ∈ R is g-Drazin invertible if and only ifa is quasipo-
lar. In this casea ∈ R has a unique g-Drazin inverseaD given by the equation

b = .a + a³/−1.1 − a³/ = .1 − a³/.a + a³ /−1:(4.2)

PROOF. Suppose first thata is quasipolar with the spectral idempotentp, and set
b = .a + p/−1.1 − p/. Thenb ∈ comm2.a/. Further,

ab2 = a.1 − p/.a + p/−2 = .a + p/.1 − p/.a + p/−2 = .1 − p/.a + p/−1 = b;

and
a2b − a = a2.1 − p/.a + p/−1 − a

= a.a + p/.a + p/−1.1 − p/ − a = −ap ∈ Rqnil:

Conversely assume thata is g-Drazin invertible with a g-Drazin inverseb, and set
p = 1 − ab. Then p ∈ comm2.a/, and.1 − p/2 = a2b2 = a.ab2/ = ab = 1 − p,
which implies p2 = p. Finally, to prove thata + p ∈ R

−1, we observe that
ap = a − a2b ∈ Rqnil and

.a + p/.b + p/ = ab+ ap+ bp+ p = 1 − p + ap + p = 1 + ap ∈ R−1(4.3)

asbp = b.1−ab/ = b−ab2 = 0. From.a+ p/b = ab+ pb = 1− p+ pb = 1− p
it follows thatb = .a + p/−1.1− p/. The uniqueness of the spectral idempotent ofa
proves the uniqueness of the g-Drazin inverseb.
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The preceding theorem together with Proposition 2.5 implies the following result
valid in rings with involution (see Section5).

PROPOSITION4.3. LetR be a ring with involution. Thena is g-Drazin invertible if
and only ifa∗ is g-Drazin invertible. In this case.a∗/D = .aD/

∗.

DEFINITION 4.4. The g-Drazin index i .a/ of a quasipolar elementa ∈ R is de-
fined by

i .a/ =




0 if a ∈ R−1;

k if a2b − a is nilpotent of indexk ∈ N;

∞ otherwise:

(4.4)

If i .a/ ≤ 1, we say thata is group invertible; the Drazin inverse ofa is then called
thegroup inverse, and is denoted byaD = a#. The set of all group invertible elements
will be denoted byR#.

We observe that the g-Drazin index ofa ∈ R is finite if and only if a is polar.
The setsRgD, RD andR# coincide with the set of all quasipolar, polar and simply
polar elements ofR, respectively. Note thatRgD ⊃ RD ⊃ R# ⊃ R−1. We make the
following useful observation.

PROPOSITION4.5. An elementa ∈ R is Drazin invertible if and only if there exists
k ∈ N such thatak is group invertible.

In addition to (4.2) we have the following useful relations between the spectral
idempotent and the g-Drazin inverse established in the proof of Theorem4.2:

a³ = 1− aDa = 1 − aaD; a³aD = aDa³ = 0:(4.5)

By (4.3) we also have thataD + a³ ∈ R−1. This leads to the following.

PROPOSITION4.6. If a ∈RgD, thenaD ∈R#, and.aD/
³ = a³ . In addition,aD ∈R−.

PROOF. We only need to observe that by (4.1), b = aD is regular for anya ∈RgD.

Equation (4.2) can be improved as follows.

PROPOSITION4.7. Leta ∈ RgD. If x ∈ R−1 ∩ comm.a/, thena + xa³ ∈ R−1 and

aD = .a + xa³/−1.1 − a³ /:(4.6)
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PROOF. Let x ∈ R−1 ∩ comm.a/. Thenx commutes witha³ , andaa³ + x ∈ R−1

according to (2.1). Hence

a + xa³ = .a + xa³/a³ + .a + xa³/.1 − a³ /

= .aa³ + x/a³ + .a + a³/.1 − a³/;

which shows that

.a + xa³/−1 = .aa³ + x/−1a³ + .a + a³ /−1.1 − a³ /:

The result follows from the equation

.a + xa³ /aD = aaD + xa³aD = 1 − a³

obtained from (4.5).

REMARK 4.8. In rings the double commutativity ofb with a in Definition 4.1 is
necessary to guarantee the uniqueness of the g-Drazin inverse. In [8, Lemma 2.4]
it is erroneously claimed that the uniqueness of the g-Drazin inverse follows from
b ∈ comm.a/. However, commutativity is sufficient whenR is a Banach algebra or
a2b − a is nilpotent rather than quasinilpotent.

PROPOSITION4.9. Leta ∈ R, and letb ∈ R be such that

b ∈ comm.a/; ab2 = b; a2b − a ∈ Rnil :(4.7)

Thena is polar, andaD = b.

PROOF. Let p = 1− ab. Then it can be easily verified thatp ∈ comm.a/, p2 = p,
ap ∈ Rnil , and.a + p/.b + p/ = 1+ ap ∈ R−1 which impliesa + p ∈ R−1. Thusp
satisfies the conditions of Proposition2.6, andp = a³ ∈ comm2.a/. Hencea is polar
andb = .a + p/−1.1 − p/ ∈ comm2.a/. This provesb = aD.

REMARK 4.10. Drazin [3] defined apseudo-inverseof a ∈ R as an elementa′ ∈ R
satisfyingaa′ = a′a, a.a′/2 = a′ andam+1a′ = am for some positive integerm. (For
m = 0 we geta ∈ R−1 anda′ = a−1.) It can be verified that these conditions on
a′ are equivalent to (4.7). Hence the Drazin original definition applies only to polar
elements, in which casea′ = aD.

5. The Moore–Penrose inverse

An involution x 7→ x∗ in a ringR is an anti-isomorphism of degree 2, that is,

.a∗/∗ = a; .a + b/∗ = a∗ + b∗; .ab/∗ = b∗a∗:
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We say thata is Moore–Penrose invertibleif the equations

bab= b; aba = a; .ab/∗ = ab; .ba/∗ = ba(5.1)

have a common solution; such solution is unique if it exists (see [11]), and is usually
denoted bya†. The set of all Moore–Penrose invertible elements ofR will be denoted
byR†.

The next well known lemma (see [11, page 407]) asserts that two one-sided invert-
ibility conditions imply the Moore–Penrose invertibility.

LEMMA 5.1. Leta ∈ R. Thena ∈ R† if and only if there existx, y ∈ R such that
axa = a = aya, .ax/∗ = ax and.ya/∗ = ya. In this casea† = yax.

DEFINITION 5.2. An elementa ∈ R is *-cancellableif

a∗ax = 0 H⇒ ax = 0 and xaa∗ = 0 H⇒ xa = 0:(5.2)

A ringR is *-reducing if all elements are *-cancellable. This is equivalent toa∗a =
0 H⇒ a = 0 for all a. A *-regular ring is a *-reducing regular ring.

Applying the involution to (5.2), we observe thata is *-cancellable if and only if
a∗ is *-cancellable. It is often useful to observe that

a is *-cancellableH⇒ a∗a andaa∗ are *-cancellable.(5.3)

Generalized inverses in *-regular rings, including the Moore–Penrose inverse, were
studied by Hartwig in [6]. The local *-cancellation property was used by Puystjens
and Robinson in [12] to study the Moore–Penrose inverse of a morphism in a category
with involution. The condition‖x∗x‖ = ‖x‖2 guarantees that anyC∗-algebra (called
a Hilbert algebra in [4, Section 8.8]) is a *-reducing ring.

THEOREM 5.3. Let a ∈ R. Thena ∈ R† if and only ifa is *-cancellable anda∗a
is group invertible. Then alsoaa∗ is group invertible and

a† = .a∗a/#a∗ = a∗.aa∗/#:(5.4)

PROOF. Suppose thata ∈ R† anda∗ax = 0. Then

ax = aa†ax = .aa†/
∗
ax = .a†/

∗
a∗ax = 0:

Similarly we prove thatxaa∗ = 0 H⇒ xa = 0. Hencea is *-cancellable. The
Moore–Penrose invertibility ofa∗a is obtained by verifying that.a∗a/† = a†.a†/

∗.
Sincea∗a is symmetric,.a∗a/# = .a∗a/†.
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Suppose thata is *-cancellable anda∗a is group invertible, and writex = .a∗a/#a∗.
The conditionsxax = x, .ax/∗ = ax and .xa/∗ = xa can be verified by a di-
rect calculation. By the group invertibility,a∗a.a∗a/³ = 0, anda.a∗a/³ = 0 by
*-cancellation. This gives

a − axa= a.1 − .a∗a/#a∗a/ = a.a∗a/³ = 0:

Hencex = a† and the first equation in (5.4) is proved.
We observe thata ∈ R† if and only ofa∗ ∈ R†. Applying the preceding result to

a∗ in place ofa, we get the rest of the theorem.

The following is the main result on the existence of Moore–Penrose inverse in rings
with involution. Many of the equivalences were observed earlier for matrices; we note
that the *-cancellability holds automatically in the *-regular ring of complex matrices
of the same order. The equivalence of conditions (i) and (ix) was proved by Puystjens
and Robinson [12, Lemma 3] in categories with involution.

THEOREM 5.4. For a ∈ R the following conditions are equivalent:

.i/ a ∈ R†;
.ii/ a∗ ∈ R†;
.iii / a is *-cancellable anda∗a ∈ R†;
.iv/ a is *-cancellable andaa∗ ∈ R†;
.v/ a is *-cancellable anda∗a ∈ RD;
.vi/ a is *-cancellable andaa∗ ∈ RD;
.vii/ a is *-cancellable anda∗a ∈ R#;
.viii / a is *-cancellable andaa∗ ∈ R#;
.ix/ a is *-cancellable and bothaa∗ anda∗a are regular;
.x/ a ∈ aa∗

R ∩Ra∗a;
.xi/ a is *-cancellable anda∗aa∗ is regular.

PROOF. First we prove the implications

(i) H⇒ (iii) H⇒ (v) H⇒ (vii) H⇒ (i).(5.5)

(i) implies (iii). Follows from Theorem5.3and its proof.
(iii) implies (v). A Moore–Penrose invertible symmetric element is Drazin (in fact

group) invertible.
(v) implies (vii). Sincea is *-cancellable, then so isx = a∗a by (5.3). Hencex

is Drazin invertible, symmetric and *-cancellable. We have.x³ /∗ = .x∗/³ = x³ by
Proposition2.5. Let k ∈ N be such thatxkx³ = 0. From the symmetry ofx and its
*-cancellability we deduce thatxx³ = 0. Hencex = a∗a ∈ R#.
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(vii) implies (i). This follows from Theorem5.3.
Sincea ∈ R† if and only if a∗ ∈ R†, (5.5) gives immediately

(ii) H⇒ (iv) H⇒ (vi) H⇒ (viii) H⇒ (ii),

and the equivalence of (i)–(viii) is established.
(viii) implies (ix). As we showed, (viii) is equivalent to (vii), and together they

yield (ix) (group invertibility implies regularity).
(ix) implies (x). Fromaa∗xaa∗ = aa∗ we getaa∗xa = a, anda∗aya∗a = a∗a

impliesaya∗a = a by the *-cancellability ofa. Hence,a ∈ aa∗
R ∩Ra∗a.

(x) implies (i). If a = aa∗u = va∗a are consistent, thena∗u = .aa∗u/∗u =
u∗aa∗u = u∗a. Similarly, va∗ = av∗. Further,au∗a = aa∗u = a and av∗a =
va∗a = a. Thena ∈ R† by Lemma5.1with x = v∗ andy = u∗.

(i) implies (xi). We note thata∗aa∗..a†/
∗a†.a†/

∗
/a∗aa∗ = a∗aa†aa∗ = a∗aa∗.

(xi) implies (x). If a∗aa∗ca∗aa∗ = a∗aa∗, then, by using the *-cancellability ofa
twice, we getaa∗xa∗a = a, which impliesa ∈ aa∗

R ∩Ra∗a.

From the equivalence of (i) and (vi) (or (i) and (vii)) in the preceding theorem we
recover [9, Theorem 2.4] inC∗-algebras and [13, Lemma 2] in *-reducing rings.

6. Elements with equal spectral idempotents

In this section we give a characterization of elements ofR with equal spectral
idempotents. In view of (4.5) we observe that

a³ = b³ ⇐⇒ aaD = bbD:

This problem was studied by Hartwig [7] for matrices over a ring in the special case
whenbal+1 = al andabk+1 = bk. Our investigation is motivated by a recent study of
Castro et al. [2] for the case of complex matrices.

THEOREM 6.1. Let a ∈ RgD and b ∈ R. The following conditions are equiva-
lent:

.i/ b ∈ RgD anda³ = b³ ;
.ii/ a³ ∈ comm2.b/, ba³ ∈ Rqnil andb + a³ ∈ R−1;
.iii / a³ ∈ comm2.b/, ba³ ∈ Rqnil andaDb + a³ ∈ R−1;
.iv/ b ∈ RgD, aDb + a³ ∈ R−1 andbD = .aDb + a³/−1aD;
.v/ b ∈ RgD andbD − aD = aD.a − b/bD;
.vi/ b ∈ RgD, a³ ∈ comm.b/ and1 − .b³ − a³ /2 ∈ R−1;
.vii/ b ∈ RgD, bD

R ⊂ aD
R and.bD/

0 ⊂ .aD/
0.
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PROOF. The equivalence of (i) and (ii) is Definition2.2.
(ii) if and only if (iii). We show that under the assumptiona³ ∈ comm2.b/ and

a³b ∈ Rqnil,

b + a³ ∈ R−1 ⇐⇒ aDb + a³ ∈ R−1:(6.1)

Observe that

.aD + a³ /..1 − a³ /b + a³/ = aDb + a³ :(6.2)

SinceaD + a³ ∈ R−1, from (6.2) we obtain

.b + a³/ − a³b ∈ R−1 ⇐⇒ aDb + a³ ∈ R−1:

As a³b ∈ Rqnil, (6.1) will follow when we show thata³b commutes withb + a³

(obvious) andaDb + a³ (not so obvious):

a³b.aDb + a³ / = a³baDb + a³ba³ = ba³aDb + a³b = a³b;

.aDb + a³/a³b = aDba³b + a³b = aDa³b2 + a³b = a³b:

This proves the equivalence of (ii) and (iii).
(iii) implies (iv). Let (iii) hold. From the equivalence of (i) and (iii) we conclude

thata³ = b³ . Then

.aDb + a³ /bD = aDbbD + a³bD = aD.1 − a³/ + b³bD = aD

in view of (4.5), and (iv) follows.
(iv) implies (v). If bD = .aDb + a³/−1aD, thenaD = .aDb + a³/bD, and

bD − aD = .1 − aDb − a³/bD = .aDa − aDb/bD = aD.a − b/bD:

(v) implies (i). FrombD − aD = aD.a − b/bD we getbD = aD.b³ + abD/.
Multiplying this expression on the right bybDb2, after a short calculation we get
bbD = aDabDb. Writing aaD = 1 − a³ andbbD = 1− b³ , we geta³ = a³b³ .

Similarly, multiplying aD = .a³ + aDb/bD on the left bya2aD, we getaaD =
aaDbbD, andb³ = a³b³ . Hencea³ = b³ .

(i) implies (vi) is clear.
(vi) implies (i). From ba³ = a³b it follows that b³a³ = a³b³ since b³ ∈

comm2.b/. Then 1− .b³ − a³ /2 = .1 − a³ + b³/.1 − b³ + a³ /, and 1− a³ + b³ ,
1 − b³ + a³ ∈ R−1. Further,a³.1 − a³ + b³ / = a³b³ = b³.1 − b³ + a³/. Hence

a³ = .1 − a³ + b³/−1a³b³ = .1 − a³ + b³ /−1.1 − a³ + b³/a³b³ = a³b³;

b³ = .1 − b³ + a³/−1b³a³ = .1 − b³ + a³ /−1.1 − b³ + a³ /b³a³ = a³b³:
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(vii) implies (i). From.bD/
0 ⊂ .aD/

0 it follows thatRaD ⊂ RaD. Indeed,aD, bD

are regular (with inner inversesa, b, respectively). By Proposition3.1,

.RbD/
0 = .bD/

0 ⊂ .aD/
0 = .RaD/

0
;

and

RbD = 0
(
.RbD/0

) ⊃ 0
(
.RaD/0

) = RaD:

The inclusionsRbD ⊃ RaD andbD
R ⊂ aD

R imply the consistency of the equations

aD = ybbD; aaDx = bD;(6.3)

sinceaD
R = aaD

R andRbD = RbbD. Equation (6.3) is equivalent to

.1 − aaD/bD = 0 = aD.1 − bbD/;(6.4)

which in turn implies

aD = aDbbD and bD = aaDbD:

ThenaaD = aaDbbD andbbD = aaDbbD. ThusaaD = bbD, anda³ = b³ .
(i) implies (vii). As aaD = bbD, thenbD

R = bbD
R = aaD

R = aD
R. Similarly,

RbD = RaD, which implies .RbD/
0 = .RaD/

0, or .aD/
0 = .bD/

0 according to
Proposition3.1.

Specializing the equivalence of conditions (i)–(v) in the preceding theorem to
complex matrices, we recover [2, Theorem 2.1]. Condition (vi) appears to be new.
Hartwig [7, Corollary 2] proved that ifbal+1 = al andabk+1 = bk, thenaaD = bbD if
and only ifak+l andbk+l commute.

REMARK 6.2. The condition 1− .b³ − a³ /2 ∈ R−1 in (vi) is equivalent to the
simultaneous validity of 1− a³ + b³ ∈ R−1 and 1− b³ + a³ ∈ R−1. We show that
it cannot be replaced by 1− a³ + b³ ∈ R−1 (or 1− b³ + a³ ∈ R−1) alone. LetR be
the ring of all real 3× 3 matrices, and set

a =



1 0 0
0 0 0
0 0 1


 ; b =




1 0 0
0 0 0
0 0 0


 :

ThenaD = a, bD = b and

a³ =



0 0 0
0 1 0
0 0 0


 ; b³ =




0 0 0
0 1 0
0 0 1


 :
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We note thatba³ = a³b, and

1 − a³ + b³ =



1 0 0
0 1 0
0 0 2


 ∈ R−1;

while a³ 6= b³ .

7. EP elements in rings with involution

Complex matrices and Hilbert space operatorsA with the property that the ranges
of A andA∗ coincide are known as EP or range-hermitian operators. For a discussion
of EP matrices see [1, Chapter 4]. A detailed study of EP elements in involutory rings
was undertaken by Hartwig [6]. The concept has been studied recently in the setting
of C∗-algebras [10].

DEFINITION 7.1. An elementa of a ringR with involution is said to be EP if
a ∈ RgD ∩ R† andaD = a†. An elementa is generalizedEP (or gEP for short) if
there existsk ∈ N such thatak is EP.

We recall the following well known characterization of EP elements (see, for
instance, [6, 10]):

a is EP ⇐⇒ aa† = a†a.

In [2], the authors gave characterizationof complex EP matricesbased on properties
of matrices with the same eigenprojection at 0. This section is motivated by these
results. The key to the characterization of EP elements is the following proposition
involving equality of spectral idempotents of various elements given without proof in
[10, Corollary 2.2] in the setting ofC∗-algebras.

THEOREM 7.2. For a ∈ R the following conditions are equivalent:

.i/ a is EP;
.ii/ a ∈ R# anda³ = .a∗/³ ;
.iii / a ∈ RgD ∩R† anda³ = .a∗a/³ ;
.iv/ a ∈ RgD ∩R† anda³ = .aa∗/³ ;
.v/ a ∈ R† and.a∗a/³ = .aa∗/³ .

PROOF. (i) implies (ii). Assume thata is EP. The group invertibility ofa follows
from the equationaa³ = a.1 − aDa/ = a.1 − a†a/ = a − aa†a = 0. Further,
.a∗/³ = .a³ /∗ = .1 − a†a/∗ = 1 − a†a = a³ .
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(ii) if and only if (iii). If (ii) holds, then a∗ ∈ R#, a³a∗a = a∗aa³ = 0, and

a∗a + a³ = .a∗ + a³ /.a + a³ / ∈ R−1

by properties of spectral idempotents ofa∗ anda. From the definition of a spectral
idempotent we conclude that.a∗a/³ = a³ . A direct check reveals thata# satisfies the
definition ofa†; hencea ∈ R†.

Conversely, if (iii) holds, thena∗a ∈ R
# by Theorem5.3, and consequently

a∗a.a∗a/³ = 0. By the *-cancellation fora, aa³ = a.a∗a/³ = 0, which shows that
a ∈ R#. Sincea³ is symmetric, (ii) holds.

(ii) if and only if (iv). This is the equivalence (ii)⇐⇒ (iii) with a∗ in place ofa.
(iii) and (iv) together obviously imply (v).
(v) implies (i). If a ∈ R†, thena is *-cancellable, anda∗a andaa∗ are group

invertible by Theorem5.3. According to (5.4) we have

a†a = .a∗a/#a∗a = 1 − .a∗a/³ = 1− .aa∗/³ = aa∗.aa∗/# = aa†;

anda is EP.

Part (ii) of the preceding proposition states that an element is EP if and only ifa is
group invertible and the elementsa anda∗ have the same spectral idempotent. When
we apply our main Theorem6.1to this situation, a number of conditions will coalesce.
In particular, we have the following result.

THEOREM 7.3. An elementa ∈ R is EP if and only ifa is group invertible and one
of the following equivalent conditions holds:

.a/ a#a is symmetric;

.b/ .a#/
∗ = aa#.a#/

∗;
.c/ .a#/

∗ = .a#/
∗a#a;

.d/ a#.a³ /∗ = a³ .a#/
∗.

PROOF. First assume thata ∈ R#.
(a) implies (b). From.a#/2a = a# we obtaina#.a#a/∗ = a# by the symmetry of

a#a. Thena#a∗.a#/
∗ = a#; applying involution, we get (b).

(b) if and only if (c). Condition (c) is obtained from (b) witha∗ in place ofa by
applying involution.

(b) implies (d). We have

a³.a#/
∗ = a³aa#.a#/

∗ = a³ .1 − a³ /.a#/
∗ = 0:

Hencea³.a#/
∗ = 0 = a#.a³ /∗.



[15] Elements of rings with equal spectral idempotents 151

Assume thata ∈ R# and (d) holds. From (d) we get

.1 − a#a/.a#/
∗ = a#.1 − a∗.a#/

∗
/

and

.a∗/# − a# = a#.a − a∗/.a∗/#:

By Theorem6.1 (vi) applied to b = a∗ we get .a∗/³ = a³ ; hencea is EP by
Theorem7.2(ii).

Conversely, ifa is EP, then according to Theorem7.2(ii) a is group invertible, and
a³ = .a∗/³ = .a³ /∗, that is,a³ is symmetric; thena#a is also symmetric.

In the following theorem we obtain a particularly simple and elegant characteriza-
tion of EP elements in a ring with involution.

THEOREM 7.4. An elementa ∈ R is EP if and only ifa is g-Drazin invertible and
one of the following equivalent conditions holds:

.a/ a∗a³ = 0;

.b/ a³a∗ = 0;

.c/ a∗ = a∗aDa;

.d/ a∗ = aDaa∗.

PROOF. Assume thata ∈ RgD; then alsoa∗ ∈ RgD.
Under this assumption, the equivalence of (a) and (c) follows from the equation

a∗ − a∗aDa = a∗.1 − aDa/ = a∗a³ . Applying (a) toa∗ in place ofa and taking
involution, we see that (a) is equivalent to (b); similarly, (c) is equivalent to (d).

Suppose thata ∈ RgD and (d) holds. We show thataDa is symmetric:

.aDa/
∗ = a∗.aD/

∗ = aDaa∗.aD/
∗ = .aDa/.aDa/

∗
:

Since.aDa/.aDa/∗ is symmetric, so isaDa. From a∗ = aDaa∗ we geta³a∗ = 0,
which impliesaa³ = 0. Thena ∈ R#, anda is EP by Theorem7.3(i).

Conversely assume thata is EP. Thena ∈ R# and a³ is symmetric by Theo-
rem7.2(ii). Hencea∗a³ = .a³a/∗ = 0, and (a) holds.

For matrices we recover [2, Theorem 5.2 (ii)]—without the redundant condition
thataDa is symmetric.

As a final result of this paper we obtain the following characterization of gEP
elements ofR (see Definition7.1) which follows from Theorems7.3and7.4.

THEOREM 7.5. An elementa ∈ R is gEP if and only if a ∈ RD and one of the
following equivalent conditions holds:
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.a/ a³ is symmetric;

.b/ aDa is symmetric;

.c/ ak ∈ R# and.aD/k.a³ /∗ = 0 for somek;

.d/ ak ∈ R# and.a³ /∗.aD/k = 0 for somek;

.e/ ak ∈ R# and.aD/k.a³ /∗ is symmetric for somek;

.f/ ak.a³ /∗ = 0 for somek ∈ N;
.g/ .a³ /∗ak = 0 for somek ∈ N;
.h/ ak = .aDa/∗ak for somek ∈ N;
.i/ ak = ak.aDa/∗ for somek ∈ N:
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