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Abstract

In this paper we define and study a generalized Drazin inve?stor ring elementsx, and give a
characterization of elemendsb for whichaaP = bb°. We apply our results to the study of EP elements
in a ring with involution.

2000Mathematics subject classificatioprimary 16A32, 16A28, 15A09; secondary 46HO05, 46L.05.
Keywords and phrasegssociative ring, involution, idempotent, Drazin inverse, Moore—Penrose inverse,
EP element.

1. Introduction

This paper is motivated by a recent work of Cagttal. [2], which investigates the
necessary and sufficient conditions for square complex maticBgo have the same
eigenprojection at 0. This problem, under more restrictive condition£,0B was
first considered by Hartwig/] more than 20 years ago.

The formulation of the problem for elements of rings requires the definition of an
appropriate analogue of the eigenprojection, the so-called spectral idempotent, well
known in the case of Banach algebras. We also define and investigate a generalize
Drazininverse for elements of rings that possess a spectral idempotent. The mainresu
of this paper is a characterization of ring elements with equal spectral idempotents.

Inrings with involution we can define the Moore—Penrose inverse and EP elements,
that is, ring elements for which the Drazin and Moore—Penrose inverse exist and
coincide. We give a new characterization of EP elements based on our main theorem
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2. Quasipolar elements in rings
In this paper ‘ring’ means an associative ring with uni¢10. Let# be a ring.

The group of invertible elements is denoted4y*.
For any elemerd € # we define theommutanand thedouble commutardf a by

comma) = {x € Z : ax = xay},
comnf(a) = {x € Z : xy = yx forall y e comma)}.

The Jacobsoradical of Z is the two-sided ideal
RV ={laecR 1+RacC A

DeFINITION 2.1 (Harte f]). An elementa € # is quasinilpotentf, for everyx e
comma), 1+ xa € Z~1. The set of all quasinilpotent elements#fwill be denoted
by 29", The set of all nilpotent elements will be written 8"

Clearly, %™ c 2. Further,zZ" c 29" as
k-1
1+xa)t= Z(_l)i x'a
i=0

if a € # is nilpotent of indexk andx € comm@) (see alsoj, Theorem 3 and
Theorem 4]). We note that in a ring, unlike in a Banach algebra, the sum of two
commuting quasinilpotent elements need not be quasinilpotent. However, we have
the following implication:

(21) aez' and bezZ™Nncomma) = a+bezt
For a Banach algebr# it is well known [4, page 251] that
aeZ" «— lim [a"¥" = 0.
DEFINITION 2.2. An elementa € Z is quasipolarif there existsp € # such that
(2.2) p’=p, pecomnf@), apeZ™ a+pezl

If ais quasipolar andp € 2" with the nilpotency index, we say thaa is polar

of orderk. Any idempotentp satisfying the above conditions is callecspectral
idempotenbf a. (The term ‘quasipolar’ comes frond]j and ‘spectral’ idempotent

is borrowed from spectral theory in Banach algebids [We shall see later that
quasipolar elements are exactly the ones which are ‘generalized Drazin invertible’—
Theorem4.2.)
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PrOPOSITION2.3. Any quasipolar elemente # has a unique spectral idempotent
denoted bya”.

PrROOF. Suppose thap, q are spectral idempotents of a quasipolar eleraentZ.
Then

1-1-pg=1-1-p@+p @+ pq
=1-(1-p(@+p aq=1-b(qg).

Sincep € comnt(a), we haveb e commaq); aq € 2% implies 1- b(aq) € Z271.
Then

1-1-pg=1-1-p’*=1-1A-pL+ Q- po.

The invertibility of 1— (1 — p)q implies that(1 — p)g = 0, thatis,g = pg. Similarly
we prove thatl — q)p € 2%, andp = qp = pg. Thenp =q. O

REMARK 2.4. From [8, Theorem 3.2] it follows that the conditian+ p € Z~tin
(2.2 canbereplacedby 1 p € (Za) N (a%).

The uniqueness of the spectral idempotent is used to prove the following result
valid in rings with involution (see Sectids).

PROPOSITION2.5. Let# be a ring with involution. Thea is quasipolar if and only
if a* is quasipolar. In this case an@*)” = (a")".

PROOF. Froma + a” € Z ! andaa” = a"a € %" we obtaina* + (a”)* € Z*
anda*(a*)” = (a*)"a* € Z"" by applying the involution. O

For polar elements we can relax the condition thabuble commutes with:
PROPOSITION2.6. Leta € Z, and letp € Z be such that
(2.3) p?=p, p € comma), ape 2™, a+pez .
Thena s polar andp = a™.

PrROOF. SinceZ™ c % we only need to prove thgp € comnt(a). For
ap € 2" there existk € N such thatap)* = a“p = 0. Setb = (a+ p)~*(1 — p);
thenab=ba=1- p. Letx € comm@a). We have

Xp— pxp= (1— p)xp= (1— p)xp=b*a*xp = b*xap =0,

which impliesxp = pxp. Similarly we show thapx(1 — p) = 0, andpx = pxp.
This provespx = xp, andp € comn¥(a). O

Observe that in general double commutativitypofvith a is necessary.
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3. Results on regular elements of rings

An elementa € Z is regular (in the sense of von Neumann) if it has emmer
inversex, that is, if there existg € # such thatxa= a. Any inner inverse oé will
be denoted by . The set of all regular elements.@f will be denoted byZ?~. Given
a € #, we define the sets

aZ = {ax: X € #}, Za={Xxa:Xx e #}
d={ye#Z:ay=0}, la={ye#:ya=0},

whereaZ and#a can be considered as finitely generatédanodules; the same is
true ofa® and a if a € Z~ (see PropositioB.1 below). When considering a matrix
A, these sets reflect, respectively, the column spack, dhe row space of\, the
kernel of A, and the kernel ofA". However, we will work with these sets with no
reference to rank, dimensional analysis or orthogonalitiY IE %, we can define

MZ ={mx:me M, X € Z)}, M%={x e Z: Mx = {O}};

similarly we defineZM and °M.
Some properties of these sets, established by Hartwig Prpposition 6], will be
needed in the following section. We include proofs for the sake of completeness.

PropPOSITION3.1. Givena, b € Z~ and A, B C %, we have
iH Ql—aaz=a"

(i) a®=(#a)"

(i) #za="°@% = °((#a)%;

(iv) AcB = °A> °B.

PrROOF. (i) As a((1 —a-a)y) = 0, we have(l — a—a)y € a°. Conversely, if
ax = 0, then(1 — a-a)x = x which impliesx € (1 —a a)Z.

(i) Clearly, a° ¢ (#a)°. The reverse inclusion is immediate when we take 1
in (Za)° = {y € Z : xay= 0 for all x € Z}.

(iii) Let ya € Za. Thenyax = 0 for anyx € a° andya € °@°. Hence
Za C °@°%).

Conversely ley € °(@°. Thenyx = O0forallx € a®>. Asy = yaa+y(l—a a)
and 1—- a~a € a° by (i) above, we havg(l1 — a-a) = 0, andy = ya a € Za. This
proves®@’) c Za.

(iv) is obvious. O
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4. The g-Drazin inverse in rings

The original definition of the ‘pseudoinverse’ was given by Dra3jrf¢r elements
of semigroups and polar elements of rings. Itwas generalized by I3stdeyuasipolar
elements, and studied by the first author8hif Banach algebras. In this section we
survey the properties of the generalized Drazin inverse (called g-Drazin inverse) for
guasipolar elements of rings; many of the results will appear in this setting for the first
time.

DEFINITION 4.1. An elementa € # is generalized Drazin invertibléor g-Drazin
invertible for short) if there exist® € # such that

(4.1) becomnf(a), abk’=b, a’b—ae2Z™.

Any elemenb e # satisfying these conditions isgpDrazin inverseof a. We denote
the set of all g-Drazin invertible elements &f by 2. If a’b — a in the above
definition is nilpotent, thera is called Drazin invertibleandb is called aDrazin
inverseof a. The set of all Drazin invertible elements.&f will be denoted byZP.
The following result ensures that these concepts are well-defined.

THEOREM4.2. An elemend € # is g-Drazin invertible if and only i& is quasipo-
lar. In this casea € # has a unique g-Drazin invers® given by the equation

(4.2) b=(@+a)*1l-a")=(1-a")a+a)™"

PrROOF. Suppose first that is quasipolar with the spectral idempotgntand set
b= (a+ p)*(1— p). Thenb € comnt(a). Further,

a’ =a(l-p@+p’=@+pl-p@+p’=>1-p@+p*=b
and
a’b—a=a’(l-p@a+p ' —a
=a@a+ p)@a+ p)fl(l— p)—a=-ape gl

Conversely assume thatis g-Drazin invertible with a g-Drazin inverde and set
p=1-ab. Thenp e comnt(a), and(1 — p)?> = a’b? = a(ab’) = ab=1- p,
which implies p> = p. Finally, to prove thata + p € Z!, we observe that
ap=a-—a’ e 2" and

(43) @+ p+p =ab+ap+bp+p=1—p+ap+p=1l+apez?

asbp=Db(l—-ab) =b—ak’ = 0. From(a+ p)b =ab+pb=1-p+pb=1-p
it follows thatb = (a + p)~*(1 — p). The uniqueness of the spectral idempotera of
proves the uniqueness of the g-Drazin inverse O
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The preceding theorem together with Prdfioe 2.5implies the following result
valid in rings with involution (see Sectids).

PrOPOSITION4.3. LetZ be a ring with involution. Thea is g-Drazin invertible if
and only ifa* is g-Drazin invertible. In this cas@*)° = (a°)".

DEFINITION 4.4. The g-Drazinindexi (a) of a quasipolar elemerat € # is de-
fined by

0 ifaez™
(4.4) i@ = 1k if a’b — ais nilpotent of index € N;
oo otherwise

If i(a) < 1, we say that is group invertible the Drazin inverse o4 is then called
thegroup inverseand is denoted bg° = a*. The set of all group invertible elements
will be denoted byz*.

We observe that the g-Drazin index afe % is finite if and only ifa is polar.
The sets#%, #° and#* coincide with the set of all quasipolar, polar and simply
polar elements of?, respectively. Note tha#?®® > #° > %#* > #~1. We make the
following useful observation.

PrOPOSITION4.5. An elemena € # is Drazin invertible if and only if there exists
k € N such tha@* is group invertible.

In addition to @.2) we have the following useful relations between the spectral
idempotent and the g-Drazin inverse established in the proof of Thebtem

(4.5) a"=1-a’a=1-—aa’, a"a’=a"a” =0.
By (4.3 we also have tha® + a™ € Z~1. This leads to the following.
PROPOSITION4.6. If a € 29, thenaP e #*, and(a®)” = a”. In addition,a® € Z~.

PrOOF. We only need to observe that b¥.{), b=aP® is regular for anya € Z%.
Il

Equation ¢.2) can be improved as follows.
PROPOSITION4.7. Leta € Z%P. If x e Z~* N comma), thena + xa* € Z~ and

(4.6) aP = (a+xa")(1—a").
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PrROOF. Letx € Z~*Ncomm@). Thenx commutes witra™, andaa™ + x € Z*
according to2.1). Hence

at+xa =@+xaha"+@+xa)dl—a"
=@a +x@a+@+a)ld-—a,
which shows that
@+xa)t=(@a +x)'a" +@+a") (1—a").
The result follows from the equation
(@a+xa)a’ =aa® +xaa®=1—2a"
obtained from4.5). O
REMARK 4.8. In rings the double commutativity df with a in Definition 4.1 is
necessary to guarantee the uniqueness of the g-Drazin invers8, Uarfima 2.4]
it is erroneously claimed that the uniqueness of the g-Drazin inverse follows from

b € comm@a). However, commutativity is sufficient whe# is a Banach algebra or
a’b — ais nilpotent rather than quasinilpotent.

PrOPOSITION4.9. Leta € #, and letb € # be such that
(4.7) becomma), abP=b, a’bh—aecz".
Thena is polar, anda® = b.

PROOF. Let p = 1—ab. Then it can be easily verified thate comm(a), p*> = p,
ape 2", and(@a+ p)(b+ p) = 1+ap e 2! which impliesa+ p € Z~1. Thusp
satisfies the conditions of Propositiaré, andp = a” € comnt(a). Hencea is polar
andb = (a + p)~(1 — p) € comnt(a). This proved = aP. O

REMARK 4.10. Drazin [3] defined gpseudo-inversef a € # as anelemerdt’ € #
satisfyingaa = a'a, a(a’)? = &’ anda™!a’ = a™ for some positive integamn. (For
m = 0 we geta € Z ' anda’ = a'.) It can be verified that these conditions on
a’ are equivalent to4.7). Hence the Drazin original definition applies only to polar
elements, in which cas# = aP.

5. The Moore—Penrose inverse

An involution x — x* in a ringZ is an anti-isomorphism of degree 2, that is,

@)*=a, (@+b*=a"+b*, (ab*=>ba".
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We say that is Moore—Penrose invertiblié the equations
(5.1) bab=b, aba=a, (ab)*=ab, (ba)*=ba

have a common solution; such solution is unique if it exists ($&p,[and is usually
denoted bya'. The set of all Moore—Penrose invertible element#afill be denoted
by 2.

The next well known lemma (se&], page 407]) asserts that two one-sided invert-
ibility conditions imply the Moore—Penrose invertibility.

LEMMA 5.1. Leta € Z. Thena € £" if and only if there exisk, y € # such that
axa=a = aya, (ax)* = axand(ya)* = ya. In this casa' = yax.

DEFINITION 5.2. An elementa € Z is *-cancellableif
(5.2) a*ax=0 — ax=0 and xaa =0 — xa=0.

Aring Z is *-reducingif all elements are *-cancellable. This is equivalenata =
0 — a=0foralla. A *-regular ring is a *-reducing regular ring.

Applying the involution to §.2), we observe that is *-cancellable if and only if
a* is *-cancellable. It is often useful to observe that

(5.3) ais *-cancellable— a*a andaa” are *-cancellable.

Generalizedinverses in *-regular rings, including the Moore—Penrose inverse, were
studied by Hartwig in§]. The local *-cancellation property was used by Puystjens
and Robinson in12] to study the Moore—Penrose inverse of a morphism in a category
with involution. The conditior|x*x|| = ||x||?> guarantees that ar§y*-algebra (called
a Hilbert algebra in4, Section 8.8]) is a *-reducing ring.

THEOREM5.3. Leta € Z. Thena € #" if and only ifa is *-cancellable anch*a
is group invertible. Then alsaa* is group invertible and

(5.4) a' = (a*a)’a* = a*(aa")".
PROOF. Suppose thad € Z' anda*ax = 0. Then
ax = aa'ax = (aa")'ax = (a") a*ax = 0.
Similarly we prove thakaa" = 0 = xa = 0. Hencea is *-cancellable. The

Moore—Penrose invertibility oi*a is obtained by verifying thata*a)’ = a'(a’)”.
Sincea*a is symmetric(a*a)” = (a*a)’.
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Suppose that is *-cancellable and*a is group invertible, and write = (a*a)*a*.
The conditionsxax = X, (ax)* = ax and (xa)* = xa can be verified by a di-
rect calculation. By the group invertibilityg*a(a*a)” = 0, anda(a*a)” = 0 by
*-cancellation. This gives

a—axa=a(l — (a*a)’a*a) = a(@*a)” = 0.

Hencex = a' and the first equation irb(4) is proved.
We observe thaa € #Z7 if and only ofa* € #'. Applying the preceding result to
a* in place ofa, we get the rest of the theorem. O

The following is the main result on the existence of Moore—Penrose inverse in rings
with involution. Many of the equivalences were observed earlier for matrices; we note
that the *-cancellability holds automatically in the *-regular ring of complex matrices
of the same order. The equivalence of conditions (i) and (ix) was proved by Puystjens
and Robinson12, Lemma 3] in categories with involution.

THEOREM5.4. For a € # the following conditions are equivalent
iy aez
(i) a* e
(iii) ais *-cancellable andh*a € 2%;
(iv) ais *-cancellable andaa* € Z";
(V) ais *-cancellable andh*a € #ZP°;
(vi) ais *-cancellable andha* € #°;
(vii) ais *-cancellable andh*a e #*;
(viii) ais *-cancellable ancha* € #*;
(ix) ais *-cancellable and botlaa* anda*a are regular,
(X) a€aaZ NnNZa*a;
(xi) ais *-cancellable anda*aa* is regular.

PrROOF. First we prove the implications
(5.5) (i) = (iii) = (v) = (vii) = (i).

(i) implies (iii). Follows from Theoren®.3and its proof.

(iii) implies (v). A Moore—Penrose invertible symmetric elementis Drazin (in fact
group) invertible.

(v) implies (vii). Sincea is *-cancellable, then so is = a*a by (5.3). Hencex
is Drazin invertible, symmetric and *-cancellable. We h&®)* = (x*)" = x™ by
Proposition2.5. Letk € N be such thakx™ = 0. From the symmetry of and its
*-cancellability we deduce thatx™ = 0. Hencex = a*a € #Z*.
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(vii) implies (i). This follows from Theorens.3.
Sincea € Z"if and only ifa* € 27, (5.5 gives immediately

(i) = (iv) = (vi) = (viii) = (i),

and the equivalence of (i)—(viii) is established.

(viii) implies (ix). As we showed, (viii) is equivalent to (vii), and together they
yield (ix) (group invertibility implies regularity).

(ix) implies (x). Fromaa*xaa = aa* we getaa*xa = a, anda*ayaa = a*a
impliesaya‘a = a by the *-cancellability ofa. Hencea € aa*#Z N #Za*a.

(x) implies (i). If a = aa*'u = va*a are consistent, thea*u = (aa‘u)*u =
u*aa*u = u*a. Similarly, va* = av*. Further,au*a = aa‘*u = a andav*a =
va*a = a. Thena € Z' by Lemmab.1with x = v* andy = u*.

(i) implies (xi). We note thah*aa*((a")"a'(a")")a*aa* = a*aa’aa* = a*aa’.

(xi) implies (x). If a*taa*ca*aa* = a*aa*, then, by using the *-cancellability af
twice, we getaa‘xa*a = a, which impliesa € aa*# N Za*a. O

From the equivalence of (i) and (vi) (or (i) and (vii)) in the preceding theorem we
recover P, Theorem 2.4] irC*-algebras andl[3, Lemma 2] in *-reducing rings.

6. Elements with equal spectral idempotents

In this section we give a characterization of elementszofvith equal spectral
idempotents. In view of4.5) we observe that

a" =b" < aa’® = hbl.

This problem was studied by Hartwid][for matrices over a ring in the special case
whenba*! = a' andab*"* = b*. Our investigation is motivated by a recent study of
Castro et al. 7] for the case of complex matrices.

THEOREMG6.1. Leta € #% andb € #Z. The following conditions are equiva-
lent
(i) bezx%® anda™ =b";
(i) a* e comn?(b), ba® € Z"" andb +a” € Z°%;
(i) a* e comnt(b), ba® € Z9"" andaPb + a” € Z;
(iv) be#%P aPb+a” ¢ Z-!*andb® = (ab + a”)'aP;
(V) be#% andbP —aP = aP(a — b)bP;
(Vi) be#z%®, a” e commb)andl— (b™ —a™)? e Z7;
(vii) be#%P, b°% c a®# and (b°)° c (a°)°.
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PrOOF. The equivalence of (i) and (ii) is Definition.2.
(ii) if and only if (iii). We show that under the assumptiafi € comn?(b) and
anb c %qnil1

(6.1) b+a"e#Z ™' < a°b+a" ez
Observe that
(6.2) @ +a")((1-a")b+a") =ab+a".

Sincea® +a™ € 71, from (6.2) we obtain
(b+a") —abe#?! «— ab+a" ezt

As a'b € 2% (6.1) will follow when we show tha@™b commutes withb + a”
(obvious) anda®b + a™ (not so obvious):

a'b@’b+ a”) = a"ba’b+ aba”™ = ba*a®b +a’b = ab,
@b +a™a*b = aPba’b+ a’b = aa"b?* + a*b = a™b.

This proves the equivalence of (ii) and (iii).
(iii) implies (iv). Let (iii) hold. From the equivalence of (i) and (iii) we conclude
thata™ = b™. Then

(@b + a™)b® = aPbb® + a™b® = aP(1 —a") + b™h° = a°

in view of (4.5), and (iv) follows.
(iv) implies (v). If b® = (aPb + a”)~*aP, thena® = (aPb + a™)b®, and

b° —aP = (1 — aPb — a”)bP = (aPa — aPb)b® = a°(a — b)bP.

(v) implies (i). Fromb® — aP = aP(a — b)b® we getb® = aP(b™ + abP).
Multiplying this expression on the right byPb?, after a short calculation we get
bbP = aPahPb. Writingaa® = 1 — a™ andbb® = 1 — b™, we geta™ = a™b".

Similarly, multiplying a® = (a™ + ab)b® on the left bya?a®, we getaa® =
aaPbbP, andb™ = a"b™. Hencea™ = b".

(i) implies (vi) is clear.

(vi) implies (). Fromba™ = a"b it follows that b’a®™ = a"b™ sinceb™ e
comnt(b). Then1—- (b —a")? = (1 —a” +b")(1 - b* +a"), and 1— a™ + b",
1—b"+a" e Z 1 Furthera™(l—a™ +b") =a’b™ =b"(1—b” +a"). Hence

ar=(N1-a"+b)tah"=1—-a" +b")}(1-a" +bMHa'b” =a*b",
b"=1-b"+a") a"=1-b"+a") 1-b" +a")b"a” =a"b".
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(vii) implies (i). From(b®)° c (aP)° it follows that#aP c #ZaP. Indeeda®, b°
are regular (with inner inverses b, respectively). By Propositio8.1,
@#P)° = (0°)° ¢ (@)° = (#a°)",
and
20° =°((#0°)°) o °((#a°)°) = za”.

The inclusionsZhb® > #ZaP andb®Z c aPZ imply the consistency of the equations
(6.3) aP = yblP, aa®x = b°,
sincea#Z = aaP#Z andZhb® = #ZbbP. Equation 6.3 is equivalent to
(6.4) (1 —aa’)b® =0=a"(1 - bhk"),
which in turn implies
a® =aPbb® and b® =aalbP.

ThenaaP = aa®bhP andbb® = aa’bbP. Thusaa® = bb°, anda™ = b".

(i) implies (vii). AsaaP = bbP, thenb®’Z = bbP#Z = aaP# = a#. Similarly,
ZBP = #aP, which implies (ZbP)° = (#aP)°, or (a®)° = (b°)° according to
Proposition3.1 O

Specializing the equivalence of conditions (i)—(v) in the preceding theorem to
complex matrices, we recove?,[Theorem 2.1]. Condition (vi) appears to be new.
Hartwig [7, Corollary 2] proved that iba*! = a' andab**! = b¥, thenaa® = bbP if
and only ifa“*" andb**' commute.

REMARK 6.2. The condition 1— (b™ — a™)? € #Z~'in (vi) is equivalent to the
simultaneous validity of + a™ + b* € #-*and 1- b™ + a™ € Z~1. We show that
it cannot be replaced by-ta™ +b™ € Z~1 (or1—-b™ +a™ € Z*) alone. LetZ be
the ring of all real 3x 3 matrices, and set

1 0 0 1 0 0
a=|0 0 O0f, b=]0 0 0f.
0 0 1 0 0 O
ThenaP = a, b® = band
0 0 O 0 0O
ar=|(0 1 0}, b =(0 1 0].
0 0 O 0 0 1
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We note thaba™ = a"b, and
1 00
1—-a"+b"=|0 1 0| ez,
0 0 2
while a™ #£ b™.

7. EP elements in rings with involution

Complex matrices and Hilbert space operatansith the property that the ranges
of AandA* coincide are known as EP or range-hermitian operators. For a discussion
of EP matrices sed[ Chapter 4]. A detailed study of EP elements in involutory rings
was undertaken by Hartwi@]. The concept has been studied recently in therge
of C*-algebras1d].

DEFINITION 7.1. An elementa of a ring # with involution is said to be EP if
aec 2% N%"andaP = a'. An elementa is generalizedEP (or gEP for short) if
there existk € N such thag® is EP.

We recall the following well known characterization of EP elements (see, for
instance, §, 10]):

ais EP < aa' = a'a.

In[2], the authors gave characterization of complex EP matrices based on properties
of matrices with the same eigenprojection at 0. This section is motivated by these
results. The key to the characterization of EP elements is the following proposition
involving equality of spectral idempotents of various elements given without proof in
[10, Corollary 2.2] in the setting oE*-algebras.

THEOREM 7.2. For a € # the following conditions are equivalent
(i) aisEP;
(i) aeZ*anda™ = (@)";
(i) ae2PNZ"anda™ = (a*a)”™;
(iv) aeZ®NZ"anda” = (aa*)";
(v) aeZ'and(a*a)” = (aa")”".

ProOOF. (i) implies (ii). Assume that is EP. The group invertibility o& follows
from the equatioraa™ = a(1 — aPa) = a(1 — a'a) = a — aa'a = 0. Further,
@) =@)=(1-aa=1-a'a=a"



150 J. J. Koliha and Pedro Patricio [14]

(ii) if and only if (iii). If (i) holds, thena* € ## a”a*a = a*aa” = 0, and
ata+a” =@ +a)@a+a’) ezt

by properties of spectral idempotentsaifanda. From the definition of a spectral
idempotent we conclude théa*a)” = a™. A direct check reveals thaf' satisfies the
definition ofa'; hencea ¢ #2".

Conversely, if (i) holds, thera*a € #* by Theorem5.3, and consequently
a*a(a*a)” = 0. By the *-cancellation foa, aa” = a(a*a)” = 0, which shows that
a € #*. Sincea™ is symmetric, (ii) holds.

(i) if and only if (iv). This is the equivalence (ik= (iii) with a* in place ofa.

(iii) and (iv) together obviously imply (v).

(v) implies (i). If a € #7, thena is *-cancellable, and*a andaa* are group
invertible by Theorens.3. According to 6.4) we have

a'a= (@a)’a'fa=1- (a*a)” = 1— (aa")" = aa‘(aa’)” = aa,

andais EP. n

Part (ii) of the preceding propii®n states that an elementis EP if and onlp i
group invertible and the elemerdsinda* have the same spectral idempotent. When
we apply our main Theoref1to this situation, a number of conditions will coalesce.
In particular, we have the following result.

THEOREM 7.3. An elemen& € # is EPif and only ifa is group invertible and one
of the following equivalent conditions holds
(@) a*ais symmetrig
(b) (@) =aa’(@)";
© @) =@ a%;
d) a*@)" =a"@""

PROOF. First assume that ¢ Z*.

(a) implies (b). Froma*)?a = a* we obtaina*(a*a)” = a* by the symmetry of
a*a. Thena*a*(a*)" = a*; applying involution, we get (b).

(b) if and only if (c). Condition (c) is obtained from (b) witl in place ofa by
applying involution.

(b) implies (d). We have

a"(@")" =a"aa’@) =a"(1—a") @) =0.

Hencea™ (a*)" = 0 = a*(a™)*.
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Assume thaa € Z* and (d) holds. From (d) we get

(1-a*ay@) =a*1-a'@"")
and
(a*)# o a# — a#(a o a*)(a*)#'

By Theorem6.1 (vi) applied tob = a* we get(a*)” = a”; hencea is EP by
Theorem7.2 (ii).

Conversely, ifa is EP, then according to Theoreh® (ii) ais group invertible, and
a" = (a)" = (a")*, thatis,a” is symmetric; them”a is also symmetric. O

In the following theorem we obtain a particularly simple and elegant characteriza-
tion of EP elements in a ring with involution.

THEOREM 7.4. An elemena € # is EPif and only ifa is g-Drazin invertible and
one of the following equivalent conditions halds
(a) a*a™ =0;
(b)y a™a* =0;
(c) a* = a*aPa;
(d)y a* = aPaa.

PrROOF. Assume that € Z9%; then alsaa* € ZP.

Under this assumption, the equivalence of (a) and (c) follows from the equation
a* — a*aPa = a*(1 — aPa) = a*a™. Applying (a) toa* in place ofa and taking
involution, we see that (a) is equivalent to (b); similarly, (c) is equivalent to (d).

Suppose that € 29 and (d) holds. We show thaPa is symmetric:

(@a)" = a*(@°)" = alaa’(@®)" = (@°a)(aa)".

Since (aPa)(aPa)” is symmetric, so i@Pa. Froma* = aPaa* we geta’a* = 0,
which impliesaa™ = 0. Thena € ##, anda is EP by Theorend.3 (i).

Conversely assume thatis EP. Thena € #* anda” is symmetric by Theo-
rem7.2(ii). Hencea*a™ = (a"a)" = 0, and (a) holds. O

For matrices we recove®[ Theorem 5.2 (ii)]—without the redundant condition
thataPa is symmetric.

As a final result of this paper we obtain the following characterization of gEP
elements of#Z (see Definition7.1) which follows from Theoremg.3and7.4.

THEOREM7.5. An element € Z is gEPif and only ifa € #° and one of the
following equivalent conditions holds
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(@) a” is symmetric
(b) aPais symmetric
(c) a“ e 2" and(@®)k(@")* = 0 for somek;
(d) a“ e 2*and(@)*(@P)< = 0 for somek;
(e) ak e #"and(aP)<@")* is symmetric for somi;
(f) ak@")* = 0for somek € N;
(9 (a")*ak =0for somek e N;
(h) a“ = (aPa)"a* for somek € N;
(i) ak =ak@@Pa)" for somek € N.
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