J. Austral. Math. Soc. 72 (2002), 1-11

INTERPOLATION PROBLEM FOR ℓ^1 AND A UNIFORM ALGEBRA

TAKAHIKO NAKAZI

(Received 18 May 1999; revised 12 December 2000)

Communicated by P. G. Dodds

Abstract

Let *A* be a uniform algebra and M(A) the maximal ideal space of *A*. A sequence $\{a_n\}$ in M(A) is called ℓ^1 -interpolating if for every sequence (α_n) in ℓ^1 there exists a function *f* in *A* such that $f(a_n) = \alpha_n$ for all *n*. In this paper, an ℓ^1 -interpolating sequence is studied for an arbitrary uniform algebra. For some special uniform algebras, an ℓ^1 -interpolating sequence is equivalent to a familiar ℓ^∞ -interpolating sequence. However, in general these two interpolating sequences may be different from each other.

2000 Mathematics subject classification: primary 46J10, 46J15.

Keywords and phrases: uniform algebra, ℓ^1 , interpolation, maximal ideal space, pseudo-hyperbolic distance.

1. Introduction

Let *A* be a uniform algebra on a compact Hausdorff space *X* and *M*(*A*) the maximal ideal space of *A*. Throughout this paper we assume that $\{a_n\}$ is an infinite sequence of distinct points in *M*(*A*). For $1 \le p \le \infty$, a sequence $\{a_n\}$ is called ℓ^p -interpolating if for every sequence (α_n) in ℓ^p there exists a function *f* in *A* such that $f(a_n) = \alpha_n$ for all *n*.

For $A = H^{\infty}(D)$, the set of all bounded analytic functions on the unit disc D in \mathbb{C} , an ℓ^{∞} -interpolating sequence was studied by Carleson [2] and Izuchi [4]. Carleson [2] determined an ℓ^{∞} -interpolating sequence when $\{a_n\}$ is in D, Izuchi [4] studied the general situation. Recently, Hatori [3] showed that an ℓ^1 -interpolating sequence is equivalent to an ℓ^{∞} -interpolating sequence when $\{a_n\}$ is in D. In this paper we study

This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education (Japan).

^{© 2002} Australian Mathematical Society 1446-8107/2000 \$A2.00 + 0.00

[2]

an ℓ^1 -interpolating sequence for an arbitrary uniform algebra A when $\{a_n\}$ is in M(A). For $\{a_n\}$ in M(A) put

$$J = \{ f \in A; f = 0 \text{ on } \{a_n\} \}, \quad J_k = \{ f \in A; f = 0 \text{ on } \{a_n\}_{n \neq k} \}$$

and

$$\rho_k = \sup\{|f(a_k)|; f \in J_k, ||f|| \le 1\}$$

For a, b in M(A)

$$\sigma(a, b) = \sup\{|f(a)|; f(b) = 0, ||f|| \le 1\}$$

When $A = H^{\infty}(D)$ and $\{a_n\}$ is in D,

$$\sigma(a_k, a_n) = \left| \frac{a_k - a_n}{1 - \bar{a}_k a_n} \right| \quad \text{and} \quad \rho_k = \prod_{n \neq k} \left| \frac{a_k - a_n}{1 - \bar{a}_k a_n} \right|.$$

In general, we do not know whether

$$\rho_k = \prod_{n \neq k} \sigma(a_k, a_n).$$

However, under some mild condition (Hypothesis I in Section 4), we can show that

$$\rho_k \geq \prod_{n \neq k} \sigma(a_k, a_n).$$

In general, $\rho_k > 0$ if and only if $J_k \supset_{\neq} J$. Hence $\rho_k > 0$ if and only if there exists a function f_k in A such that $f_k(a_n) = \delta_{nk}$. In this paper, for $\{a_n\}$ in M(A) we assume that $\rho_k > 0$ for all k.

In Section 2, for an arbitrary uniform algebra we show that $\{a_n\}$ is an ℓ^1 -interpolating sequence if and only if $\inf_k \rho_k > 0$. In Section 3, we define a finite ℓ^1 -interpolating sequence and give a necessary and sufficient condition to characterize it. In Section 4, we show that if $\inf_k \prod_{n \neq k} \sigma(a_k, a_n) > 0$, then $\{a_n\}$ is always a finite ℓ^1 -interpolating sequence and under some mild condition it is an ℓ^1 -interpolating sequence. In some sense, this type of theorem for an ℓ^∞ -interpolating sequence was conjectured in [1]. In Section 5, we apply the results from the previous sections to concrete uniform algebras. In Section 6, we comment on an ℓ^∞ -interpolating sequence.

2. ℓ^1 -interpolating sequence

In this section we show that $\{a_n\}$ is an ℓ^1 -interpolating sequence if and only if $\inf_k \rho_k > 0$. The argument in the 'only if' part of Lemma 1 is similar to the one which was used by Hatori [3] when $A = H^{\infty}(D)$.

LEMMA 1. $\{a_n\}$ is an ℓ^1 -interpolating sequence if and only if there exists a sequence $\{f_n\}$ in A such that $f_n(a_k) = \delta_{nk}$ $(n \ge 1, k \ge 1)$ and $\sup_n ||f_n + J|| < \infty$.

PROOF. Suppose $M = \sup_n ||f_n + J|| < \infty$ and $f_n(a_k) = \delta_{nk}$. Let ε be an arbitrary positive constant. For each *n* there exists g_n in *J* such that $||f_n + g_n|| \le M + \varepsilon$. If $(\alpha_n) \in \ell^1$, put

$$f=\sum_{n=1}^{\infty}\alpha_n(f_n+g_n).$$

Then *f* belongs to *A* and $f(a_n) = \alpha_n$ for n = 1, 2, ... Suppose $S = \{a_n\}$ is an ℓ^1 -interpolating sequence. Then there exists a sequence $\{f_n\}$ in *A* such that $f_n(a_k) = \delta_{nk}$. For $(\alpha_n) \in \ell^1$, put

$$T(\alpha_n) = \sum_{n=1}^{\infty} \alpha_n f_n | S,$$

then by hypothesis there exists a function f such that $T(\alpha_n) = f|S$. Since A|S is algebraically isomorphic to the quotient algebra A/J, we use the quotient norm of A/J in A|S. By the closed graph theorem, T is bounded from ℓ^1 to A|S and so

$$||f_k + J|| = ||f_k|S|| \le ||T||$$

because $T(\{\delta_{nk}\}) = f_k | S$.

LEMMA 2. Suppose $\{f_n\}$ is a sequence in A such that $f_n(a_k) = \delta_{nk}$. Then

 $||f_n + J|| = 1/\rho_n$ for n = 1, 2, ...

PROOF. Since $(\rho_n f_n)(a_k) = \rho_n \delta_{nk}$, $\|\rho_n f_n + J\| \ge 1$. By definition of ρ_n , for each $l \ge 1$ there exists $g_l \in A$ such that $\|g_l\| = 1$, $g_l(a_n) = 0$ for $n \ne k$ and

$$\rho_k - 1/l \le g_l(a_k) \le \rho_k.$$

Put $G_l = g_l/g_l(a_k)$, then $G_l \in A$ and

$$\frac{1}{\rho_k} \le \|G_l\| = \frac{1}{|g_l(a_k)|} \le \frac{1}{\rho_k - 1/l}$$

Moreover, $G_l(a_k) = 1$, $G_l(a_n) = 0$ for $n \neq k$ and so $G_l \in f_k + J$. Since $||f_k + J|| \le (\rho_k - 1/l)^{-1}$ for any $l \ge 1$, $||\rho_k f_k + J|| \le 1$.

THEOREM 1. Let A be an arbitrary uniform algebra and let $\{a_n\}$ be in M(A). Then $\{a_n\}$ is a ℓ^1 -interpolating sequence if and only if $\inf_k \rho_k > 0$.

PROOF. The proof follows from Lemma 1 and Lemma 2.

[3]

3

Takahiko Nakazi

3. Finite ℓ^1 -interpolating sequence

We say that $\{a_n\}$ is a *finite* ℓ^1 *-interpolating sequence* if there exists a finite positive constant γ which satisfies the following: For any finite $l \ge 1$ and for any (α_n) in the unit ball of ℓ^1 , there exists a function F_l in A such that

$$F_l(a_n) = \alpha_n \quad \text{for } 1 \le n \le l$$

and $||F_l|| \leq \gamma$.

For $\{a_n\}$ in M(A) and $1 \le k \le l < \infty$, put

$$J^{l} = \{ f \in A; \ f(a_{n}) = 0 \ \text{if} \ 1 \le n \le l \},\$$
$$J^{l}_{k} = \{ f \in A; \ f(a_{n}) = 0 \ \text{if} \ 1 \le n \le l, \ n \ne k \}$$

and

$$\rho_{k,l} = \sup\{|f(a_k)|; f \in J_k^l, \|f\| \le 1\}.$$

Then $\rho_{k,l} \ge \rho_{k,l+1}$ and $\lim_{l\to\infty} \rho_{k,l} \ge \rho_k$.

LEMMA 3. $\{a_n\}$ is a finite ℓ^1 -interpolating sequence if and only if for each $l \ge 1$ there exists a sequence $\{f_{l,n}\}_{n=1}^l$ in A such that $f_{l,n}(a_k) = \delta_{nk}$ for $1 \le k \le l$ and $\sup_l \sup_{1\le n\le l} ||f_{l,n} + J^l|| < \infty$.

PROOF. (α_n) denotes an element in the unit ball of ℓ^1 . Suppose

$$M = \sup_{l} \sup_{1 \le n \le l} \left\| f_{l,n} + J^{l} \right\| < \infty$$

and $f_{l,n}(a_k) = \delta_{nk}$ for $1 \le k \le l$, then for any finite $l \ge 1$

$$\left\|\sum_{n=1}^{l} \alpha_n f_{l,n} + J^l\right\| \leq \left(\sum_{n=1}^{l} |\alpha_n|\right) M.$$

If $\gamma = M + 1$, then for any $l \ge 1$ there exists $g_l \in J^l$ such that $\left\| \sum_{n=1}^l \alpha_n f_{l,n} + g_l \right\| \le \gamma$. Set $F_l = \sum_{n=1}^l \alpha_n f_{l,n} + g_l$, then $F_l(a_n) = \alpha_n$ for $1 \le n \le l$ and $\|F_l\| \le \gamma$. Suppose $\{a_n\}$ is a finite ℓ^1 -interpolating sequence. Since $\{a_n\}$ is an infinite sequence of distinct points in M(A), for each $l \ge 1$ there exists a sequence $\{f_{l,n}\}_{n=1}^l$ in A such that $f_{l,n}(a_k) = \delta_{nk}$ for $1 \le k \le n$. Put

$$T^{l}(\alpha_{n}) = \sum_{n=1}^{l} \alpha_{n} f_{l,n} + J^{l};$$

then $||T^{l}(\alpha_{n})|| \leq ||T^{l}|| (\sum_{n=1}^{l} |\alpha_{n}|)$. If $||T^{l}|| \to \infty$ as $l \to \infty$, then there exists (α_{n}) in the unit ball of ℓ^{1} such that $||T^{l}(\alpha_{n})|| \to \infty$ as $l \to \infty$. On the other hand, by hypothesis $||T^{l}(\alpha_{n})|| \leq \gamma < \infty$ for all l. This contradiction implies that $M = \sup_{l} ||T^{l}|| < \infty$. This shows that for any $l \geq 1$ and any $k \geq 1$ with $k \leq l$,

$$\|f_{l,k} + J^{l}\| = \|T^{l}(\{\delta_{kn}\})\| \le M.$$

LEMMA 4. For l = 1, 2, ... and $1 \le k \le l$, $||f_k + J^l|| = 1/\rho_{k,l}$.

Proof is almost the same as the proof of Lemma 2.

THEOREM 2. Let A be an arbitrary uniform algebra and let $\{a_n\}$ be in M(A). Then $\{a_n\}$ is a finite ℓ^1 -interpolating sequence if and only if $\inf_k \lim_{l\to\infty} \rho_{k,l} > 0$.

PROOF. The statement of the theorem follows from Lemma 3 and Lemma 4. \Box

4. Uniformly separated sequence

When $A = H^{\infty}(D)$ and $\{a_n\}$ is in D, for any $k \ge 1$

$$\rho_k = \prod_{n \neq k} \sigma(a_k, a_n) = \lim_{l \to \infty} \rho_{k,l}.$$

When $\{a_n\}$ is in M(A), Izuchi [4] showed essentially that $\inf_k \rho_k > 0$ implies $\inf_k \prod_{n \neq k} \sigma(a_k, a_n) > 0$. However, this is not true in general. If $\sum_{n=1}^{\infty} (1 - \rho_n) < \infty$, then $\inf_k \prod_{n \neq k} \sigma(a_k, a_n) > 0$. In fact, $\rho_n \leq \sigma(a_k, a_n)$ for $n \neq k$ and so $\prod_{n=1}^{\infty} \rho_n \leq \prod_{n \neq k} \sigma(a_k, a_n)$ for any $k \geq 1$. When $\sum_{n=1}^{\infty} (1 - \rho_n) < \infty$, $0 < \prod_{n=1}^{\infty} \rho_n$ and so $\inf_k \prod_{n \neq k} \sigma(a_k, a_n) > 0$. In this section, we study these three quantities.

LEMMA 5. (1) For any
$$l \ge 1$$
, $\rho_{k,l} \ge \prod_{n \ne k}^{l} \sigma(a_k, a_n)$. Hence for any $k \ge 1$
$$\lim_{l \to \infty} \rho_{k,l} \ge \prod_{n \ne k} \sigma(a_k, a_n).$$

(2) For $1 \le n \le l$ and $n \ne k$, $\rho_{k,l} \le \sigma(a_k, a_n)$. Hence for any $k \ge 1$

$$\lim_{l\to\infty}\rho_{k,l}\leq\inf_{n\neq k}\sigma(a_k,a_n).$$

PROOF. (1) Fix any positive constant $\varepsilon > 0$. For each *n* with $l \ge n \ge 1$ and $n \ne k$, there exists $F_n^{\varepsilon} \in A$ such that $||F_n^{\varepsilon}|| \le 1$, $F_n^{\varepsilon}(a_n) = 0$ and $\sigma(a_k, a_n) \ge |F_n^{\varepsilon}(a_k)| \ge \sigma(a_k, a_n) - \varepsilon$. Then $F^{\varepsilon} = \prod_{n \ne k}^{l} F_n^{\varepsilon}$ belongs to $J_{l,k}$, $||F^{\varepsilon}|| \le 1$ and

$$\rho_{l,k} \ge |F^{\varepsilon}(a_k)| \ge \prod_{n \ne k}^{l} \{\sigma(a_k, a_n) - \varepsilon\}.$$

As $\varepsilon \to 0$, $\rho_{l,k} \ge \prod_{n \ne k}^{l} \sigma(a_k, a_n)$ for any $l \ge 1$ and hence

$$\lim_{l\to\infty}\rho_{k,l}\geq\prod_{n\neq k}\sigma(a_k,a_n)$$

(2) is clear by the definitions of $\rho_{k,l}$ and $\sigma(a_k, a_n)$ for $1 \le n \le l$ and $n \ne k$.

Takahiko Nakazi

THEOREM 3. Let A be an arbitrary uniform algebra and let $\{a_n\}$ be in M(A).

- (1) If $\inf_k \prod_{n \neq k} \sigma(a_k, a_n) > 0$, then $\{a_n\}$ is a finite ℓ^1 -interpolating sequence.
- (2) If $\{a_n\}$ is a finite ℓ^1 -interpolating sequence, then $\inf_{n \neq k} \sigma(a_k, a_n) > 0$.

PROOF. (1) By Lemma 5 (1), $\inf_k \lim_{l\to\infty} \rho_{k,l} > 0$ and so, by Theorem 2, $\{a_n\}$ is a finite ℓ^1 -interpolating sequence.

(2) By Theorem 2 inf_k $\lim_{l\to\infty} \rho_{k,l} > 0$ and so, by Lemma 5 (2), $\inf_{n\neq k} \sigma(a_k, a_n) > 0$.

HYPOTHESIS I. Let A be a uniform algebra and let $\{a_n\}$ be in M(A). If g_l is a function in A and $||g_l|| \le 1$ for l = 1, 2, ..., then there exist a subsequence $\{g_{l(j)}\}_j$ of $\{g_l\}_l$ and a function g in A such that $||g|| \le 1$ and $\lim_{j\to\infty} g_{l(j)}(a_n) = g(a_n)$ for any $n \ge 1$.

HYPOTHESIS II. Let A be a uniform algebra and let $\{a_n\}$ be in M(A). For any a, b in $\{a_n\}$ with $a \neq b$, if the function f in A satisfies f(a) = f(b) = 0 and $||f|| \leq 1$, then for any $\varepsilon > 0$ there exist two functions g and h in A such that $||g|| \leq 1+\varepsilon$, $||h|| \leq 1+\varepsilon$, g(a) = 0, h(b) = 0 and f = gh.

LEMMA 6. Let A be an arbitrary uniform algebra and let $\{a_n\}$ be in M(A). If $\{a_n\}$ satisfies Hypothesis I, then $\lim_{l\to\infty} \rho_{k,l} = \rho_k$ for any $k \ge 1$, and hence a finite ℓ^1 -interpolating sequence is an ℓ^1 -interpolating sequence.

PROOF. $\lim_{l\to\infty} \rho_{k,l} \ge \rho_k$ for any $k \ge 1$. If $\lim_{l\to\infty} \rho_{k,l} > \varepsilon > 0$, then for each l there exists $g_l \in J_k^l$ such that $||g_l|| \le 1$ and $|g_l(a_k)| \ge \varepsilon > 0$. By hypothesis, there exists $g \in J_k$ such that $||g|| \le 1$ and $|g(a_k)| \ge \varepsilon > 0$. Thus $\lim_{l\to\infty} \rho_{k,l} \le \rho_k$ and so $\lim_{l\to\infty} \rho_{k,l} = \rho_k$. This together with Theorem 1 and Theorem 2 also imply that a finite ℓ^1 -interpolating sequence is an ℓ^1 -interpolating sequence.

LEMMA 7. Assume Hypothesis II. If f is a function in $J_{k,l}$ with $||f|| \le 1$, then for any $\varepsilon > 0$, $f = \prod_{n \ne k}^{l} f_n$, $f_n(a_n) = 0$ $(n \ne k)$ and $||f_n|| \le (1 + \varepsilon)^{l-1}$.

PROOF. We may assume k = 1. Fix any $\varepsilon > 0$. By Hypothesis II, $f = g_2g_3$, $||g_j|| \le 1 + \varepsilon$ (j = 2, 3) and $g_2(a_2) = g_3(a_3) = 0$. Since $f(a_4) = 0$, $g_2(a_4) = 0$ or $g_3(a_4) = 0$. We may assume $g_2(a_4) = 0$. By Hypothesis II, $g_2 = g_{22}g_{24}$, $||g_{2j}|| \le (1 + \varepsilon)^2$ (j = 2, 4), and $g_{22}(a_2) = g_{24}(a_4) = 0$. Hence there exist h_2, h_3, h_4 such that $f = h_2h_3h_4$, $||h_j|| \le (1 + \varepsilon)^2$ (j = 2, 3, 4) $h_2(a_2) = h_3(a_3) = h_4(a_4) = 0$. This argument implies the proof.

LEMMA 8. Let A be an arbitrary uniform algebra and let $\{a_n\}$ be in M(A). If $\{a_n\}$ satisfies Hypothesis II, then for $1 \le k \le l$, $\rho_{k,l} = \prod_{k \ne n}^l \sigma(a_k, a_n)$. Moreover, if $\{a_n\}$ satisfies Hypothesis I, then $\rho_k = \prod_{k \ne n} \sigma(a_k, a_n)$.

PROOF. By (1) of Lemma 5 it is sufficient to show that $\rho_{k,l} \leq \prod_{k\neq n}^{l} \sigma(a_k, a_n)$. If $0 < \delta < \rho_{k,l}$, then there exists $f \in J_{k,l}$ with $||f|| \leq 1$ such that

$$\rho_{k,l} - \delta \le |f(a_k)| \le \rho_{k,l}.$$

For any $\varepsilon > 0$, by Lemma 7, f can be factorized as $f = \prod_{n \neq k}^{l} f_n$, $||f_n|| \le (1 + \varepsilon)^{l-1}$ and $f_n(a_n) = 0$ for $n \ne k$. Hence

$$\prod_{n\neq k}^{l} |f_n(a_k)| \leq (1+\varepsilon)^{(l-1)(l-1)} \prod_{n\neq k}^{l} \sigma(a_k, a_n).$$

As $\varepsilon \to 0$, $\rho_{k,l} - \delta \leq \prod_{n \neq k}^{l} \sigma(a_k, a_n)$. Since δ is arbitrary, $\rho_{k,l} \leq \prod_{n \neq k}^{l} \sigma(a_k, a_n)$. \Box

THEOREM 4. Let A be an arbitrary uniform algebra and let $\{a_n\}$ be in M(A).

(1) Under Hypothesis II, $\{a_n\}$ is a finite ℓ^1 -interpolating sequence if and only if $\inf_k \prod_{n \neq k} \sigma(a_k, a_n) > 0$.

(2) Under Hypotheses I and II, $\{a_n\}$ is an ℓ^1 -interpolating sequence if and only if $\inf_k \prod_{n \neq k} \sigma(a_k, a_n) > 0$.

PROOF. Theorem 1, Theorem 2 and Lemma 8 imply the theorem.

When $A = H^{\infty}(D)$ and $\{a_n\}$ is in D, $\{a_n\}$ satisfies Hypotheses I and II. Let A be a disc algebra. Then if $\{a_n\}$ is in D, then $\{a_n\}$ satisfies Hypothesis II (see Section 5). On the other hand, it is easy to see that there exists a sequence $\{a_n\}$ in D which does not satisfy Hypothesis I.

5. Special uniform algebras

When $A = H^{\infty}(D)$ and $\{a_n\}$ in D, Hatori [3] showed that $\{a_n\}$ is an ℓ^1 -interpolating sequence if and only if $\inf_k \prod_{n \neq k} \sigma(a_k, a_n) > 0$. Since it is clear that $\{a_n\}$ in D satisfies Hypotheses I and II, this is a corollary of (2) of Theorem 4. Corollary 3 is also a result of Hatori [3]. We give another proof of it. Hatori [3] also shows this type of theorem for a Hardy space H^p $(1 \le p < \infty)$ on a finite open Riemann surface and generalizes a theorem of Shapiro and Shields [7].

COROLLARY 1. Let A be a uniform closed algebra between the disc algebra \mathscr{A} and $H^{\infty}(D)$, and let $\{a_n\}$ be in D. Suppose that f/z belongs to A for f in A with f(0) = 0. Then $\{a_n\}$ is a finite ℓ^1 -interpolating sequence if and only if $\inf_k \prod_{n \neq k} \sigma(a_k, a_n) > 0$.

PROOF. If $f \in A$ and f(a) = 0 for some $a \in D$, then f(z)/(z - a) belongs to A (see [5]). Hence

$$\frac{1 - \bar{a}z}{z - a} f(z) \quad \text{belongs to } A$$

and $(z - a)/(1 - \bar{a}z)$ is a unimodular function in \mathscr{A} . Therefore, $\{a_n\}$ satisfies Hypothesis II and so (1) of Theorem 4 implies the corollary.

COROLLARY 2. Let $A = H^{\infty}(D^m)$ and let $\{a_n\}$ be in D^m . Suppose $a_n = (a_n^1, a_n^2, \ldots, a_n^m)$ and $\sum_{n=1}^{\infty} (1 - |a_n^l|) < \infty$ for $1 \le l \le m$. Then $\{a_n\}$ is an ℓ^1 -interpolating sequence if and only if $\inf_k \prod_{n \ne k} \sigma(a_k, a_n) > 0$.

PROOF. By Theorem 2 and Lemma 6, the 'if' part is proved. We will prove the 'only if' part. Put

$$B_k = B_k(z_1, \ldots, z_m) = \prod_{l=1}^m \prod_{n \neq k}^\infty \frac{-a_n^l}{|a_n^l|} \frac{z_l - a_n^l}{1 - \bar{a}_n^l z_l},$$

then B_k belongs to $H^{\infty}(D^m)$ because $\sum_{n=1}^{\infty}(1-|a_n^l|) < \infty$ for $1 \le l \le m$. If $F_k = B_k/B_k(a_k)$, then $F_k(a_n) = \delta_{nk}$ and

$$||F_k + J|| = |B_k(a_k)|^{-1} ||B_k + J|| = |B_k(a_k)|^{-1};$$

thus $\rho_k = |B_k(a_k)|$. Theorem 1 implies that $\inf_k |B_k(a_k)| = \inf_k \rho_k > 0$. Since

$$\sigma(a_k, a_n) = \max\left(\left|\frac{a_k^1 - a_n^1}{1 - \bar{a}_n^1 a_k^1}\right|, \dots, \left|\frac{a_k^m - a_n^m}{1 - \bar{a}_n^m a_k^m}\right|\right)$$

(see [1, page 162]),

$$|B_k(a_k)| \leq \prod_{k \neq n} \sigma(a_k, a_n).$$

This proves the corollary.

COROLLARY 3. Let R be a finite open Riemann surface and $A = H^{\infty}(R)$ the set of all bounded analytic functions on R. Then $\{a_n\}$ in R is an ℓ^1 -interpolating sequence if and only if $\inf_k \prod_{n \neq k} \sigma(a_k, a_n) > 0$.

PROOF. It is known [8] that $\{a_n\}$ is an ℓ^{∞} -interpolating sequence if and only if $\inf_k \prod_{n \neq k} \sigma(a_k, a_n) > 0$. If $\{a_n\}$ is an ℓ^1 -interpolating sequence, then $\inf_k \rho_k > 0$ by Theorem 1 and so by [8, Theorem 5.9] $\{a_n\}$ is a ℓ^{∞} -interpolating sequence.

Let $D_n = \{z \in \mathbb{C}; |z - c_n| < r_n\}, c_n > 0 \text{ as } D_n \cap D_m = \emptyset \ (n \neq m), D_n \subset D \setminus \{0\}$ (n = 1, 2, 3, ...) and $\sum_{n=1}^{\infty} r_n/c_n < \infty$. $U = D \setminus \bigcup_n D_n$ is called a *Zaleman domain* [9]. When $A = H^{\infty}(U)$ and $\{a_n\}$ is in U, if $\inf_k \prod_{n \neq k} \sigma(a_k, a_n) > 0$, then $\{a_n\}$ is an ℓ^1 -interpolating sequence by (1) of Theorem 3 and Lemma 6 because $\{a_n\}$ satisfies Hypothesis I but $\{a_n\}$ is not necessarily an ℓ^{∞} -interpolating sequence by [6].

6. ℓ^{∞} -interpolating sequence

When $\{a_n\}$ in M(A) satisfies Hypothesis I, it is interesting to give a sufficient condition or a necessary condition for an ℓ^{∞} -interpolating sequence. Berndtsson, Chang and Lin [1] give the following problem: Let $A = H^{\infty}(Y)$ and let $\{a_n\} \subset Y$ be a bounded domain $Y \subset \mathbb{C}^n$. Suppose $\inf_k \prod_{n \neq k} \sigma(a_k, a_n) > 0$. Is $\{a_n\}$ an ℓ^{∞} interpolating sequence? In Proposition 1, $\sum_{n=1}^{\infty} (1 - \rho_n) < \infty$ and so by the remark above Lemma 5, $\inf_k \prod_{n \neq k} \sigma(a_k, a_n) > 0$.

PROPOSITION 1. Let A be an arbitrary uniform algebra and let $\{a_n\}$ be in M(A). Suppose $\{a_n\}$ satisfies Hypothesis I. If $\rho_n \ge 2(n^t + 1)(n^t + 2)/\{(n^t + 1)^2 + (n^t + 2)^2\}$ for n = 1, 2, 3, ... and some t > 1, then $\{a_n\}$ is an ℓ^{∞} -interpolating sequence.

PROOF. By Hypothesis I there exists a sequence $\{F_n\}$ in A such that $||F_n|| \le 1$, $F_n(a_k) = 0$ if $k \ne n$ and $|F_n(a_n)| = \rho_n$ for n = 1, 2, ... Izuchi [4, Theorem 1] has essentially proved the theorem. We use the notation from [4, Theorem 1]. Set $\rho_n = 2(1 - \delta_n)/\{1 + (1 - \delta_n)^2\}$ with $0 < \delta_n \le 1/(n^t + 2)$; this is possible by the hypothesis on ρ_n . If $\varepsilon_n = 1/n^{\rho}$, then $\sum_{n=1}^{\infty} \varepsilon_n < \infty$ and so $\prod_{n=1}^{\infty} (1 + \varepsilon_n) < \infty$. Then

$$\delta_n < 1 - \frac{1}{\sqrt{1 + 2\varepsilon_n}}$$

By the proof of [4, Theorem 1], there exists a sequence $G_n \in A$ such that

$$\sum_{n=1}^{\infty} |G_n| \le \sum_{n=1}^{\infty} (1 + \varepsilon_n) < \infty \text{ on } X.$$

Hypothesis I implies that $\{a_n\}$ is an ℓ^{∞} -interpolating sequence.

PROPOSITION 2. Let A be an arbitrary uniform algebra and let $\{a_n\}$ be in M(A). Suppose $\{f_k\}_k$ is a sequence in A such that $f_k(a_n) = \delta_{nk}$. Then $\{a_n\}$ is an ℓ^p -interpolating sequence if and only if

$$\sup_{\phi\in A^*\cap J^\perp, \|\phi\|\leq 1}\left(\sum_{n=1}^\infty |\phi(f_n)|^q\right)^{1/q}<\infty,$$

where 1/p + 1/q = 1 and $A^* \cap J^{\perp} = \{\phi \in A^*; \phi = 0 \text{ on } J\}$. For p = 1 and $q = \infty$ we assume that

$$\sup_{\phi} \left(\sum_{n=1}^{\infty} |\phi(f_n)|^q \right)^{1/q} = \sup_{\phi} \sup_{n} |\phi(f_n)| = \sup_{n} ||f_n + J||.$$

 \Box

PROOF. Suppose that

$$\sup_{\phi\in A^*\cap J^{\perp}, \|\phi\|\leq 1} \left(\sum_{n=1}^{\infty} |\phi(f_n)|^q\right)^{1/q} = \gamma_q < \infty.$$

For any $\phi \in A^* \cap J^{\perp}$ with $\|\phi\| \le 1$ and any $l < \infty$,

$$\left|\phi\left(\sum_{n=1}^{l}\alpha_{n}f_{n}\right)\right| \leq \left(\sum_{n=1}^{l}|\alpha_{n}|^{p}\right)^{1/p}\left(\sum_{n=1}^{l}|\phi(f_{n})|^{q}\right)^{1/q}$$

and so

$$\left\|\sum_{n=1}^{\infty}\alpha_n \tilde{f}_n\right\| \leq \gamma_q \left(\sum_{n=1}^{\infty} |\alpha_n|^p\right)^{1/p},$$

where $\tilde{f}_n = f_n + J$. Thus if $(\alpha_n) \in \ell^p$ then $\tilde{f} = \sum_{n=1}^{\infty} \alpha_n \tilde{f}_n$ belongs to A/J. Then $f(a_n) = \alpha_n$ for n = 1, 2, ... and so $\{a_n\}$ is an ℓ^p -interpolating sequence. Conversely, suppose $S = \{a_n\}$ is an ℓ^p -interpolating sequence. For $(\alpha_n) \in \ell^p$, set

$$T(\alpha_n) = \sum_{n=1}^{\infty} \alpha_n f_n | S;$$

then there exists a function f such that $T(\alpha_n) = f|S$. Since T turns out to be bounded from ℓ^p to A/J (see Lemma 1), for $\phi \in A^*/J^{\perp}$ with $\|\phi\| \le 1$ we have

$$|\phi(f)| = \left|\sum_{n=1}^{\infty} \alpha_n \phi(f_n)\right| \le ||T|| \left(\sum_{n=1}^{\infty} |\alpha_n|^p\right)^{1/p}$$

Hence $\sup_{\phi \in A^* \cap J^{\perp}, \|\phi\| \le 1} (\sum_{n=1}^{\infty} |\phi(f_n)|^q)^{1/q} < \infty$.

Hatori [3] is interested in when an ℓ^1 -interpolating sequence is an ℓ^{∞} -interpolating sequence. He showed that if $A = H^{\infty}(R)$ and $\{a_n\}$ in R, then $\{a_n\}$ is such a sequence (see Corollary 3). In general, Proposition 2 gives a necessary and sufficient condition for this to happen.

References

- B. Berndtsson, S.-Y. A. Chang and K.-C. Lin, 'Interpolating sequences in the polydisc', *Trans. Amer. Math. Soc.* (1) 302 (1987), 161–169.
- [2] L. Carleson, 'An interpolation problem for bounded analytic functions', *Amer. J. Math.* 80 (1958), 921–930.

[11]

- [3] O. Hatori, 'The Shapiro-Shields theorem on finite connected domains', Sūrikaisekikenkyūsho Kōkyūroku 1049 (1998), 21–29 (in Japanese).
- [4] K. Izuchi, 'Interpolating sequences in the maximal ideal space of H[∞]. II', in: Operator theory and complex analysis (Sapporo, 1991) (Birkhäuser, Basel, 1992) pp. 221–233.
- [5] K. Izuchi and Y. Izuchi, 'Algebras of bounded analytic functions containing the disk algebra', *Canad. J. Math.* 38 (1986), 87–108.
- [6] J. Narita, 'Interpolating sequences on plane domains', Kodai Math. J. 13 (1990), 311–316.
- [7] H. S. Shapiro and A. L. Shields, 'On some interpolation problems for analytic functions', *Amer. J. Math.* 83 (1961), 513–532.
- [8] E. L. Stout, 'Bounded holomorphic functions on finite Reimann surfaces', *Trans. Amer. Math. Soc.* 120 (1965), 255–285.
- [9] L. Zalcman, 'Bounded analytic functions on domains of infinite connectivity', *Trans. Amer. Math. Soc.* 144 (1969), 241–269.

Department of Mathematics Hokkaido University Sapporo 060-0810 Japan e-mail: nakazi@math.sci.hokudai.ac.jp