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Abstract

Westwick’s convexitylheorem on the numerical range is generalized in the context of compact connected
Lie groups.
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1. Introduction

The celebrated Toeplitz-Hausdorff theore?i,[13] asserts that the numerical range
of ann x n complex matrixA,

W(A) ;= {x*Ax: x € C", |X]| = 1}

is a compact convex set ii. Toeplitz [21] proved thatW(A) has a convex outer
boundary and HausdorffLB] showed that the intersection of every line withi( A)

is connected or empty. Itis remarkable for it states that the image of the unit sphere
in C" (a hollow object) is a compact convex set @under the nonlinear map,

X — x*Ax. Since then various generalizations have been considered ranging from
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finite dimensional linear and multilinear mafds/] to operators on normed spacék |
The volume of literature on the subject has been growing rapidly in the d&stids
[12]. Halmos introduced th&-numerical range ofA: Wi (A) = {Zik:l XFAX
X1, ..., X¢ are orthonormal vectors ii"}, k = 1,..., n. He conjectured and Berger
[7] proved thatWi(A) is always convex. Then WestwicR7] considered thec-

numerical range oA, wherec € C":

i=1

n
W, (A) := {Z GX'AX : Xy, ..., X, are orthonormal vectors kﬁ”} .

It can be formulated a¥V/:(A) := {trCUAU* : U € U(n)}. HereU (n) denotes
the unitary group an€ is normal with eigenvalues € C". Notice thatW(A) =
{trCUAU* : [U] € U(n)/A(n)}, whereA(n) c U(n) is the subgroup of diagonal
matrices andJ +— [U] is the natural projection frortd (n) onto the homogenous
spacel (n)/A(n). Westwick proved that\- (A) is always convex for rea, that is,
C is Hermitian (this is known as Westwick's convexity theorem) but fails to be convex
for complexc. The main idea of Westwick’s proof is the application of Morse theory
onU(n)/A(n). Poon [L8 was the first to give an elementary proof to Westwick’s
result. The result was later rediscovered by Ginsb@rgége 8].

If A= A;+iA,isthe Hermitian decomposition &f, thenW, (A) may be identified
as the subset dt?,

(1) We (A, Ap) = {(tr CUAU* trCU AU*) : U e U(n)}.

Westwick considered the mafg : U (n)/A(n) — R defined by[U] — trCUBU*,
whereB is a given Hermitian matrix. If the level surfadg®(a) is connected (or
empty) inU (n)/A(n) foranya € R, then convexity follows by Hausdorff’'s argument.

He examined the critical points of the functidp and evaluated the Hessians at those
points, assuming thaB and C are both regular, that is, the Hermitian matridgs
andC have distinct eigenvalues. The critical points have even indices. Then by the
handlebody decomposition theorem, the level surfigcga) is connected. Westwick
also affirmed that the connectedness is valid even for nonreBudardC. But Ras

[19] pointed out that this is not obvious.

It is well known thatU (n) is a compact connected Lie group whose Lie algebra
u(n) is the set of skew Hermitian matrices. Notice thaZtt BU* = tr BUCU* =
—tr(iB)U (C)U* and thus {) can be written aSV (A1, Ay) = {(tr AjL, tr A,L)

L € O(C)}, whereO(C) := {UCU* : U € U(n)} is the adjoint orbit ofC in
u(n) which is identified with the set of Hermitian matrices. Moreov@rC) and
U (n)/A(n) can be identified. So the following consideration oisRE9] is natural:
Let G be a compact Lie group with Lie algebpawhich is equipped with &-
invariant inner product, -), that is,(Ad(g) X, Ad(@)Y) = (X,Y), X,Y € g,g € G.
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For X;, X5, Y € g, theY-numerical range ofX;, X,) is defined to be the following
subset ofR?:

(2) Wy (X1, X2) :={({X1, Ad(Q)Y), (X2, Ad(9)Y)) : g € G}.
Note that @) can be rewritten as
(3) WY(Xl’ XZ) ={(<Xl’ L)’ (XZ’ L)) : L € O(Y)}’

whereO(Y) := {Ad(Q)Y : g € G} is the adjoint orbitolY in g. If G(Y) :={ge G :
Ad(g)Y = Y} denotes the centralizer §fe g in G, then

Wy (X1, Xo) = {({X1, Ad(Q)Y), (X2, Ad(Q)Y)) : [g] € G/G(Y)},

whereg — [g] is the natural projection fror®s onto G/G(Y). Indeed,O(Y) and
G/G(Y) can be identified.

We will use the fact thaO(Y) N t is a nonempty finite set, wheM € g andt is
the Lie algebra of a maximal tords of G whenG is compact and connectetl].

In Section2, we will prove the convexity oM, (X1, X,) via Atiyah’s lemma on
compact connected symplectic manifolds and the Kirillov-Kostant-Souriau symplectic
structure of the co-adjoint orbits of a Lie group. The statements for classical groups,
namely,SQ(n), SU(n) andSpn) are explicitly worked out. Convexity fails to be true
whenG = O(2n) but remains valid whe® = O(2n + 1). It demonstrates that the
connectedness is necessary. In Secsiowe suggest an approach for the convexity
via Bott-Samelson-Ra’ result, without symplectic technique.

2. Convexity of the generalized numerical ranges

We now identifyg* with g via the isomorphismp : X — (X, ), X € g, that
is, zZ(X) = (X, ¢~1(2)), z € g*, andg* has an induced inner produgt -) (abuse of
notation) such thatx, y) := (¢~1(x), ¢ 1(y)), X, ¥ € g. Notice that

4 P(Ad(Q)Y) = (Ad(Q)Y, -) = ¢(Y, Ad(g ™) () = Ad" (@) (¢(Y)).

Here the co-adjoint representation’AdG — Aut(g*) of G in g* is defined byg +—

Ad*(g) suchthat Ad(g)(y)Y = y(Ad(gH)Y), wherey € g*, Y € g. The differential
of Ad* yields the co-adjoint representation@bn g*, namely, adl : ¢ — End(g*)

such that

ad (X)y(Y) = —y@dX)Y) = y([Y, XD, X,Yeg, yeg.
Similarly as in @), given a compact Lie grou@, we define

Wy (X1, X2) == {({X1, £), (X2, £)) : £ € Oy},
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where O, := {Ad"(g)y : g € G} is the co-adjoint orbit ofy € g*. From @)
¢(O(Y)) = O,y). Thus

(5) W, (Xq, X2) = le(y)((ﬂfl(xl), ¢ (%))
= {(Lp™ (X)), Lg " (%)) : £ € Oy}.

If Gy :={g € G: Ad"(g9)y = y} denotes the stabilizer gf € g*, whose Lie algebra
isgy={Xeg:ad(X)(y) =0 ={Xeg:y(Y, X]) =0, forallY € g}, then we
have

Wy (X1, X2) = {((X1, Ad(Q)Y), (X2, Ad"(Q)y)) : [9] € G/Gy},

whereg — [g] is the natural projection froi® ontoG/G,. The tangent space of the
co-adjoint orbitO, andg/g, can be identified.
Atiyah [1, Lemma 1.3] obtained the following result (also s&6, [L1, 15]).

LEMMA 2.1. Let M be a compact connected symplectic manifold &ndM — R
a smooth function whose Hamiltonian vector field generates a torus action. Then for
anya € R, the level surface ~*(a) is connectedqor empty.

A symplectic manifoldM is a differentiable manifold of even dimension with an
exterior differential 2-formw satisfying (1)dw = 0, that is,w is closed, and (2p
is of maximal rank. A real-valued smooth functidnon M defines a Hamiltonian
vector fieldé; which corresponds to the 1-forohf using the duality defined by,
thatis,.(é¢)w + df = 0 [14, page 232].

LEMMA 2.2. LetG be a compactLie group. X;, X, andY are ing, X;, X, Y € g*,
then

(D Wy (X1, X2) = Waggy (Ad(92) X1, Ad(g2) X2) for anyg,, g, € G. Hence ifG
is connected andlis the Lie algebra of a maximal torub of G, thenY and one of
the X’s can be taken as elementstpf

(2) Wy(X1, X2) = Wags(gyy (Ad(g2)X1, Ad(Q2) %) for anygs, gz € G;

(3) rotating Wy (X1, Xz) (Wy (X1, X2)) by an angle yieldsW,, (X7, X5) (W, (X7, X5))
where(X/, X;) = (X; cosd—X; sinf, X;sind+ X, cosh) and(x;, X;) = (X; COSH —
X5 SING, X; SiNO + X, COSH).

PrOOF. (1) and (2). For ang, g» € G,
(Ad(g2) X, Ad(@) Ad(gn)Y) = (X, Ad(g; 'gg)Y).

As g runs through the grouf, so doesy, 'gg,. Statement (3) follows from direct
computation. O
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THEOREM 2.3. Let G be a compact connected Lie group. Bar x,, y € g* and
Y € g, Wy(xy, Xp) is a compact convex setRF. Thus forXy, X, Y € g, Wy (X, X,)
is a compact convex set.

PrROOF. For any Lie grouf, the co-adjoint orbif2 := O, has a natural symplectic
structure, known as the Kirillov-Kostant-Souriau structuré pages 230-234]. Let
T,Q2 be the tangent space ©f at the pointz € Q. The symplectic form is given by
w,(a, B) = z([A,B]), o, 8 € T,R2, z € @, anda and 8 are corresponding to the
elementsA andB e g, respectively (under the identificatidnR$2 with g/g,), that is,
B = ad(B)(z) = d/dt|,_oAd* (e 'B)z

In view of (5), it is sufficient to consider the smooth functidn: 2 — R defined
by f(z) = z(X), wherez € Q for any givenX € g, thatis, f is the restriction o2 of
the linear functional ofi* corresponding tX € g, and show thaf ~1(a) is connected
(or empty) for anya € R. This implies that the intersection @, (x;, x,) with every
vertical (horizontal as well) straight line is connected (or empty). By LerrBé3),
the intersection o¥V, (x;, X) with every straight line is connected (or empty). Now

—g *~—tB _g % ~—tB
dfz(ﬂ)—Olt . f(Ad*"(e"")2) = at |, Ad*(e"")z(X)
= — Z(Ad(e'®)X) = z([B, X]).
dt |,_,

Sou(éf)w+df =0 meansthab,(&¢(2), B) +df,(8) =0forallg € TQandz € .

It amounts toz([Z, B]) + z([B, X]) = 0 for all B € g andz € Q, whereZ < g
corrresponds tg;(z). Soz([X — Z, B]) = 0 for all B € g, thatis,Z = X modg,.
In other words, the corresponding Hamiltonian vector field associatedfwighjust
the natural action oK on Q. If G is compact connected, so€is If, in addition, X is
in ¢, the Lie algebra of a torus C G, then the conditions of Lemnial are satisfied
[1, page 2]. By Lemma&.2 (a), the level setf ~*(a) is connected (or empty) for any
a e R. Il

We now work out the explicit statements for some classical groups, namely, the
unitary group, the special unitary group, the orthogonal groggn + 1), the special
orthogonal groupSQ(n) and the symplectic grouppn). The symplectic group

Spin) ¢ U(2n) consists of
A —-B
|:B K} e U@2n).

COROLLARY 2.4. (1) (Westwick R2]) LetG = U (n) or SU(n). TheC-numerical
rangeWe (Aq, Ay) = {(tr AUCU*, tr A,UCU*) : U € G} is convex, wherd\;, A,
andC are Hermitian matrices.
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(2) The setW: (A, Ay) = {(tr AOCO", tr A,OCQO") : O e SQn)} is convex,
whereA;, A,, andC are real skew symmetric matrices.

(3) TheseW: (A, Ay) = {(tIr ALOCOT,tr A,OCQO") : O € O(2n+1)} is convex
and is equal to{(tr A OCO",tr A,OCQ") : O € SO2n + 1)}, whereA,, A,, and
C are real skew symmetric matrices.

(4) The setWe(Ag, Ay) = {(tr AUCU*, tr A,UCU*) : U € Sp(n)} is convex,
whereA;, A;, C € sp(n).

PrOOF. (1) Notice thatW: (As, A,) is the reflection of the convex Sékc (i A1, i Ay)
about the linex = y on thexy plane. WherG = SU(n), the Lie algebra is the set of
traceless skew Haritian matrices. Then for any € SU(n),

PO P 1
(tr AUCU* tr A UCU") = (tr AAUCU* tr AAUCU™) + H(trCtr AL trCir Ay),

whereC = C—(tr C/n)| andA, andA, are similarly defined. They arereless skew
Hermitian matrices. SW/(A;, A,) is just a translation of the convex 88k (A, A,).

(2) and (4) are obvious.

(3) The orthogonal grou@ (k) = SQ(k) UDSQKk) has two connected components
SQk) andDSQk) = {DO : O € SOKk)}, whereD is the diagonal matrix with
diagd,...,1, —1). So we haveN-(A;, Ay) = {(Ir AOCO",trA,OCQO") : O ¢
Ok} =W, UW,, where

W, := {(tr ALOCO",tr A,OCO") : O € SOk)}
and
W, = {(tr A,OCO", trA,0CO"): 0 e DSCXk)}
—{(tr A,OC'O™, r A,OC'O") : O € SAK)}
are convex by (2) witlC’ = D'CD.

Whenk = 2n+ 1, W; = W, since{OCO" : O € SO2n+1)} ={OC'OT: 0 ¢
DSO2n + 1)}. HenceW: (A, Ay) is convex. O

We remark that (2) and (3) are valid for general r€akince We(Aq, Ay) =
Wz (Ag, Az), whereC = (C — CT)/2. We also remark that the connectedneds af
Theoren?.3is necessary when we consider2n). Let

10 ¢ - 10 &
e O e |
ThenW: (A, Ay) = {#c(ay, a,)} which is not convex it # 0 anda; anda, are not
both zero, becaus#,; = {c(a;, &)} andW, = {—c(a;, a,)}. The argument extends
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to 2n. Consider

0 a 0 a, 0 b 0 b,

A = |:—a1 0} Db |:_an 0}, A, = |:—b1 0} DD |:_bn 0]
Recall thatW: (A1, A,) = Wy U W, and denote byg; (%,) the convex hull of
the elementg+cyy), ..., £Cym), 0 € S, and for even (odd) number of negative

signs. By a result ing0], W; (W,) is the set of-2( Y, a&., >, bi&), where§ =
(&1,...,&) are in%; (65). So the setW,; (W,) is the convex hull of the points
(> acyiy, > £bicysy), whered e S, and for even (odd) number of negative
signs. Now if we choosa’s, b’'s andc’s positive and set them in decreasing order,
respectively, thef ", &, Y_; b)) € W, but not inW.

The statement of Theorefth3 is best possible in the sense tWe (Xy, ..., Xp)
may falil to be true ifp > 3. Indeed, wherG = U(n) andY = diag(1,0,...,0),
W (Xq, ..., Xp) fails to be convex3] for some choice oX’s whenp > 3 orn =2
while p = 3. But itis convex wherp = 3 andn > 2 (also see{]).

3. Remarks

Since the mafis — R defined byg — (X, Ad(g)Y) (or O(Y) — R defined by
L — (X, L)) is clearly continuous\W, (X3, X,) is compact inR? if G is a compact
Lie group, whereX’s andY are ing. The following result deals with the continuity
of the map[[>g — % (R?), where% (R?) is the set of compact sets R?, equipped
with Hausdorff topology, such th&X,, X,, Y) — Wy (Xy, X5). We will then discuss
a possible approach to Theorén3.

PrOPOSITION3.1. LetG be a compact Lie group and I6t(R?) be the set of compact
subsets oRR? equipped with Hausdorff metric. Lét- || be the norm induced by the
G-invariant inner product org. Let]|| - || be the norm 0H3g induced by the norm of
g, thatis, (21, Z5, Z3) ||l = max_123 1 Zi].

(1) The function? : [°g — % (R?) defined by# (X;, X5, Y) = Wy (Xq, X,) is
continuous.

(2) IfY € g, then the function’s : [[°g — % (R?) defined by#% (X, X;) =
Wy (X1, X5) is uniformly continuous.

(3) Similar results are true fok\Vy (Xy, X,).

PrOOF. (1) Recall the Hausdorff metric f&f'(R?): write M + (¢) = {z+ o : z €
M, |la, < €} for eachM e % (R?) ande > 0, wherg] - |, denotes the Euclidean
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norm onR?. If M, N € % (R?), then the Hausdorff metrid(M, N) is defined to be
the infimum of all positive numbekssuch that bottM c N + (¢) andN c M + (¢)
hold. Now by the triangle inequality and the Cauchy-Schwarz inequality,

(X1, Ad(@)Y), (X2, Ad(@)Y)) — (X1, Ad(@)Y"), (X5, Ad(@ YD)
= [[((Xy = XL, Ad(Q)Y), (X2 — X3, Ad(9)Y))
+ (XL, Ad@) (Y = Y), (X5, Ad@ (Y = YOIz
= 1((Xy = X3, Ad(@)Y), (X2 = X5, Ad(@)Y)) Il
+ (XL A@ (Y = Y)), (X5, Ad@ (Y = YD)l

5 1/2 5 1/2
(Z X = X171 Ad(g)v||2> + (Z X121l Ad(@)(Y — Y/>||2>

i=1 i=1

IA

1/2

2 1/2 5
(Z 1% — X(||2> Y1+ (Z ||X(||2> 1Y =Yl
i=1 i=1

So

(6) d(Wy (Xg, X2), Wy (X, X3))

2 172 5 1/2
< (Z 1% — X(||2> I+ (Z ||x;||2> 1Y =Yl
i=1 i=1

< V2max| Xi = X[ Y[+ v2max| X/ 1Y = Y'I.

Fore > 0, we choose

0<d8<minjl, € .
2V2(|IY || + max_1, [|Xi || + 1)

Then[|({(X1, Ad(@)Y), (X2, Ad(Q)Y))—((X, Ad(Q)Y"), (X5, Ad(@)Y") [|l.< €, when-

ever|[[(X1, Xz, Y) — (X1, X5, YOI = max_i2{|X; — X{[I, Y = Y'[I} < §. In other

words,d(Wy (X1, X2), Wy, (X, X3))< €, whenevef| (X;, Xz, Y) — (X1, X5, Y)|I<$.
(2) WhenY = Y’, (6) becomes

d(Wy (Xe, Xo), Wy (X3, X3)) < v2maxi| X = X[ Y1]-

So#4 is uniformly continuous. O

We remark that PropositioB. 1is true forWy (X4, ..., X,) as well.
Without symplectic technique Ra[19] showed that ifX is aregular element of
g, then the critical points of the functida : O(Y) — R defined byF (2) = (X, Z)
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are all nondegenerate, that I5,is nondegenerate, and the indiced-obn the critical
points are always even. So the level surf&e(a) is connected (or empty) for

a € R. Indeed, Bott and Samelso®] [[see R, page 76]) had proved a stronger result:

F is nondegenerate and an index of a critical point is equal to twice the number of
hyperplanes crossed by a line joiniKgo the critical point. But this does not yield the
convexity ofWy (Xy, X») yet, whereXy, X,, Y € g, sinceX is assumed to be regular.
However, if one can show that for any givefi, X, € g, there exist sequences of
regular elementX{”, X" e g such thatXx{” — X; andX{® — X, asn — oo

and Xj(n) = X" coss — X3 sind and X,(n) = X" sind + X" cos are both
regular for allé € [0, /2], then the convexity oWy (X;, X,) follows. The reason is

that by Propositior8.1 (2), Wy (X{”, X) — W (X1, X,) with respect to Hausdorff
topology. The set¥W (X", X3) are convex by Lemma.2(3), Bott-Samelson-Ra”
result, and the Hausdorff-Westwick argument. Since the space of compact convex
subsets ofR? is closed Wy (X;, X,) is convex.
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