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Abstract

Westwick’s convexity theorem on the numerical range is generalized in the context of compact connected
Lie groups.
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1. Introduction

The celebrated Toeplitz-Hausdorff theorem [21, 13] asserts that the numerical range
of ann × n complex matrixA,

W.A/ := {x∗ Ax : x ∈ Cn; ‖x‖ = 1}

is a compact convex set inC. Toeplitz [21] proved thatW.A/ has a convex outer
boundary and Hausdorff [13] showed that the intersection of every line withW.A/
is connected or empty. It is remarkable for it states that the image of the unit sphere
in C

n (a hollow object) is a compact convex set inC under the nonlinear map,
x 7→ x∗ Ax. Since then various generalizations have been considered ranging from
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finite dimensional linear and multilinear maps [17] to operators on normed spaces [8].
The volume of literature on the subject has been growing rapidly in the last decades
[12]. Halmos introduced thek-numerical range ofA: Wk.A/ = {∑k

i =1 x∗
i Axi :

x1; : : : ; xk are orthonormal vectors inCn}, k = 1; : : : ;n. He conjectured and Berger
[7] proved thatWk.A/ is always convex. Then Westwick [22] considered thec-
numerical range ofA, wherec ∈ Cn:

Wc.A/ :=
{

n∑
i =1

ci x
∗
i Axi : x1; : : : ; xn are orthonormal vectors inCn

}
:

It can be formulated asWC.A/ := {tr CU AU∗ : U ∈ U .n/}. HereU .n/ denotes
the unitary group andC is normal with eigenvaluesc ∈ C

n. Notice thatWC.A/ =
{tr CU AU∗ : [U ] ∈ U .n/=4.n/}, where4.n/ ⊂ U .n/ is the subgroup of diagonal
matrices andU 7→ [U ] is the natural projection fromU .n/ onto the homogenous
spaceU .n/=4.n/. Westwick proved thatWC.A/ is always convex for realc, that is,
C is Hermitian (this is known as Westwick’s convexity theorem) but fails to be convex
for complexc. The main idea of Westwick’s proof is the application of Morse theory
on U .n/=4.n/. Poon [18] was the first to give an elementary proof to Westwick’s
result. The result was later rediscovered by Ginsburg [6, page 8].

If A = A1+i A2 is the Hermitian decomposition ofA, thenWC.A/may be identified
as the subset ofR2,

WC.A1; A2/ := {
.tr CU A1U

∗; tr CU A2U
∗/ : U ∈ U .n/

}
:(1)

Westwick considered the mapfB : U .n/=4.n/ → R defined by[U ] 7→ tr CU BU∗,
whereB is a given Hermitian matrix. If the level surfacef −1

B .a/ is connected (or
empty) inU .n/=4.n/ for anya ∈ R, then convexity follows by Hausdorff’sargument.
He examined the critical points of the functionfB and evaluated the Hessians at those
points, assuming thatB and C are both regular, that is, the Hermitian matricesB
andC have distinct eigenvalues. The critical points have even indices. Then by the
handlebody decomposition theorem, the level surfacef −1

B .a/ is connected. Westwick
also affirmed that the connectedness is valid even for nonregularB andC. But Raı̈s
[19] pointed out that this is not obvious.

It is well known thatU .n/ is a compact connected Lie group whose Lie algebra
u.n/ is the set of skew Hermitian matrices. Notice that trCU BU∗ = tr BUCU∗ =
− tr.i B/U .iC/U∗ and thus (1) can be written asWC.A1; A2/ = {.tr A1L ; tr A2L/ :
L ∈ O.C/}, whereO.C/ := {UCU∗ : U ∈ U .n/} is the adjoint orbit ofC in
u.n/ which is identified with the set of Hermitian matrices. Moreover,O.C/ and
U .n/=4.n/ can be identified. So the following consideration of Ra¨ıs [19] is natural:
Let G be a compact Lie group with Lie algebrag which is equipped with aG-
invariant inner product〈·; ·〉, that is,〈Ad.g/X;Ad.g/Y〉 = 〈X;Y〉, X;Y ∈ g, g ∈ G.
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For X1; X2;Y ∈ g, theY-numerical range of.X1; X2/ is defined to be the following
subset ofR2:

WY.X1; X2/ :={.〈X1;Ad.g/Y〉; 〈X2;Ad.g/Y〉/ : g ∈ G}:(2)

Note that (2) can be rewritten as

WY.X1; X2/ ={.〈X1; L〉; 〈X2; L〉/ : L ∈ O.Y/};(3)

whereO.Y/ := {Ad.g/Y : g ∈ G} is the adjoint orbit ofY in g. If G.Y/ := {g ∈ G :
Ad.g/Y = Y} denotes the centralizer ofY ∈ g in G, then

WY.X1; X2/ = {.〈X1;Ad.g/Y〉; 〈X2;Ad.g/Y〉/ : [g] ∈ G=G.Y/};
whereg 7→ [g] is the natural projection fromG onto G=G.Y/. Indeed,O.Y/ and
G=G.Y/ can be identified.

We will use the fact thatO.Y/ ∩ t is a nonempty finite set, whereY ∈ g andt is
the Lie algebra of a maximal torusT of G whenG is compact and connected [16].

In Section2, we will prove the convexity ofWY.X1; X2/ via Atiyah’s lemma on
compact connectedsymplectic manifolds and the Kirillov-Kostant-Souriau symplectic
structure of the co-adjoint orbits of a Lie group. The statements for classical groups,
namely,SO.n/, SU.n/ andSp.n/ are explicitly worked out. Convexity fails to be true
whenG = O.2n/ but remains valid whenG = O.2n + 1/. It demonstrates that the
connectedness is necessary. In Section3, we suggest an approach for the convexity
via Bott-Samelson-Ra¨ıs’ result, without symplectic technique.

2. Convexity of the generalized numerical ranges

We now identifyg∗ with g via the isomorphism' : X 7→ 〈X; ·〉, X ∈ g, that
is, z.X/ = 〈X; '−1.z/〉, z ∈ g∗, andg∗ has an induced inner product〈·; ·〉 (abuse of
notation) such that〈x; y〉 := 〈'−1.x/; '−1.y/〉, x; y ∈ g. Notice that

'.Ad.g/Y/ = 〈Ad.g/Y; ·〉 = '.Y;Ad.g−1/.·// = Ad∗.g/.'.Y//:(4)

Here the co-adjoint representation Ad∗ : G → Aut.g∗/ of G in g∗ is defined byg 7→
Ad∗.g/ such that Ad∗.g/.y/Y = y.Ad.g−1/Y/, wherey ∈ g∗, Y ∈ g. The differential
of Ad∗ yields the co-adjoint representation ofg on g∗, namely, ad∗ : g → End.g∗/
such that

ad∗.X/y.Y/ = −y.ad.X/Y/ = y.[Y; X]/; X;Y ∈ g; y ∈ g∗:

Similarly as in (3), given a compact Lie groupG, we define

Wy.x1; x2/ := {.〈x1; `〉; 〈x2; `〉/ : ` ∈ Oy};
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where Oy := {Ad∗.g/y : g ∈ G} is the co-adjoint orbit ofy ∈ g∗. From (4)
'.O.Y// = O'.y/. Thus

Wy.x1; x2/ = W'−1.y/.'
−1.x1/; '

−1.x2//(5)

= {.`.'−1.x1//; `.'
−1.x2/// : ` ∈ Oy}:

If Gy := {g ∈ G : Ad∗.g/y = y} denotes the stabilizer ofy ∈ g∗, whose Lie algebra
is gy = {X ∈ g : ad∗.X/.y/ = 0} = {X ∈ g : y.[Y; X]/ = 0; for all Y ∈ g}, then we
have

Wy.x1; x2/ = {.〈x1;Ad∗.g/y〉; 〈x2;Ad∗.g/y〉/ : [g] ∈ G=Gy};
whereg 7→ [g] is the natural projection fromG ontoG=Gy. The tangent space of the
co-adjoint orbitOy andg=gy can be identified.

Atiyah [1, Lemma 1.3] obtained the following result (also see [10, 11, 15]).

LEMMA 2.1. Let M be a compact connected symplectic manifold andf : M → R

a smooth function whose Hamiltonian vector field generates a torus action. Then for
anya ∈ R, the level surfacef −1.a/ is connected(or empty).

A symplectic manifoldM is a differentiable manifold of even dimension with an
exterior differential 2-form! satisfying (1)d! = 0, that is,! is closed, and (2)!
is of maximal rank. A real-valued smooth functionf on M defines a Hamiltonian
vector field¾ f which corresponds to the 1-formd f using the duality defined by!,
that is,�.¾ f /! + d f = 0 [14, page 232].

LEMMA 2.2. LetG be a compact Lie group. IfX1; X2 andY are ing, x1; x2; y ∈ g∗,
then

.1/ WY.X1; X2/ = WAd.g1/Y.Ad.g2/X1;Ad.g2/X2/ for any g1; g2 ∈ G. Hence ifG
is connected andt is the Lie algebra of a maximal torusT of G, thenY and one of
the X′s can be taken as elements oft;
.2/ Wy.x1; x2/ = WAd∗.g1/y.Ad.g2/x1;Ad.g2/x2/ for anyg1; g2 ∈ G;
.3/ rotating WY.X1; X2/ .Wy.x1; x2// by an angle� yieldsWY.X′

1; X′
2/ .Wy.x′

1; x′
2//

where.X′
1; X′

2/ = .X1 cos�−X2 sin�; X1 sin�+X2 cos�/ and.x′
1; x′

2/ = .x1 cos�−
x2 sin�; x1 sin� + x2 cos�/.

PROOF. (1) and (2). For anyg1; g2 ∈ G,

〈Ad.g2/X;Ad.g/Ad.g1/Y〉 = 〈X;Ad.g−1
2 gg1/Y〉:

As g runs through the groupG, so doesg−1
2 gg1. Statement (3) follows from direct

computation.



[5] Generalized numerical range 61

THEOREM 2.3. Let G be a compact connected Lie group. Forx1; x2; y ∈ g∗ and
Y ∈ g, Wy.x1; x2/ is a compact convex set inR2. Thus forX1; X2;Y ∈ g, WY.X1; X2/

is a compact convex set.

PROOF. For any Lie groupG, the co-adjoint orbit� := Oy has a natural symplectic
structure, known as the Kirillov-Kostant-Souriau structure [14, pages 230–234]. Let
Tz� be the tangent space of� at the pointz ∈ �. The symplectic form is given by
!z.Þ; þ/ = z.[A; B]/, Þ; þ ∈ Tz�, z ∈ �, andÞ andþ are corresponding to the
elementsA andB ∈ g, respectively (under the identificationTz� with g=gz), that is,
þ = ad∗.B/.z/ = d=dt|t=0 Ad∗.e−t B/z.

In view of (5), it is sufficient to consider the smooth functionf : � → R defined
by f .z/ = z.X/, wherez ∈ � for any givenX ∈ g, that is, f is the restriction on� of
the linear functional ofg∗ corresponding toX ∈ g, and show thatf −1.a/ is connected
(or empty) for anya ∈ R. This implies that the intersection ofWy.x1; x2/ with every
vertical (horizontal as well) straight line is connected (or empty). By Lemma2.2(3),
the intersection ofWy.x1; x2/ with every straight line is connected (or empty). Now

d fz.þ/ = d

dt

∣∣∣∣
t=0

f .Ad∗.e−t B/z/ = d

dt

∣∣∣∣
t=0

Ad∗.e−t B/z.X/

= d

dt

∣∣∣∣
t=0

z.Ad.et B/X/ = z.[B; X]/:

So�.¾ f /!+d f = 0 means that!z.¾ f .z/; þ/+d fz.þ/ = 0 for allþ ∈ T� andz ∈ �.
It amounts toz.[Z; B]/ + z.[B; X]/ = 0 for all B ∈ g and z ∈ �, whereZ ∈ g

corrresponds to¾ f .z/. Soz.[X − Z; B]/ = 0 for all B ∈ g, that is,Z = X modgz.
In other words, the corresponding Hamiltonian vector field associated withf is just
the natural action ofX on�. If G is compact connected, so is�. If, in addition,X is
in t, the Lie algebra of a torusT ⊂ G, then the conditions of Lemma2.1are satisfied
[1, page 2]. By Lemma2.2(a), the level set,f −1.a/ is connected (or empty) for any
a ∈ R.

We now work out the explicit statements for some classical groups, namely, the
unitary group, the special unitary group, the orthogonal groupO.2n + 1/, the special
orthogonal groupSO.n/ and the symplectic groupSp.n/. The symplectic group
Sp.n/ ⊂ U .2n/ consists of [

A −SB
B SA

]
∈ U .2n/:

COROLLARY 2.4. .1/ (Westwick [22]) LetG = U .n/ or SU.n/. TheC-numerical
rangeWC.A1; A2/ = {.tr A1UCU∗; tr A2UCU∗/ : U ∈ G} is convex, whereA1; A2

andC are Hermitian matrices.
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.2/ The setWC.A1; A2/ = {.tr A1OC OT; tr A2OC OT/ : O ∈ SO.n/} is convex,
whereA1; A2, andC are real skew symmetric matrices.
.3/ The setWC.A1; A2/ = {.tr A1OC OT; tr A2OC OT/ : O ∈ O.2n+1/} is convex
and is equal to{.tr A1OC OT; tr A2OC OT/ : O ∈ SO.2n + 1/}, whereA1, A2, and
C are real skew symmetric matrices.
.4/ The setWC.A1; A2/ = {.tr A1UCU∗; tr A2UCU∗/ : U ∈ Sp.n/} is convex,
whereA1; A2;C ∈ sp.n/.

PROOF. (1) Notice thatWC.A1; A2/ is the reflection of the convex setWiC.i A1; i A2/

about the linex = y on thexy plane. WhenG = SU.n/, the Lie algebra is the set of
traceless skew Hermitian matrices. Then for anyU ∈ SU.n/,

.tr A1UCU∗; tr A2UCU∗/ = .tr Â1UĈU∗; tr Â2UĈU∗/+ 1

n
.tr C tr A1; tr C tr A2/;

whereĈ = C−.tr C=n/I andÂ1 andÂ2 are similarly defined. They are tracelessskew
Hermitian matrices. SoWC.A1; A2/ is just a translation of the convex setWĈ.Â1; Â2/.

(2) and (4) are obvious.
(3) The orthogonal groupO.k/ = SO.k/∪DSO.k/ has two connected components

SO.k/ and DSO.k/ = {DO : O ∈ SO.k/}, whereD is the diagonal matrix with
diag.1; : : : ;1;−1/. So we haveWC.A1; A2/ = {.tr A1OC OT ; tr A2OC OT/ : O ∈
O.k/} = W1 ∪ W2, where

W1 := {
.tr A1OC OT; tr A2OC OT/ : O ∈ SO.k/

}
and

W2 := {
.tr A1OC OT; tr A2OC OT/ : O ∈ DSO.k/

}
= {.tr A1OC′OT ; tr A2OC′ OT/ : O ∈ SO.k/

}
are convex by (2) withC′ = DTC D.

Whenk = 2n +1, W1 = W2 since{OC OT : O ∈ SO.2n +1/} = {OC′ OT : O ∈
DSO.2n + 1/}. HenceWC.A1; A2/ is convex.

We remark that (2) and (3) are valid for general realC since WC.A1; A2/ =
WĈ.A1; A2/, whereĈ = .C − CT/=2. We also remark that the connectedness ofG in
Theorem2.3 is necessary when we considerO.2n/. Let

C =
[

0 c
−c 0

]
; A1 =

[
0 a1

−a1 0

]
; A2 =

[
0 a2

−a2 0

]
:

ThenWC.A1; A2/ = {±c.a1;a2/} which is not convex ifc 6= 0 anda1 anda2 are not
both zero, becauseW1 = {c.a1;a2/} andW2 = {−c.a1;a2/}. The argument extends
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to 2n. Consider

C =
[

0 c1

−c1 0

]
⊕ · · · ⊕

[
0 cn

−cn 0

]
;

A1 =
[

0 a1

−a1 0

]
⊕ · · · ⊕

[
0 an

−an 0

]
; A2 =

[
0 b1

−b1 0

]
⊕ · · · ⊕

[
0 bn

−bn 0

]
:

Recall thatWC.A1; A2/ = W1 ∪ W2 and denote byC1 (C2) the convex hull of
the elements.±c�.1/; : : : ;±c�.n//, � ∈ Sn and for even (odd) number of negative
signs. By a result in [20], W1 (W2) is the set of−2

(∑
i ai ¾i ;

∑
i bi ¾i

)
, where¾ =

.¾1; : : : ; ¾n/ are inC1 (C2). So the setW1 (W2) is the convex hull of the points(∑
i ±ai c�.i /;

∑
i ±bi c�.i /

)
, where� ∈ Sn and for even (odd) number of negative

signs. Now if we choosea’s, b’s andc’s positive and set them in decreasing order,
respectively, then

(∑
i ai ci ;

∑
i bi ci

) ∈ W1 but not inW2.
The statement of Theorem2.3 is best possible in the sense thatWY.X1; : : : ; Xp/

may fail to be true ifp ≥ 3. Indeed, whenG = U .n/ andY = diag.1;0; : : : ;0/,
WY.X1; : : : ; Xp/ fails to be convex [3] for some choice ofX’s when p ≥ 3 or n = 2
while p = 3. But it is convex whenp = 3 andn > 2 (also see [4]).

3. Remarks

Since the mapG → R defined byg 7→ 〈X;Ad.g/Y〉 (or O.Y/ → R defined by
L 7→ 〈X; L〉) is clearly continuous,WY.X1; X2/ is compact inR2 if G is a compact
Lie group, whereX’s andY are ing. The following result deals with the continuity
of the map

∏3
g → C .R2/, whereC .R2/ is the set of compact sets inR2, equipped

with Hausdorff topology, such that.X1; X2;Y/ 7→ WY.X1; X2/. We will then discuss
a possible approach to Theorem2.3.

PROPOSITION3.1. LetG be a compact Lie group and letC .R2/be the set of compact
subsets ofR2 equipped with Hausdorff metric. Let‖ · ‖ be the norm induced by the
G-invariant inner product ong. Let||| · ||| be the norm of

∏3
g induced by the norm of

g, that is,|||.Z1; Z2; Z3/||| = maxi =1;2;3 ‖Zi ‖.

.1/ The functionW : ∏3
g → C .R2/ defined byW .X1; X2;Y/ = WY.X1; X2/ is

continuous.
.2/ If Y ∈ g, then the functionWY : ∏2

g → C .R2/ defined byWY.X1; X2/ =
WY.X1; X2/ is uniformly continuous.
.3/ Similar results are true forWy.x1; x2/.

PROOF. (1) Recall the Hausdorff metric forC .R2/: write M + .ž/ = {z + Þ : z ∈
M; ‖Þ‖2 < ž} for eachM ∈ C .R2/ andž > 0, where‖ · ‖2 denotes the Euclidean
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norm onR2. If M; N ∈ C .R2/, then the Hausdorff metricd.M; N/ is defined to be
the infimum of all positive numbersž such that bothM ⊂ N + .ž/ andN ⊂ M + .ž/
hold. Now by the triangle inequality and the Cauchy-Schwarz inequality,

‖.〈X1;Ad.g/Y〉; 〈X2;Ad.g/Y〉/ − .〈X′
1;Ad.g/Y′〉; 〈X′

2;Ad.g/Y′〉/‖2

= ‖.〈X1 − X′
1;Ad.g/Y〉; 〈X2 − X′

2;Ad.g/Y〉/
+ .〈X′

1;Ad.g/.Y − Y′/〉; 〈X′
2;Ad.g/.Y − Y′/〉/‖2

≤ ‖.〈X1 − X′
1;Ad.g/Y〉; 〈X2 − X′

2;Ad.g/Y〉/‖2

+ ‖.〈X′
1;Ad.g/.Y − Y′/〉; 〈X′

2;Ad.g/.Y − Y′/〉/‖2

≤
(

2∑
i =1

‖Xi − X′
i ‖2‖ Ad.g/Y‖2

)1=2

+
(

2∑
i =1

‖X′
i ‖2‖ Ad.g/.Y − Y′/‖2

)1=2

=
(

2∑
i =1

‖Xi − X′
i ‖2

)1=2

‖Y‖ +
(

2∑
i =1

‖X′
i ‖2

)1=2

‖Y − Y′‖:

So

d
(
WY.X1; X2/;WY′.X′

1; X′
2/
)

(6)

≤
(

2∑
i =1

‖Xi − X′
i ‖2

)1=2

‖Y‖ +
(

2∑
i =1

‖X′
i ‖2

)1=2

‖Y − Y′‖

≤ √
2 max

i =1;2
‖Xi − X′

i ‖‖Y‖ + √
2 max

i =1;2
‖X′

i ‖‖Y − Y′‖:

For ž > 0, we choose

0 < Ž < min

{
1;

ž

2
√

2.‖Y‖ + maxi =1;2 ‖Xi ‖ + 1/

}
:

Then‖.〈X1;Ad.g/Y〉; 〈X2;Ad.g/Y〉/−.〈X′
1;Ad.g/Y′〉; 〈X′

2;Ad.g/Y′〉/‖2<ž, when-
ever|||.X1; X2;Y/− .X′

1; X′
2;Y′/||| = maxi =1;2{‖Xi − X′

i ‖; ‖Y − Y ′‖} < Ž. In other
words,d.WY.X1; X2/;WY′.X′

1; X′
2//< ž, whenever|||.X1; X2;Y/−.X′

1; X′
2;Y′/|||<Ž.

(2) WhenY = Y′, (6) becomes

d
(
WY.X1; X2/;WY.X

′
1; X′

2/
) ≤ √

2 max
i =1;2

‖Xi − X′
i ‖‖Y‖:

SoWY is uniformly continuous.

We remark that Proposition3.1 is true forWY.X1; : : : ; Xp/ as well.
Without symplectic technique Ra¨ıs [19] showed that ifX is a regular element of

g, then the critical points of the functionF : O.Y/ → R defined byF.Z/ = 〈X; Z〉
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are all nondegenerate, that is,F is nondegenerate, and the indices ofF on the critical
points are always even. So the level surfaceF−1.a/ is connected (or empty) for
a ∈ R. Indeed, Bott and Samelson [9] (see [2, page 76]) had proved a stronger result:
F is nondegenerate and an index of a critical point is equal to twice the number of
hyperplanes crossed by a line joiningX to the critical point. But this does not yield the
convexity ofWY.X1; X2/ yet, whereX1; X2;Y ∈ g, sinceX is assumed to be regular.
However, if one can show that for any givenX1; X2 ∈ g, there exist sequences of
regular elementsX.n/

1 ; X.n/
2 ∈ g such thatX.n/

1 → X1 and X.n/
2 → X2 asn → ∞

and X′
1.n/ = X.n/

1 cos� − X.n/
2 sin� and X′

2.n/ = X.n/
1 sin� + X.n/

2 cos� are both
regular for all� ∈ [0; ³=2], then the convexity ofWY.X1; X2/ follows. The reason is
that by Proposition3.1 (2), WY.X

.n/
1 ; X.n/

2 / → WY.X1; X2/ with respect to Hausdorff
topology. The setsWY.X

.n/
1 ; X.n/

2 / are convex by Lemma2.2(3), Bott-Samelson-Ra¨ıs’
result, and the Hausdorff-Westwick argument. Since the space of compact convex
subsets ofR2 is closed,WY.X1; X2/ is convex.
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