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Abstract

We show that mono-unary algebras have rank at most two and are thus strongly dualizable. We provide an
example of a strong duality for a mono-unary algebra using an alter ego with (partial) operations of arity
at most two. This mono-unary algebra has rank two and generates the same quasivariety as an injective,
hence rank one, mono-unary algebra.
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0. Introduction

Given a finite algebraM , an alter egoof M is a topological structureM with the
discrete topology onM , finitary operations, finitary partial operations and relations
each of which is a subalgebra of an appropriate power ofM .

For eachA in the quasivarietyISP.M /, the dual of A is D.A/ = Hom.A;M /,
viewed as a non-empty topologically closed substructure ofM

A. GivenX a topolog-
ically closed substructure of a power ofM, the dual of X is E.X/ = Hom.X;M/,
the collection of continuous operation preserving maps fromX into M, viewed as a
subalgebra ofM X.

For eachA in the quasivarietyISP.M / there is a natural embeddingeA from A to
the double dualE.D.A// that assigns toa ∈ A the evaluation mapeA.a/ given by

eA.a/.Þ/ = Þ.a/:

An algebraM is dualized byM if this embedding is an isomorphism for allA ∈
ISP.M /. An algebraM is dualizableif there is an alter egoM that dualizesM . A
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subsetX of M S is term-closed(in M S) if for all y ∈ M S \ X there existS-ary term
functions¦; − : M S → M on M that agree onX but not aty. WhenM dualizesM
and every closed substructure of a power ofM is term-closed, we say thatM strongly
dualizesM . These concepts are elaborated on in [1] and [2].

In [8], Willard shows that a finite algebra with finite rank is strongly dualizable
whenever it is dualizable. The definition of rank provided in Section1 is equivalent to
that used in [8]. By definition projections have rank 0. In Section2 we define a type
of homomorphism called a wrap that always has rank 1. Using projections and wraps
we show that all relevant mono-unary homomorphisms have rank at most 2. It follows
that mono-unary algebras have rank at most 2 and are thus strongly dualizable. In the
last section we give an example of two mono-unary algebras, one with rank 2 and the
other with rank 1, that generate the same quasivariety. We provide an alter ego that
gives a strong duality for the rank 2 algebra. The construction of the alter ego would
work for any rooted mono-unary algebra.

1. Definition of rank

Let M be a fixed finite algebra,n a positive integer, and letB be a subalgebra of
M n. Let h ∈ Hom.B;M /, the homomorphisms fromB to M . The notationB V¦ B′

denotes that:B′ is a subalgebra ofM n+k for some finitek; ¦ embedsB in B′ by
repetition of some coordinates; andB ∼= B′. Let h′ = ¦−1 ◦ h be the natural extension
of h to B′. Let B′ ≤ C ≤ D ≤ M n+k. Moreover, assume there existsh+ : D → M
such thath′ lifts to h+. Throughout this paper when we refer to the commuting
diagram in Figure1 we assume the above setup holds.

B V¦ B′ ≤ C ≤ D

M

h
h′

h+

FIGURE 1. BV¦ B′ andB′ ≤ C ≤ D ≤ M n+k.

Let Y ⊆ Hom.D;M /, thenD=Y is defined to be the algebraD=
⋂{kerg | g ∈ Y}

andC=Y is defined to be the algebraC=
⋂{ker.g|C/ | g ∈ Y}. The setY separates

B′ if
⋂{ker.g|B′/ | g ∈ Y} = 0B′. The homomorphismh′ lifts to C=Y if Y separates

B′ and there exists a homomorphism¼ such that the following diagram commutes.

B′ ≤ C

M C=Y

h′

¼
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Given a homomorphismh : B → M , define rank.h/ as follows: rank.h/ ≤ 0 if
and only ifh is a projection. Moreover rank.h/ ≤ Þ if and only if there exists a finite
N such that for all nonnegative integersk, for all subalgebrasD of M n+k, and for all
commuting diagrams like Figure1, whereh′ lifts to D, there existsY ⊆ Hom.D;M /

such that

• |Y| ≤ N;
• h′ lifts to C=Y; and
• rank.g|C/ < Þ for all g ∈ Y.

Further, rank.h/ = Þ if rank.h/ ≤ Þ and it is not true that rank.h/ < Þ. Finally
rank.M / = Þ if for all homomorphismsh from a subalgebra of a finite power ofM
into M , rank.h/ ≤ Þ but they do not all have rank strictly less thanÞ.

2. Ranks of finite mono-unary algebras are finite

Let M = 〈M; f 〉 be a finite mono-unary algebra. Aconnected componentof a
mono-unary algebra is a subalgebraB that is maximal with respect to the property
that for alla;b ∈ B, f m.a/ = f s.b/ for somem; s ≥ 0. For complete details on the
structure of mono-unary algebras see [6, Section 3.2]. The example that we use in
Section3 is illustrated in Figure2.
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FIGURE 2. An algebraM and a subalgebra ofM 3.

Let C be a subalgebra of a finite power ofM and letA be a connected component
of C. Theessential components ofA are the minimum set of connected components of
M that contain³i .A/ for all projections³i . A coreof a connected mono-unary algebra
is a nonempty subalgebra on whichf is a one-to-one function. In a finite, connected
mono-unary algebra the unique core will be of the form{a; f .a/; f 2.a/; : : : ; f k−1.a/}
where f k.a/ = a. An arbitrary finite mono-unary algebra may have several cores.
Thecircumferenceof the connected componentA is circ.A/, the leastk such that for
somea∈ A, f k.a/ = a. That is, the circumference of a finite, connected mono-unary
algebra is the size of the core. Pickx ∈ C such thatx is not in a core butf .x/ is in
a core. The set{y ∈ C | f m.y/ = x for somem ≥ 0} is abranch. For x ∈ C, x is a
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branch elementif x is an element of a branch. Forx a branch element, thecoheight
of x is the greatestk such that there exists ay with f k.y/ = x. For x a core element,
coheight.x/ = ∞.

The following lemma and the definition of wrap provide the motivation for the
concept of essential component.

LEMMA 2.1. LetA be a connected component ofC andM Þ an essential component
of A. Then the circumference ofA is a(positive) integral multiple of the circumference
of M Þ.

For A a connected component inC andM Þ an essential component ofA, to wrap
A aroundM Þ means to define an operationq from A to the core ofM Þ recursively as
follows. Picka ∈ A andd in the core,L, of M Þ. Letq.a/ = d andq. f m.a// = f m.d/.
If q is defined onf .x/ but not defined onx, then letq.x/ ∈ f −1.q. f .x/// ∩ L. Note
f −1.q. f .x/// ∩ L has exactly one element in it. By Lemma2.1, q is well-defined so
by construction,q is a homomorphism whose image isL. The mapq is called awrap.
An example of a wrap is any homomorphism from a core to an essential component
of the core.

LEMMA 2.2. GivenBV¦ B′ ≤ C ≤ M n, at most|B| − 1 projections fromC to M
are required to separateB′.

PROOF. Let Y0 = ∅. Y0 separates no elements so there is one equivalence class of
C=Y0 containing elements fromB′. Given a set of projections,Yi , and two distinct
elementsx; y ∈ B′ that are not separated byYi , let³i +1 be a projection that separates
x andy. Let Yi +1 = Yi ∪ {³i +1}. The set{[a]Yi+1 ∈ C=Yi +1 | a ∈ B′} has at least one
more equivalence class than{[a]Yi

∈ C=Yi | a ∈ B′}. So to obtain|B′| equivalence
classes forB′ in C=Y we need at most|B′| − 1 = |B| − 1 projections.

LEMMA 2.3. Let B be a connected subalgebra of a finite power ofM . Let M Þ be
an essential component ofB. Any wrap ofB into M Þ is a homomorphism of rank≤ 1.

PROOF. Let B ≤ M n andh : B → M Þ be a homomorphism that wrapsB into M Þ.
Let N = |B| − 1. AssumeB V¦ B′ ≤ C ≤ D ≤ M n+k andh′ lifts to D ≤ M n+k as
in the commuting diagram in Figure1. Let Y be enough projections onD so thatY
separatesB′. At most N are required, and they are still projections when restricted
to C. Let A1 be the connected component ofC=Y containing the connected set
{[b]Y | b ∈ B′}.

Let b ∈ B′ and set¼.[b]Y/ = h′.b/. This is well-defined asY separatesB′. Since
h′.B′/ is contained in the core we may extend this to¼ : A1 → M by wrapping. Fix
³i0 ∈ Y and consider[a]Y in C=Y but not inA1. Extend¼ by¼.[a]Y/ = ³i0.a/. By the
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choice of³i0 from Y this extension is well-defined.¼ is a homomorphism that liftsh′

to C=Y andY is a set of projections of size less than or equal toN so rank.h/ ≤ 1.

LEMMA 2.4. Let B1; : : : ;Bt be the disjoint connected components of an algebra
B. Lethi : Bi → M be homomorphisms. Thenh = ⋃

hi is a homomorphism fromB
to M .

LEMMA 2.5. LetB1; : : : ;Bt be the disjoint connected components of an algebraB
that is a subalgebra of a finite product ofM . Lethi : Bi → M be homomorphisms of
rank≤ Þ. Thenh = ⋃

hi is a homomorphism of rank≤ Þ from B to M .

PROOF. Let Ni be the maximum number of homomorphisms of rank less thanÞ

required to show rank.hi / ≤ Þ. Let N = t .t − 1/ + |B| − 1 + ∑t
i =1 Ni . Assume

B ≤ M n andB V¦ B′ ≤ C ≤ D ≤ M n+k as in the commuting diagram in Figure1,
whereh′ lifts by h+ to D ≤ M n+k. Sincehi = h|Bi

andh′
i = h′|B′

i
we let¦i = ¦ |Bi

and we have the commuting diagram

Bi V¦i
B′

i ≤ C ≤ D

M

hi

h′
i

h+

whereh′
i lifts by the sameh+ to D. As rank.hi / ≤ Þ, we may choose a set of

homomorphisms of rank less thanÞ, Yi with |Yi | ≤ Ni whereh′
i lifts to C=Yi by,

say, 
i . There is a setY′ of at most|B| − 1 projections which separatesB′. Let
Y = Y′ ∪ ⋃t

i =1 Yi . We construct
 a lift of h to C=Y using
i .
Let Ci be the connected component inC that containsB′

i and letA = C \ ⋃t
i =1 Ci .

Let � be the natural map fromB′ to C=Y where�.x/ = [x]Y. Define
 : C=Y → M by


 .z/ =
{

i .[x]Yi

/ if ∃x∃i z = [x]Y andx ∈ Ci ;


1.[x]Y1/ otherwise:

We need to show that
 is a well-defined homomorphism and
 ◦ � = h′.
From the inclusion ofY′ in Y it is easy to show that, for allz ∈ C=Y, we have

{x ∈ C | z = [x]Y} ⊆ Ci ∪ A for some 1≤ i ≤ t . Since [x]Y ⊆ [x]Yi
and

[w]Y ⊆ [w]Yi
, if [x]Y = [w]Y then[x]Yi

∩ [w]Yi
6= ∅. This implies[x]Yi

= [w]Yi
so


is well defined. Ifz = [x]Y with f k.x/ ∈ Ci then f k+1.x/ ∈ Ci and

f .
 .z// = f .
 .[x]Y// = f .
i .[x]Yi
// = 
i . f .[x]Yi

// = 
i .[ f .x/]Yi
/

= 
 .[ f .x/]Y/ = 
 . f .[x]Y// = 
 . f .z//:
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A similar argument holds in the other case. Hence
 is a homomorphism. Forx ∈ B′,
x ∈ B′

i for somei , so


 ◦ �.x/ = 
 .[x]Y/ = 
i .[x]Yi
/ = h′

i .x/ = h′.x/:

Thus rank.h/ ≤ Þ.

The following lemma contains the technical details that make the major arguments
in this paper work.

LEMMA 2.6. Let B be a connected subalgebra ofM n and let h : B → M be a
homomorphism. AssumeB V¦ B′ ≤ C ≤ D ≤ M n+k and h′ = h ◦ ¦−1 lifts to D.
Assume also thatY ⊆ Hom.D;M / separatesB′, and, for all branch elementsb ∈ B′,
coheightC=Y.[b]Y/ ≤ coheightM .h

′.b//, thenh′ lifts to C=Y.

PROOF. We construct the homomorphism fromC=Y to M that lifts h′ as follows.
Define X0 = {[b]Y ∈ C=Y : b ∈ B′} and¼0 : X0 → M by ¼0.[b]Y/ = h′.b/. Note
that X0 is a connected subalgebra ofC=Y. ¼0 is well defined becauseY separates
B′; and, by construction,¼0 is a homomorphism. By hypothesis, for allz ∈ X0,
coheightC=Y.z/ ≤ coheightM.¼0.z//. We now construct a chain of subsetsX0 ⊆
X1 ⊆ : : : ⊆ Xt = C=Y and homomorphisms¼i : Xi → M such that¼i |X0 = ¼0 and
for all z ∈ Xi , coheightC=Y.z/ ≤ coheightM.¼i .z//. Given the connected subalgebra
Xi of C=Y containingX0 and a homomorphism¼i : Xi → M such that¼i |X0 = ¼0,
and such that, for allz ∈ Xi , coheightC=Y.z/ ≤ coheightM.¼i .z//, constructXi +1 and
¼i +1 : Xi +1 → M as follows. Let

Xi +1 = Xi ∪ {z ∈ C=Y | f .z/ ∈ Xi }:
Define¼i +1.z/ by considering the following three mutually exclusive and exhaustive
cases.

Case I. Ifz ∈ Xi , then¼i +1.z/ = ¼i .z/.
Case II. If z 6∈ Xi but ¼i . f .z// is in a coreL, then f −1.¼i . f .z/// ∩ L =

{ f circ.L/−1.¼i . f .z///}. Let¼i +1.z/ = f circ.L/−1.¼i . f .z///. Since f .z/ ∈ Xi ,

f .¼i +1.z// = f circ.L/.¼i . f .z/// = ¼i . f .z// = ¼i +1. f .z//:

Case III.z 6∈ Xi and¼i . f .z// is a branch element such that

1 ≤ coheightC=Y. f .z// ≤ coheightM .¼i . f .z///:

Pickv ∈ M such thatf .v/ = ¼i . f .z//and coheightM.v/ is maximal. Let¼i +1.z/ = v.
Then

coheightC=Y.z/ ≤ coheightC=Y. f .z// − 1 ≤ coheightM.¼i . f .z/// − 1

= coheightM .v/ = coheightM.¼i +1.z//:
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We have f .¼i +1.z// = f .v/ = ¼i . f .z// = ¼i +1. f .z//. Thus¼i +1 : Xi +1 → M is a
homomorphism satisfying the same properties as¼i . For somes, Xs is maximal and
hence a connected component ofC=Y. It is easy to check thatC=Y ∈ ISP.M /. By
Lemma2.4we may extend¼s to a homomorphism on all ofC=Y by wrapping each
componentCÞ, disjoint fromXs, onto an essential component ofCÞ. By construction
¼s lifts h′ to C=Y.

Figure3 shows an example where factoring over any setY of two or fewer pro-
jections would result in the coheight of the equivalence class of the elementaaa
being 1 while the coheight ofaaa itself is 0, invalidating one of the hypotheses of
Lemma2.6. Adding to the setY a homomorphism that forces the equivalence class
of aaa to be a singleton would prevent this situation from occurring. We now define
such homomorphisms.
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FIGURE 3. Example illustrating the need for singleton equivalence classes to maintain coheight.

Let B ≤ M n. For a branch elementb = .b1 : : : ;bn/ ∈ B, we now wish to construct
a homomorphism,gb : B → M , which has rank less than or equal to 1. LetA1 be the
connected component ofB containingb. Picku in an essential component,M Þ, of A1

such that coheightM .u/ is finite and maximal over all elements in essential components
of A1. Let t = coheightB.b/. Note f .u/ is in the core ofMÞ and

t = coheightB.b/ ≤ min{coheightM.bi / | 1 ≤ i ≤ n}
≤ max{coheightM .a/ | a is a branch element in any

essential component ofA1}
= coheightM .u/:

The first inequality holds because any element ofB has a pre-image only if each
coordinate has a pre-image. So we may choosev ∈ M Þ with f t.v/ = u. Define
gb.b/ = u. For anyx in B and anys with 1 ≤ s ≤ t , where f s.x/ = b, define
gb.x/ = f t−s.v/. Wrap the remaining elements ofA1around the core ofM Þ specifying
gb. f .b// = f .u/. By Lemma2.4, we may extendgb by wrapping each connected
componentA2, distinct fromA1, around an essential component ofA2. By construction
gb is a homomorphism whose image contains one component with a single branch
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and, possibly, some cores. In addition, forb ∈ B, we haveg−1
b .gb.b// = {b} so the

equivalence class ofb in B={gb} is a singleton. Thus the coheight ofbdoes not increase
when we factorB over a set of homomorphisms includinggb. The significance of this
is found in the next two lemmas.

LEMMA 2.7. For b a branch element ofB, rank.gb/ ≤ 1.

PROOF. Since gb is a wrapping on all but one component, by Lemma2.3 and
Lemma2.5, we may assume without loss of generality thatB is a connected com-
ponent. AssumeD ≤ M n+k, g′

b = gb ◦ ¦−1 lifts to D, and the following diagram
commutes.

B V¦ B′ ≤ C ≤ D

M

gb

g′
b

Let Y = {³ j | j ∈ J} be a set of projections that separatesB′. By Lemma2.2we may
assume|Y| ≤ |B′| − 1. The natural map embedsB′ in C=Y asY separatesB′. We
will use Lemma2.6showg′

b lifts to C=Y.
Recall g′

b.¦ .b// = gb.b/ lies in an essential component ofB and was chosen
such that coheightM .gb.b// is maximal over all essential components ofB, which
are exactly the essential components ofB′. For all branch elementsa ∈ B′, either
coheightM.g

′
b.a// = ∞ or for some finites ≥ 0, f s.¦−1.a// = b. We only need to

consider the latter case.

coheightC=Y.[a]Y/ ≤ min{coheightM .³ j .a// | j ∈ J} ≤ coheightM.gb.b//

= coheightM.g
′
b.¦ .b/// = coheightM .g

′
b.a//+ s:

The first inequality holds as an element has a pre-image only ifeach coordinate has a
pre-image. The second inequality holds because for alli , the projection³i .a/ is in an
essential component ofB′. Finally, since f s.¦−1.a// = b, the last equality holds by
the definition ofgb. Thus, by Lemma2.6, g′

b lifts to C=Y.

LEMMA 2.8. LetB ≤ M n andh : B → M be a homomorphism; thenrank.h/ ≤ 2.

PROOF. By Lemma2.5, we may assume thatB is connected. AssumeBV¦ B′ ≤
C ≤ D ≤ M n+k andh′ = h ◦ ¦−1 lifts to D ≤ M n+k as in the commuting diagram
in Figure1. By Lemma2.2we may choose a set of projectionsY1 from D to M that
separatesB′ such thatY1 has size at most|B| − 1. Let

Y2 = {gb : D → M | b is a branch element ofB′ }:
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Define Y = Y1 ∪ Y2 and let N = .|B| − 1/ + |B|. Then |Y| ≤ N. For Þ ∈ Y,
rank.Þ|C/ ≤ 1 as eitherÞ|C is a projection or isgb|C : C → M for someb ∈ B′ ≤ C.
SinceY separates points ofB′, the latter embeds naturally inC=Y.

For every branch elementb ∈ B′, the inclusion ofgb in Y forces[b]Y = {b}.
This means coheightC=Y.[b]Y/ = coheightC.b/. Sinceh′ lifts to C, coheightC.b/ ≤
coheightM.h

′.b//. Thus coheightC=Y.[b]Y/ ≤ coheightM.h
′.b//. By Lemma2.6, h′

lifts to C=Y.

THEOREM 2.9. Finite mono-unary algebras are strongly dualizable.

PROOF. In [7], Pitkethly shows that finite mono-unary algebras are dualizable. In
[8], Willard shows that dualizable algebraswith finite rank are strongly dualizable.

3. Examples

Consider the mono-unary algebra,M , with four elements{0;a;b; c}, wheref .c/ =
a, f .a/ = f .b/ = f .0/ = 0. This algebra, found by R. Willard, was previously the
only known algebra with rank 2. In fact, there are still no known algebras with finite
rank larger than 2. Here we illustrate thatM has rank 2 and construct an alter ego
that provides a strong duality. This can, in fact, be done for any finite, mono-unary
algebra with core a single element.

Let B = {0;a}. Consider the homomorphismh : B → M given by h.a/ = b
andh.0/ = 0. Let N ≥ 1. Let D = M N+1 \ {ĉ}, whereĉ is the element.c; : : : ; c/
and letB V¦ B′ ≤ D. Thenh′, the natural extension ofh to B′, lifts to D. Neither
â = .a; : : : ;a/ has a pre-image inD nor doesh′.â/ have a pre-image inM . Let Y
be a collection ofN or fewer projections, then[â]Y has a pre-image inD=Y. Thush′

does not lift toD=Y. (See the example illustrated in Figure3.) In order forh′ to lift to
D=Y, Y must have eitherk + 1 projections or a non-projection. So rank.h/ 
 1. By
Lemma2.8 rank.h/ = 2. A similar argument works for any connected mono-unary
algebra that has two branches of different heights. Thus there are many mono-unary
algebras of rank 2.

A relation onM is algebraicif it is a subalgebra of a finite power ofM viewed as
a relation. A (partial) operationh is algebraicif it is a homomorphismh : B → M ,
whereB is a (subalgebra of a) finite power ofM . LetP be a set of algebraic
operations and algebraic partial operations onM . The set of algebraic operations
and partial operations onM generated byP using projections, composition, and
restriction of domain is called theclosureof P . If the closure ofP is all finitary
algebraic and partial algebraic operations onM then we sayP generates the finitary
algebraic operations onM . In order to show that the alter ego,M = 〈M ;P; − 〉,
where− is the discrete topology, strongly dualizesM it is sufficient to know that
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M is strongly dualizable and to then show thatP generates the finitary algebraic
operations onM (see [1], page 282). By Theorem2.9, M is strongly dualizable. We
now explicitly construct a setP of algebraic operations and partial operations of arity
at most 2 that generates the finitary algebraic operations onM . That is, we construct
an alter ego forM that strongly dualizesM .

The partial order defined by 0≤ a ≤ c and 0 ≤ b induces a semilattice meet
operation,∧, which is a homomorphism fromM 2 to M . The join operation,∨,
defined by the linear ordering 0≤ b ≤ a ≤ c is also a homomorphism fromM 2 to
M . Let B ≤ M n. Every homomorphismh : B → M is defined by its behaviour on
the branches ofM n so it will be sufficient to have inP homomorphisms that behave
in a fixed way on a particular branch and are 0 elsewhere. We then may use the join
operation to buildh. We now define these branch homomorphisms onM 2.

For v̄ ∈ M 2 \ {.0;0/}, definega
v̄ : M 2 → M by

ga
v̄ .x/ =




c if x ∈ f −1.v̄/;

a if x = v̄;

0 otherwise:

Let 0be the constant valued homomorphism fromM to M with value 0 and define
the homomorphism� : 〈{0;a;b}; f 〉 → M by �.a/ = b and�.0/ = �.b/ = 0. We
now show that the set of homomorphisms

P = {∧;∨;0; �} ∪ {ga
v̄ | v̄ ∈ M 2 \ {.0;0/}}

generates the algebraic operations ofM . It will follow that the alter egoM =
〈M ;P; − 〉, where− is the discrete topology, strongly dualizesM .

For a branch elementū ∈ M n we construct, in the closure ofP , all of the algebraic
operations and maximal algebraic partial operations that are nonzero on the branch of
ū and are zero elsewhere. For eachs ∈ M , define

Is = {i | 1 ≤ i ≤ n; ³i .ū/ = s}:
SinceIa ∪ Ib ∪ Ic is nonempty, we can defineGa

ū : M n → M in the closure ofP by

Ga
ū.x/ =

∧
{ ga

.s;t/.³i .x/; ³ j .x// | i ∈ Is; j ∈ I t and.s; t/ ∈ M2 \ {.0;0/} };
and we have

Ga
ū.x/ =




c if x ∈ f −1.ū/;

a if x = ū;

0 otherwise;
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for all x ∈ M n. If Ic is nonempty, defineGc
ū : M n → M by Gc

ū = Ga
f .ū/. Then, for all

x ∈ M n,

Gc
ū.x/ =




c if x ∈ f −1. f .ū//;

a if x = f .ū/;

0 otherwise:

We now defineBū = Mn \ f −1.ū/ andGb
ū : Bū → M by Gb

ū = � ◦ Ga
ū|Bū

, so for all
x ∈ Bū

Gb
ū.x/ =

{
b if x = ū;

0 otherwise:

Finally, for all ū ∈ M n defineG0
ū : M n → M by G0

ū = 0.

LEMMA 3.1. Let h : B → M be a homomorphism, whereB ≤ M n. Thenh =∨
ū∈B Gh.ū/

ū |B, and thereforeh is in the closure ofP .

PROOF. SinceGc
ū = Ga

f .ū/, for all ū; w̄ 6= 0̂ in B eitherGh.ū/
ū = Gh.w̄/

w̄ or ū andw̄ are
in different branches. In the latter case, for allx, at least one ofGh.ū/

ū .x/ andGh.w̄/
w̄ .x/

is 0. Thus forx ∈ B, we have{Gh.ū/
ū .x/ | ū ∈ B} = {0;h.x/} and

∨
ū∈B Gh.ū/

ū .x/ is
well-defined and equalsh.x/.

Thus every algebraic operation and partial operation onM is in the closure ofP
soM strongly dualizesM .

Define the algebraL to have universe{0;a;b; c;d} with a unary operationf
defined as followsf .c/ = a, f .a/ = 0, f .d/ = b, f .b/ = 0, and f .0/ = 0.

sd
A
AU
sb
A
AU

s c
�
��
sa
�
��
s0

� �

�

6

FIGURE 4. The algebraL .

Since the height of every maximal branch ofL is 2,L is injective in the quasivariety
it generates. That is, for every pair of algebrasB ≤ C in ISP.L/, every homomorphism
h : B → L can be lifted toC. As injective algebras have rank 1, we have rank.L/ = 1.

Note thatL ∈ SP.M / andM ∈ SP.L/ so they generate the same quasivariety. Thus
a quasivariety can have generators with different ranks. This contrasts with duality
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and strong duality, as two algebras that generate the same quasivariety are either both
(strongly) dualizable or both not (strongly) dualizable. See [4] and [3].

In [5] we give an example of a bi-unary algebra with infinite rank that is dualizable
but not fully dualizable. Hence one remaining open problem is to determine if an
algebra with finite rank greater than 2 exists.

The author wishes to thank the anonymous referee, in particular for the simplifica-
tion of the presentation of the 4-element example, and David Casperson and Hilary
Priestley for their helpful comments.
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