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Abstract

We show that mono-unary algebras have rank at most two and are thus strongly dualizable. We provide at
example of a strong duality for a mono-unary algebra using an alter ego with (partial) operations of arity
at most two. This mono-unary algebra has rank two and generates the same quasivariety as an injective
hence rank one, mono-unary algebra.
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0. Introduction

Given a finite algebrdM, analter egoof M is a topological structuré with the
discrete topology oM, finitary operations, finitary partial operations and relations
each of which is a subalgebra of an appropriate powé# of

For eachA in the quasivarietySP(M), thedual of A is D(A) = Hom(A, M),
viewed as a non-empty topologically closed substructufd 6f GivenX a topolog-
ically closed substructure of a power bf, the dual of X is E(X) = Hom(X, M),
the collection of continuous operation preserving maps fomto M, viewed as a
subalgebra oM *.

For eachA in the quasivarietySP(M) there is a natural embeddiieg from A to
the double duak(D(A)) that assigns ta € A the evaluation mapa(a) given by

e (@)(@) = a(a).

An algebraM is dualized byM if this embedding is an isomorphism for &l e
ISP(M). An algebraM is dualizableif there is an alter eg® that dualizesvi. A
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subsetX of MS is term-closedin M®) if for all y € MS\ X there existS-ary term
functionso, T : MS — M onM that agree orX but not aty. WhenM dualizesM
and every closed substructure of a powelbis term-closed, we say thid strongly
dualizesM. These concepts are elaborated onlirajnd [2].

In [8], Willard shows that a finite algebra with finite rank is strongly dualizable
whenever it is dualizable. The definition of rank provided in Secti@equivalent to
that used in§]. By definition projections have rank 0. In Sectidnve define a type
of homomorphism called a wrap that always has rank 1. Using projections and wraps
we show that all relevant mono-unary homomorphisms have rank at most 2. It follows
that mono-unary algebras have rank at most 2 and are thus strongly dualizable. In the
last section we give an example of two mono-unary algebras, one with rank 2 and the
other with rank 1, that generate the same quasivariety. We provide an alter ego tha
gives a strong duality for the rank 2 algebra. The construction of the alter ego would
work for any rooted mono-unary algebra.

1. Definition of rank

Let M be a fixed finite algebray a positive integer, and |d8 be a subalgebra of
M". Leth e Hom(B, M), the homomorphisms frof to M. The notatiorB =, B’
denotes that:B' is a subalgebra of"* for some finitek; o embedsB in B’ by
repetition of some coordinates; aBd= B'. Leth’ = oo h be the natural extension
of htoB'. LetB’ < C < D < M™¥. Moreover, assume there exi$ts : D — M
such thath’ lifts to h™. Throughout this paper when we refer to the commuting
diagram in Figurel we assume the above setup holds.

B =, B < C < D

FIGUREL. B=, B’andB’ < C < D < Mk,

LetY € Hom(D, M), thenD/Y is defined to be the algebBy (\{kerg | g € Y}
andC/Y is defined to be the algeby/ (\{ker(glc) | g € Y}. The setY separates
B if (N{ker(glg) | g € Y} = 0g. The homomorphism' lifts to C/Y if Y separates
B’ and there exists a homomorphignsuch that the following diagram commutes.
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Given a homomorphisrh : B — M, define rankh) as follows: rankh) < O if
and only ifh is a projection. Moreover rafik) < « if and only if there exists a finite
N such that for all nonnegative integéesfor all subalgebra® of M™, and for all
commuting diagrams like Figurke whereh'’ lifts to D, there exist&Y € Hom(D, M)
such that

o [Y[<N;
e N liftsto C/Y; and
e rank(glc) <aforallge.

Further, rankh) = « if rank(h) < « and it is not true that rark) < «. Finally
rankM) = « if for all homomorphisms from a subalgebra of a finite power bf
into M, rank(h) < « but they do not all have rank strictly less than

2. Ranks of finite mono-unary algebras are finite

LetM = (M, f) be a finite mono-unary algebra. @nnected componenf a
mono-unary algebra is a subalgel@ahat is maximal with respect to the property
that for alla, b € B, f™(a) = f°(b) for somem, s > 0. For complete details on the
structure of mono-unary algebras ség $ection 3.2]. The example that we use in
Section3 is illustrated in Figure.
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FIGURE 2. An algebravl and a subalgebra o3,

Let C be a subalgebra of a finite powerMf and letA be a connected component
of C. Theessential componentsAfare the minimum set of connected components of
M that containg; (A) for all projectionsr;. A coreof a connected mono-unary algebra
is a nonempty subalgebra on whi¢hs a one-to-one function. In a finite, connected
mono-unary algebra the unique core will be of the fganf (a), f?(a), ..., f*<(a)}
where f¥(a) = a An arbitrary finite mono-unary algebra may have several cores.
The circumferencef the connected componeftis circ(A), the leask such that for
someac A, fk(a) = a Thatis, the circumference of a finite, connected mono-unary
algebra is the size of the core. Pigke C such thatx is not in a core buff (x) is in
acore. The sefty € C | f™(y) = x for somem > 0} is abranch Forx € C, x isa
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branch elemenif x is an element of a branch. Fgra branch element, theoheight
of x is the greatest such that there existsyawith f¥(y) = x. Forx a core element,
coheightx) = oc.

The following lemma and the definition of wrap provide the motivation for the
concept of essential component.

LEMMA 2.1. LetA be a connected component@©fandM, an essential component
of A. Thenthe circumference Afis a(positive) integral multiple of the circumference
of M,.

For A a connected component@andM, an essential component Af to wrap
A aroundM, means to define an operatiqrirom A to the core oM, recursively as
follows. Picka e A anddinthe coreL, of M,. Letq(a = dandq(f™(a) = f™(d).
If q is defined onf (x) but not defined o, then letq(x) € f~1(q(f(x))) N L. Note
f~1(q(f (x))) N L has exactly one elementin it. By Lemi®4d, q is well-defined so
by constructiong is a homomorphism whose imagelis The map is called avrap.
An example of a wrap is any homomorphism from a core to an essential component
of the core.

LEMMA 2.2. GivenB =, B’ < C < M", at most/B| — 1 projections fronC to M
are required to separatB'.

PrROOF. LetY, = @. Y, separates no elements so there is one equivalence class of
C/Y, containing elements frorB’. Given a set of projectiong;, and two distinct
elementx, y € B’ that are not separated by, let; ., be a projection that separates
x andy. LetYi;; =Y U{m}. The sef[aly,, € C/Yi;1 | ac B’} has at least one
more equivalence class thdaly, € C/Y; | a € B’}. So to obtain|B’| equivalence
classes foB' in C/Y we need at mogB’| — 1 = |B| — 1 projections. O

LEMMA 2.3. Let B be a connected subalgebra of a finite powehMof LetM, be
an essential componentBf Any wrap oB into M, is a homomorphism of rank 1.

PrROOF. LetB < M"andh : B — M, be a homomorphism that wrapsinto M,,.
LetN = |B] — 1. AssumeB =, B' < C < D < M™* andh’ lifts to D < M"** as
in the commuting diagram in Figure LetY be enough projections dn so thatY
separate®’. At mostN are required, and they are still projections when restricted
to C. Let A; be the connected component Gf Y containing the connected set
{lbly | be B'}.

Let b € B’ and setu([bly) = h'(b). This is well-defined a¥ separateB’. Since
h'(B’) is contained in the core we may extend thiito A; — M by wrapping. Fix
7, € Y and considefaly in C/Y but notinA;. Extendu by n([aly) = 7, (a). By the
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choice ofr;, fromY this extension is well-definegk is a homomorphism that lifts’
to C/Y andY is a set of projections of size less than or equateo rankh) < 1. O

LEMMA 2.4. LetBy, ... , B, be the disjoint connected components of an algebra
B. Leth; : B; = M be homomorphisms. Thén= |_J h; is a homomorphism frorB
toM.

LEMMA 2.5. LetBy, ... , B, be the disjoint connected components of an algé&bra
that is a subalgebra of a finite product bf. Leth; : B; — M be homomorphisms of
rank < «. Thenh = [ Jh; is a homomorphism of rank « fromB to M.

ProOOF. Let N; be the maximum number of homomorphisms of rank less than
required to show rantk;) < «. LetN =t(t —1)+|B| — 1+ Zle N;. Assume
B <M"andB =, B' < C < D < M™*as in the commuting diagram in Figute
whereh' lifts by h* to D < M™¥*, Sinceh; = h|g andh] = hg we leto; = olg,
and we have the commuting diagram

B =, B < C < D

whereh! lifts by the sameh* to D. As rankh;) < «, we may choose a set of
homomorphisms of rank less than Y; with |Y;| < N; whereh’ lifts to C/Y; by,
say,y;. There is a se¥’ of at most|B| — 1 projections which separat&s. Let
Y =Y UlJ_,Yi. We construcy a lift of hto C/Y usingy;.

LetC; be the connected componeniGrthat containg; and letA = C\ | J:_, C;.
Let( be the natural map fro®' to C/Y wheret(x) = [X]y. Definey : C/Y — M by

2 = vi([xly) if 3x3i z = [x]y andx € C;;
e y1([X]y,) otherwise

We need to show that is a well-defined homomorphism apd ¢ = h'.
From the inclusion ofY” in Y it is easy to show that, for af € C/Y, we have
{x e C|z=[xly} € C UAforsome 1< i <t. Since[x]y € [x]y and

[wly C [wly, if [X]y = [w]y then[X]y, N [w]y, # @. This implies[x]y, = [w]y, SOy
is well defined. Ifz = [x]y with fX(x) e C; then f**1(x) € C; and

f(y (@) = f(r(xlv) = f X)) = n(F (X)) = n FOIv)
= y((FOly) =y (f(xly) =y (f(2).
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A similar argument holds in the other case. Hepde a homomorphism. Fot € B,
X € B; for somei, so

y o t(X) = y([Xly) = ni([X]ly) = h{(X) = h'(x).
Thus rankh) < a. O

The following lemma contains the technical details that make the major arguments
in this paper work.

LEMMA 2.6. Let B be a connected subalgebra bf" and leth : B — M be a
homomorphism. Assun2=, B' < C <D < M™¥andh’ = ho o1 lifts to D.
Assume also that € Hom(D, M) separate®’, and, for all branch elementsec B/,
coheight,, ([bly) < coheighy, (h'(b)), thenh' lifts to C/Y.

PrROOF. We construct the homomorphism froBy Y to M that lifts h” as follows.
DefineXo = {[bly € C/Y : be B’} andug : Xg — M by uo([bly) = h'(b). Note
that X, is a connected subalgebra®f Y. u, is well defined becausé separates
B’; and, by constructiony, is a homomorphism. By hypothesis, for alle X,,
coheight,(2) < coheighf,(10(2)). We now construct a chain of subseXg <
X1 € ... € X, =C/Y and homomorphismg; : X; — M such thafu;|x, = no and
forall z € X;, coheight, (2) < coheighf, (11i(2)). Given the connected subalgebra
X; of C/Y containingX, and a homomorphism; : X; — M such thaiu;|x, = o,
and such that, for alt € X;, coheight,, (2) < coheighf, (i (2)), constructX;; and
Wiv1 : Xiy1 — M as follows. Let

Xi+1=Xi U{ZEC/Y' f(Z)E X|}

Defineu; 1(2) by considering the following three mutually exclusive and exhaustive
cases.
Case I. Ifz € X;, thenui;1(2) = u;i(2).
Case Il. Ifz ¢ X; but u;(f(2) is in a coreL, then f~2(u;i(f(2)) NL =
{Fe O (F(2))). Letpia(z) = 901 (f(2))). Sincef (2) € X;,
f(i:1(2) = F°C i (£(2)) = wi(F(2) = wia(f(2).

Case lll.z ¢ X; andu;(f(2)) is a branch element such that

1 < coheight,y (f (2)) < coheighy, (i (f(2)).

Pickv € M suchthatf (v) = u;(f (2)) and coheighf(v) is maximal. Lefu; 1(2) = v.
Then

coheight (z) < coheight,,(f(2)) — 1 < coheighf;(ui (f(2))) —1
= coheight, (v) = coheight, (14i,1(2)).
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We havef (1i1(2) = f(v) = wi(f(2)) = wia(f(2). Thuspiyi: X > Misa
homomorphism satisfying the same propertiegasd=or somes, X, is maximal and
hence a connected componeni@fY. Itis easy to check tha/Y € ISP(M). By
Lemma2.4we may extendss to a homomorphism on all &&/Y by wrapping each
component,, disjoint from Xg, onto an essential component@f. By construction
wus lifts h"to C/Y. O

Figure 3 shows an example where factoring over anyetf two or fewer pro-
jections would result in the coheight of the equivalence class of the elemzent
being 1 while the coheight adaa itself is 0, invalidating one of the hypotheses of
LemmaZ2.6. Adding to the seYY a homomorphism that forces the equivalence class
of aaato be a singleton would prevent this situation from occurring. We now define
such homomorphisms.
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FIGURE 3. Example illustrating the need for singleton equivalence classes to maintain coheight.

LetB < M". For abranchelemet= (b, ... , b, € B, we now wish to construct
a homomorphismg, : B — M, which has rank less than or equal to 1. Betbe the
connected component Bfcontainingb. Pick uin an essential componei,,, of A,
such that coheight(u) is finite and maximal over all elements in essential components
of A;. Lett = coheight(b). Note f (u) is in the core oM, and

t = coheight(b) < min{coheight,(b) |1 <i <n}

< max{coheight, (8 | a is a branch elementin any
essential component éf;}

= coheight, (u).

The first inequality holds écause any element & has a pre-image only if each
coordinate has a pre-image. So we may choose M, with f'(v) = u. Define

Op(b) = u. For anyx in B and anys with 1 < s < t, where f5(x) = b, define

Or(X) = f'75(v). Wrapthe remaining elementsAfaround the core dfl,, specifying

op(f (b)) = f(u). By Lemma2.4, we may extendy, by wrapping each connected
componenA,, distinct fromA,, around an essential componengef By construction

0y is @ homomorphism whose image contains one component with a single branch
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and, possibly, some cores. In addition, foe B, we haveg,*(gy(b)) = {b} so the
equivalence class d@fin B/{g,} is a singleton. Thus the coheightidloes not increase
when we factoB over a set of homomorphisms includigg The significance of this
is found in the next two lemmas.

LEMMA 2.7. For ba branch element oB, rank(g,) < 1.

PROOF. Sinceg, is a wrapping on all but one component, by Lemga and
LemmaZ2.5 we may assume without loss of generality tBais a connected com-
ponent. Assum® < M"™¥ g, = g, 0 o~ lifts to D, and the following diagram
commutes.

LetY = {r; | j € J} be a set of projections that separaBesBy Lemma2.2we may
assumdY| < |B’| — 1. The natural map embe@s in C/Y asY separate8’. We
will use Lemma2.6 showg; liftsto C/Y.

Recall g,(o (b)) = gy(b) lies in an essential component Bf and was chosen
such that coheight(g,(b)) is maximal over all essential componentsBfwhich
are exactly the essential componentsBaf For all branch elements € B’, either
coheight, (g;,(8) = oo or for some finites > 0, f$(c~*(a) = b. We only need to
consider the latter case.

coheight v ([aly) < min{coheight, (;(8) | j € J} < coheighf, (gy(b))
= coheight, (g;(o (b))) = coheighy, (g,(a) + s.
The first inequality holds as an element has a pre-image oebadh coordinate has a
pre-image. The second inequality holaschuse for all, the projectionr; () is in an

essential component & . Finally, sincefs(oc~1(a) = b, the last equality holds by
the definition ofg,. Thus, by Lemma.6, g; liftsto C/Y. O

LEMMA 2.8. LetB < M"andh : B — M be a homomorphism; theankh) < 2.

PrOOF. By Lemma2.5 we may assume th&is connected. Assun@ =, B’ <
C <D <M™*andh’ = hoo!liftsto D < M™* as in the commuting diagram
in Figurel. By Lemma2.2we may choose a set of projectiovisfrom D to M that
separateB’ such thaty; has size at mogB| — 1. Let

Y, ={gy: D — M | bis a branch element @&’ }.
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DefineY = Y; UY, and letN = (|B| — 1) + |B|. Then|Y| < N. Fora €Y,
rank(x|c) < 1 as eitheix|c is a projection or ig|c : C — M forsomeb e B’ < C.
SinceY separates points &, the latter embeds naturally @/Y.

For every branch elemertt € B, the inclusion ofg, in Y forces[bly = {b}.
This means coheight, ([bly) = coheight(b). Sinceh’ lifts to C, coheight(b) <
coheighy, (h'(b)). Thus coheight, ([bly) < coheighf,(h'(b)). By Lemma2.6, h’
liftsto C/Y. O

THEOREM 2.9. Finite mono-unary algebras are strongly dualizable.

PrOOF. In [7], Pitkethly shows that finite mono-unary algebras are dualizable. In
[8], Willard shows that dualizable algebras with finite rank are strongly dualizafle.

3. Examples

Consider the mono-unary algebké4, with four elements0, a, b, ¢}, wheref (¢) =
a, f(a) = f(b) = f(0) = 0. This algebra, found by R. Willard, was previously the
only known algebra with rank 2. In fact, there are still no known algebras with finite
rank larger than 2. Here we illustrate thdthas rank 2 and construct an alter ego
that provides a strong duality. This can, in fact, be done for any finite, mono-unary
algebra with core a single element.

Let B = {0,a}. Consider the homomorphisim: B — M given byh(a) = b
andh(0) = 0. LetN > 1. LetD = MN*1\ {¢}, where¢ is the elementc, ... , c)
and letB =, B’ < D. Thenh’, the natural extension df to B’, lifts to D. Neither
a=(a,...,a) has apre-image iD nor doesh'(d) have a pre-image iM. LetY
be a collection oN or fewer projections, thefé]y has a pre-image iD/Y. Thush’
does not lifttoD/Y. (See the example illustrated in Figug:¢ In order forh’ to lift to
D/Y,Y must have eithek + 1 projections or a non-projection. So rahk £ 1. By
LemmaZ2.8rankh) = 2. A similar argument works for any connected mono-unary
algebra that has two branches of different heights. Thus there are many mono-unar
algebras of rank 2.

A relation onM is algebraicif it is a subalgebra of a finite power & viewed as
a relation. A (partial) operatioh is algebraicif it is a homomorphisnh : B — M,
whereB is a (subalgebra of a) finite power 8. Let 22 be a set of algebraic
operations and algebraic partial operationshdn The set of algebraic operations
and partial operations okl generated by%? using projections, composition, and
restriction of domain is called thedosureof 2. If the closure ofZ is all finitary
algebraic and partial algebraic operationd\brthen we say? generates the finitary
algebraic operations oM. In order to show that the alter egd] = (M; 2, 1),
wheret is the discrete topology, strongly dualizk it is sufficient to know that
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M is strongly dualizable and to then show th&t generates the finitary algebraic
operations oM (see [L], page 282). By Theorerd.9, M is strongly dualizable. We
now explicitly construct a se¥” of algebraic operations and partial operations of arity
at most 2 that generates the finitary algebraic operatio omhat is, we construct
an alter ego foM that strongly dualizeM .

The partial order defined by & a < c and 0 < b induces a semilattice meet
operation,A, which is a homomorphism frorM? to M. The join operation,v,
defined by the linear ordering® b < a < cis also a homomorphism froM 2 to
M. LetB < M". Every homomorphismh : B — M is defined by its behaviour on
the branches d1" so it will be sufficient to have i?? homomorphisms that behave
in a fixed way on a particular branch and are 0 elsewhere. We then may use the join
operation to builch. We now define these branch homomorphism#/én

Forv € M?\ {(0, 0)}, defineg? : M? — M by

c ifxe f1v);
ex)=1a if x=1;

0 otherwise

Let O be the constant valued homomorphism fribhto M with value 0 and define
the homomorphism : ({0, a, b}, f) — M by¢(a) = band¢(0) = ¢(b) = 0. We
now show that the set of homomorphisms

P ={A Vv, 0,0} U{g] | 7€ M?\ {(0,0)}}

generates the algebraic operationshbf It will follow that the alter egoM =
(M; 2, 1), wherert is the discrete topology, strongly dualiZds

For a branch elemente M" we construct, in the closure 6P, all of the algebraic
operations and maximal algebraic partial operations that are nonzero on the branch o
0 and are zero elsewhere. For each M, define

ls={i|1<i<nm@)=s}
Sincel, U Iy U |, is nonempty, we can defir@®; : M" — M in the closure of” by
Gi(x) = /\{gé_t)(m (), (X)) |i €ls, j € land(s, t) € M?\ {(0,0)} },
and we have

c ifxe f=10);
Gi(x)={a ifx=q;
0 otherwise
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forall x € M". If I is nonempty, defin&; : M" — M by G¢ = G% ;. Then, for all
X eM",

c ifxe f71(f(@));
Gi(x)=1a if x= f();
0 otherwise

We now defineB; = M"\ f~(0) andGt : By — M by G = ¢ o G2|3,, so for all
X € By

b if x=0u;
0 otherwise

Gl(x) = {

Finally, for alld € M" defineG? : M" — M by G} = 0.

LEMMA 3.1.Leth : B — M be a homomorphism, whei < M". Thenh =
Ve G e, and thereforéh is in the closure of?.

PROOF. SinceG¢ = G2, forall, w # 0inB eitherG]” = G oraandw are
in different branches. In the latter case, fonalhat least one o6 (x) andG™ (x)
is 0. Thus forx € B, we have(G] (x) | G € B} = {0, h()} and\/,_s G (x) is
well-defined and equals(x). O

Thus every algebraic operation and partial operatioiMois in the closure of%
soM strongly dualize$/.

Define the algebrd to have universd0, a, b, ¢, d} with a unary operationf
defined as followsf (c) = a, f(a) =0, f(d) =b, f(b) =0, andf (0) = 0.

FIGURE4. The algebra..

Since the height of every maximal branch.oi 2,L is injective in the quasivariety
itgenerates. Thatis, for every pair of algebiBas CinISP(L), every homomorphism
h: B — L can be lifted tcC. Asinjective algebras have rank 1, we have 1iank= 1.

Note thatl. € SP(M) andM e SP(L) so they generate the same quasivariety. Thus
a quasivariety can have generators with different ranks. This contrasts with duality
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and strong duality, as two algebras that generate the same quasivariety are either bot
(strongly) dualizable or both not (strongly) dualizable. S§expd [3].

In [5] we give an example of a bi-unary algebra with infinite rank that is dualizable
but not fully dualizable. Hence one remaining open problem is to determine if an
algebra with finite rank greater than 2 exists.

The author wishes to thank the anonymous referee, in particular for the simplifica-
tion of the presentation of the 4-element example, and David Casperson and Hilary
Priestley for their helpful comments.
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