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Abstract

In this paper, the variety of three-valued closure algebras, that is, closure algebras with the property that
the open elements form a three-valued Heyting algebra, is investigated. Particularly, the structure of the
finitely generated free objects in this variety is determined.
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1. Introduction and preliminaries

In a paper of paramount importance titled ‘The algebra of topology’, McKinsey and
Tarski [L2] started the investigation of a class of algebraic structures which they
named closure algebras. dosure algebras an algebrdA; v, A, —, V, 0, 1) such
that(A; v, A, —, 0, 1) is a Boolean algebra andis anadditive closure operatothat
is, V is a unary operator oA that satisfies the ‘Kuratowski axioms’, for ] y € A:

1) V(0 =0,

(2) X < V(x),

©)) V(V (X)) = V(x),

(4) V(X Vy) = V(X)VV(y).

Closure algebras have been extensively studied by several authors. Particularly
Blok in an exhaustive and very deep work, developed!jritje general properties of
the lattice of subvarieties of the variety of closure algebras.
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Animportant feature in the structure of a closure algebrais the set of open elements
In a continuation of their work on closure algebras, McKinsey and Tarski showed in
[13] and [14] that the set of open elements of a closure algebra is a Heyting algebra.
Conversely, any Heyting algebra can be embedded as the lattice of open elements c
a closure algebra.

The present paper is devoted to a deeper investigation of a subvariety of the variety
of closure algebras, namely, the variety of three-valued closure algébrésee [1]).

This is the subvariety of those closure algebras such that the set of open elements forr
a three-valued Heyting algebra.

The variety of monadic algebras is the largest variety of closure algebras whose
associated variety of Heyting algebras consists of Boolean algebras; the variety of
‘three-valued closure algebras’ studied in this paper is the variety of closure algebras
whose associated Heyting algebras of open elements belong to the variety generate
by the three-element chain. This last variety is the unique cover in the lattice of
varieties of Heyting algebras of the variety of Boolean Heyting algebras.

When investigating the structure of algebras in a given variety it is of particular
interest to find out what the finitely generated members arél] |Blok devotes a large
part of his work to obtain the closure algebra with one free generator, which shows
the difficulty of the problem (see alsé][and [6]). The main resultin Section 3 is the
determination of the free finitely generated objects in the vaf#éty To this end, a
study of the variety¢'; is carried out, paying particular attention to the determination
of simple and subdirectly irreducible algebras, as well as the characterization of
maximal subalgebras of subdirectly irreducible algebras. We also study the finitely
generated subdirectly irreducible algebras (Section 2).

Throughout this papet, #, 2 and.# will denote the equational classes of
all distributive lattices with 0 and 1, all Boolean algebras, all Heyting algebras and all
monadic Boolean algebras, respectivelyfis a class of similar algebras, the lattice
of congruences of an algebfac 7" is denoted byCon(A). In general, for a variety
7 andA, B € 7', A<y, B means thatA is a ¥’-subalgebra oB. The subalgebra
generated by a paX of A € 7 is denoted by X],. Finally, the free algebra over a
finite posetG in 7" is denoted-, (G).

With the operatorsv and — we can define a new unary operaf@Qr (interior
operatol) by means ofQ(x) = —V(—x), for all x € A. This operator satisfies the
following conditions:

(5) Q) =1,
(6) X > Q(x),
(7) Q(Q(X)) = Q(X),

8 QX AY) = Q(X) A Q(y).
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In addition, it is readily verifiable that the following properties hold:

9) QO =0,
(10) Q(Q(X) v Q(y)) = Q(x) v Q(y),
(11) if x <y then Q(x) < Q(y).

Closure algebras can be defined by means of the equafiptts(@) and in that case,
by definingV(x) = —Q(—x) we obtain the closure operator satisfying equatidhs (
to (4).

The equational class of closure algebras will be denote@ byThese algebras
were named interior algebras by Blok ][ Other authors called them topological
Boolean algebras, but they were named Lewis algebras by Monteiro after the founder
of the S4 logic L1]. We will use the most traditional name of closure algebras, though
we will make use of the interior operatQ.

It is known that%” and.7# are generated by their finite members, but neither of
these two varieties is locally finite ([ 12, 13)]).

If Ae%,thenQ(A) is a(0,1)-sublattice ofA, and it is a Heyting algebra if we
definea — b = Q(—a v b), foreverya, b € A. If b € Q(A), bis said to be open.

Conversely, ifA € # andL is a (0, 1)-sublattice ofA, then there exists a unique
interior operatorQ on A satisfying propertiess) to (8) and such that. = Q(A) if
and only if for everya € A, the set(a] N L has a greatest element. In this case,
Q@) =Max((a]NnL)=\/{xelL:x<a}

It is known that if L € 27, then the latticeCon(L) of congruences ot is
isomorphic to the latticg (L) of all filters of L. If F € §(L), then the congruenake
associated withr is defined by(a, b) € 6 <& aAu=Db A uforsomeu e F.

If A e % andF is afilter in A, F is said to be anpen filterif Q(x) € F whenever
x € F. Itis known ([L3]) that Con(A) is isomorphic to the latticg (A) of all open
filters of A, and it is not difficult to see thgf(A) andF(Q(A)) are isomorphic. So
we have:

THEOREM 1.1 ([6]). Let A € . ThenCon(A) andCon(Q(A)) are isomorphic.

Recall (see]]) that a Heyting algebra is subdirectly irreducible if and only if
L=L;®1 withL; € 5 andL; & 1 is the lattice obtained by adjoining a new 1
to L;.

The following corollary follows immediately from Theorefinl and the above
remark.

COROLLARY 1.2. Let A € . ThenA s subdirectly irreducible if and only Q(A)
is subdirectly irreducible as a Heyting algebra, and hentés subdirectly irreducible
if and only if Q(A) = L; & 1, for someL; € 7.



184 M. Abad and J. P. @z Varela [4]

2. Three-valued closure algebras

In this section we investigate subdirectly irreducible algebras and maximal sub-
algebras of subdirectly irreducible algebras in the vari€ty Recall that a closure
algebraA is said to be three-valued ®(A) is a three-valued Heyting algebra, and
a three-valued Heyting algebra is a Heyting algethan, v, —, 0, 1) such that
b= (—a— b)A((b— a) — b), foreverya,b € A, where—a =a — 0[16].

THEOREM 2.1 ([1, 2, 9]). The variety of three-valued Heyting algebras is generated
by the three-element chain.

The following theorem gives us an equational characterization of three-valued
closure algebras.

THEOREM2.2. Let A € 4. Then,A € %+ if and only if for eveny, a € A, the
following identity holds:

(12) Q(b) = (Q(=Q(@) — Q) A ((Q(b) — Q(a)) — Q(b)).

By a simple application ofalisson’s Lemma (seé()]) we see from Theorerf.1
that the only subdirectly irreducibles in the variety of three-valued Heyting algebras
are, up to isomorphism2, the 2-element chain, angl the 3-element chain (see
also [L6]). Then we can conclude:

THEOREM2.3. Let A € %¥+. A is subdirectly irreducible if and only if either
Q(A) ={0,1} or Q(A) = {0, a, 1}.

Observe thatthe simple algebra&iare the simple monadic Boolean algebiiag.[
As a consequence of Theorélrl we have the following characterization of the
ordered set of prime filters of an algebra in the variety of three-valued Heyting algebras.

THEOREM 2.4 ([16]). Let A be a Heyting algebra. Then the following are equiva-
lent

(@ Als athree-valued Heyting algebra.
(b) Every prime filter ofA is either maximal or minimal, and every prime filter is
contained in at most one maximal prime filter.

A variety 7" has theFraser-Horn Propertyif there are no skew congruences on
any direct product of a finite number of algebras/in that is, for allA;, A, € 7,
everyd € Con(A; x Ay) is a product congruendgk x 6, 6, € Con(A), i =1, 2.
Every congruence-distributive variety has the Fraser-Horn Property. In particular, the
variety%’+ has the Fraser-Horn Property.
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If the congruence lattice of an algebfahas a unique coatom, thekis directly
indecomposable. A variety” has theApple Propertyif the converse holds as well
for all finite algebras; that is, if the finite directly indecomposablef’iare precisely
the finite algebras whose congruence lattices have a unique coatdkris H finite
directly indecomposable algebra #i, then, from Theorem.1, Q(A) is directly
indecomposable as a three-valued Heyting algebra. So, from Thebde@(A) is
of the form 0@ B whereB is a finite Boolean algebra. Thg{Q(A)) has a unique
coatom and s€on(Q(A)), and consequentigon(A), has a unique coatom. Hence
the varietyé'; has the Apple Property.

The Fraser-Horn and Apple Properties, extensively studied]inwill play an
important role in the determination of the free algebra over a finite poset in the
varietyé’s.

2.1. Maximal subalgebras In this subsection we determine the maximal subalge-
bras of the finite subdirectly irreducible algebras.

In the rest of the papea, will denote the only non-trivial open element of any non-
simple subdirectly irreducible algebra. The finite non-simple subdirectly irreducible
algebra withk + | atoms, where there akeatoms preceding andl atoms preceding
—a, will be denoted byBy,. Similarly, the simple monadic Boolean algebra with
k atoms will be denoted b, (or Byo). A, and A_, will be the sets of atoms
precedinga and—a, respectively. So, the set @, ) of atoms ofBy, can be written
At(By)) = AWUA ..

Recall that ifA <1z B, A, B finite, thenA is determined by a partitioR of the
set At(B) of atoms ofB. If s < k andt < | then, identifying isomorphic algebras,
Bst ¢ By,

Next, we characterize maximal subalgebras of finite non-simple subdirectly irre-
ducible three-valued closure algebras.

Let M <¢r By,. Consider two cases.

Caselae M.

LEMMA 2.5. Let M ¢ B, anda € M. M is maximal if and only ifM is a
maximal Boolean subalgebra B .

PrOOF. If M is not maximal as a Boolean subalgebraBgf, then there exists
M’ <4 By, such thatM ¢ M’ andM’ # B,,. Letx € M’; thenQ(x) € {0, a, 1}.
But {0, a,1} € M’, s0Q(x) € M’". HenceM’ <i» By, a contradiction.

The converse is trivial. O

Case2a¢ M. .
Let Py be the partition of AtBy) associated td, Py = ;,_,P},, (s < k+1),
whereP}, are the blocks ofy,.
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LEMMA 2.6. P}, N A, # ¥.

PrOOF. If there would exist a block,, such thatPl, N A, = @, andx; is the atom
of M associated to the blocR},, thenP), € A_, and hence; < —a. So—x > a
and—x # 1. ConsequenthQ(—x) = a € M, a contradiction. O

Observe that iM is a maximal subalgebra 8, witha ¢ M, then[M U{a}] 2 =
[M U {a}]l¢z = By,. In addition,[a]ls = {0,a, —a, 1} is a ¥-subalgebra with
associated partitio’, = {A,, Ay}, and[M U {a}]lx = [M U [a]¢gley = [M U
[al ] s = By, Since the partition associated[d U [a] 2] 5z is the intersection of
Pu andP,, thenforx € At(By,) we have that eithegx} = P}, NA, or{x} = P, NA_..
From this we conclude thaP;, N Ay| < 1 and thatP), N A_,| < 1, thus|P},| < 2.
But if |P},| = 2, then by the previous lemmgR;, N Al = L and|P,, N A 5| = 1. If
[Pl = 1,then|P}, N Ajl = Land|P}, N A_,| = 0.

Let M < By, anda ¢ M. Then we have:

LEMMA 2.7. M is maximal if and only if for each blodR!, the following conditions
are satisfied
i) [PyNAl=1
(iy |P,|=1or|P}| =2
(i) If|P,|=2then|Pl, N A_,| =1

ProOOF. If M is maximal, the conclusion follows from Lemr@g6and the previous
remark.

For the converse, leM’ a subalgebra such thad ¢ M’. Then Py properly
containsPy,. From the hypotheses there exists a bl&ksuch thatP, = Pit U P2,
with P2 € A_,. Let x;, the atom ofM’ associated td®}2. Then,x, < —a, so
—Xiz = aandx, # 1. ThereforeQ(—x,) =a e M’. SoB,, = [M U {a}]¢z € M".
HenceB,, = M’, andM is maximal. O

The following theorem gives us the number of maximal subalgebras of a non-simple
subdirectly irreducible algebra.

THEOREM2.8. Letk > 1,1 > 1 be arbitrary. Then, irBy, there exis(§) maximal
subalgebras isomorphic tBy 4, ('2) maximal subalgebras isomorphic By, ;. If
k > | there exist, = k!/(k — I)! maximal subalgebras isomorphic B.

PrROOF. Letk, | be arbitrary and suppose theate M. Then, by Lemm&.5, the
partition Py hask + | — 1 blocks. That is, there exists a unique bld@k containing
two elements. We claim tha®, < A, or P, € A_,. To see this, suppose that
X =P,NA #0andY = Pj,N A, # . Sincea € M, [MU {a}ly = M.
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X andY are blocks of the partition associated[td U {a}]c. ThenX andY are
blocks of Py, a contradiction. In these conditions it is easy to see that there(§)<ist
partitions determining a maximal subalgebra isomorphiBtq |, and('z) partitions
determining a maximal subalgebra isomorphiBte ;. Fork < |, observe that from
LemmaZ2.7, there are no maximal subalgebrslssuch thata ¢ M. Suppose that
k > 1. From Lemma2.7, if Py is the partition associated to a maximal subalgebra
M such thaia ¢ M, then each block has either a single element (necessarfy)in
or two elements, one of them iA, and the other one i®_,. Then each pdition
defines a one-to-one mappiggrom A_, to A, in the following way: forx € A _,,
g(x) is the elemeny € A, such thaty belongs to the same blodk, asx. Since itis
clear that there arle blocks in Py, it follows that there ar&/,, maximal subalgebras
isomorphic toBy. O

2.2. Finitely generated sibdirectly irreducible algebras Now we are going to
determine the largest simple algebra and the largest non-simple subdirectly irreducible
algebra which are homomorphic images of the free three-valued closure dig&hra
over a given poseB. We need the following results about the free Boolean algebra
over a poset.

DEFINITION 2.9. For a poseG, the Boolean algebf(G) is said to be free ove®
provided the following conditions hold:
(Bl) G € B(G)and[G]gp = B(G).
(B2) Given an order-preserving mappitigrom G to D, with D a Boolean algebra,
there exists a homomorphismfrom B(G) to D such thah[g = f.

The following is a construction d(G) (see [L9]).

For a poseG, consider the sef = 2/°! of all order—preserving mappings froB
into 2. Fori € G, letG; = {f € E suchthatf (i) = 1}. Let B be the field of sets
generated by = (G, : i € G} in Z(E) = 2F (Z(E) = the set of subsets of E). It
can be proved tha@ is the free Boolean algebra over the pdéet {G; : i € G} = G.

THEOREM 2.10. Let G be a finite poset. TheB(G) = 2/2° = 2 (2(©1),

Let B* € ¥t be a subdirectly irreducible algebra generated by a ggsethich is
a homomorphic image d&. Let f : G — G* be an onto order-preserving mapping.
Then f can be extended to a homomorphism of closure algebrag(G) — B*.
Then

T(F(G) =T((Gly) =[G"ly = B".

If B* is simple,B* = [G*] 5. Thus the following theorem holds.
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THEOREM2.11. Let B* € %'+ a simple algebra that is a homomorphic image of
F(G). Then|B*| < 21°l = |IB(G)].

If B*is not simple, therB* = [G* U {a}] 5. Indeed,Q(B*) = {0,a,1} C
[{a} U G*] . HenceB* = [[{a} U G*] zl¢ = [{a} U G*] . So we can conclude
that

2[G*+1]|

1B*| < 2| = |B(G" + 1|,

whereG* + 1 is the cardinal sum of the poset and the 1-element poset.

We show that a non-trivial relation must hold amangnd the elements @&*, that
is, G*U{a} is not a free generating set fBr, if we just consider the Boolean structure
of B*. In other wordsB* # B(G* + {a}), and therefor¢B*| < |B(G* + {a})|. To
see this, first observe thate Q([G*] ). Indeed, suppose thatg Q([G*] ), then
Q([G*] ) = {0, 1} and consequentlyG*] = [[G*] zl¢y = [G*]x = B*. Thus
a ¢ B*, a contradiction. ThereforQ([G*] ») = {0, a, 1}.

LetG* = {—g : g € G*}. Itis known that{G*] = [G* U@]%l. If we put
@* = G* U G*, then every element € [G*] 5z can be written

y=/n\\/z,

i=1zeH;

whereH, € ¢+,
In particular, since € Q([G*] g) it follows that there existx € [G*] g, X # 1,
such thatQ(x) = a. Then

a=Q(X)=Q(/n\Vy)=Z\lQ<Vy).

i=1yeH; yeH;

But a is open meet-irreducible, so= Q('\/,.y X), for someH < %*. Then
(13) a<\/x#1
xeH

LetH*=HU{g eG*:g ¢ H and — g ¢ H}. Then

(14) a<\/x

Itis clear thatifg, € G* then eithelg; € H* or —g; € H*, and, in addition, ik € H*
then—x ¢ H*. HenceH" is a generating set fdG*] .

The above inequalityl@), will allow us to prove thatG* U {a} cannot be a free
generating set foB*, as a Boolean algebra. Indeed,ltet G* U {a} — B(G*) x 2
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be given byh(g) = (g,0), g € G*, andh(a) = (0, 1). Thenh(a) £ \/ h(G), soh
cannot be extended ovB(G* + {a}).

Hence we have thaB*|  2/2"I
following theorem.

= |B(G + 1)|, and consequently, we obtain the

THEOREM2.12. If B* is a non-simple subdirectly irreducible algebra which is a
homomorphic image of the free algel#éG), then|B*| < 2121,

Let us see that the upper bound given in this theorem is the best, that is, that
there exists a non-simple subdirectly irreducible algebra which is generated as closure
algebra by a homomorphic image @fand whose cardinality is the number given in
Theorenm2.12

LetG+1=1{01,0,...,0. U{gn1} be afree generating set fB(G + 1). Let
X = \/,”;1 g. Itis clear thatx is a dual atom. LeB* = B(G + 1)/F, where
F, is the principal filter generated by. Letk : B(G + 1) — B(G + 1)/F;,
the natural homomorphism. Then= k(x) = k(\/["1g) = /"1 k(g). Thus
ViZi K@) = —K(Gns1) = K(—=Gny)-

In B* we consider as a nontrivial open elemant k(—g,,1). LetG, = {k(gy),

K(%), ..., k(g)}. Since\/,g < x, it follows that\/ k(g) < 1. So 1>
Q(VILik(@)) = Q(k(—gn:1)) = a. ThereforeQ(\/[_, k(g)) = a.
Hence, we can conclude thak [G,]¢. Then

B* = [k(G)lgz = [GrU {a}ll = [Gnlg.

So B* is a non-simple subdirectly irreducible algebra with a generatinGgsethich
is ahomomorphicimage @&, and|B*| = 22°"/2 = 22°""I-1_ Then we have proved
the following theorem.

THEOREM 2.13. There exists a non-simple subdirectly irreducible algeBtavhich
is a homomorphic image 6i(G) and|B*| = 22°"-1,

Now, let F, be the open filter generated bye B*. ThenB*/F, is simple and is a
homomorphic image df(G). Then, by Theoreri.11, |B*/F.| < 227, thatis, there
are at most2®!| atoms preceding the open elemarih B*. If h: B* — B*/F,is
the natural homomorphisrh(G*) is a generating set f@*/F, as a Boolean algebra.
In the same way as for non-simple subdirectly irreducible algebras, it can be seen tha
h(G*) is not a free generating set f@*/F,, that is, B*/F, cannot be isomorphic
to the Boolean algebr&(G). Therefore|B*/F,| < 229171, that is, the number of
atoms preceding the elememin a non-simple subdirectly irreducible algebra is at
most|2/¢!| — 1.

If 1, is the principal ideal generated kyin B* andq : B* — B*/I, is the natural
Boolean homomorphism, theq(B*) = [q(G*)]z. Hence|B*/l,| < 22°I. That
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is, there exist at mogR!®!| atoms not preceding the open elemar(preceding the
element-a).

THEOREM 2.14. Let B* be a non-simple subdirectly irreducible algebra which is
a homomorphic image df(G). ThenB* = By, with 1 < k < |2¢l] — 1 and
1 <1 < |2, In addition, for everyl < k < |2¢]| —1and1 < | < |2°]], every
algebraB* = By, is a homomorphic image &f(G).

PrOOF. From the construction d8(G + 1)/F, (x a dual atom), from the previous
theorems and remarks, and sin2é*Y| — 1 = |21 x 2| — 1 = |2®]| — 1+ |21¢|, it
follows that

B(G + l)/Fx = B|2[G]|71,|2[GJ|-

The second part of the theorem is immediate, since every al@gbravith 1 < k <
|26 — 1, 1< < |2°l|, is a%-subalgebra OB| 161 _1, 21| O

Forexample (seél[ page 129, Lemma6.1]),& = {g,}, the subdirectlyirreducible
algebras which are homomorphic image&¢&) are, up to isomorphism, the algebras
listed in the following figure, where the open elements are highlighted. We also
represent the corresponding dual spaces.

O & @O 2D

3. Free algebras over a poset

The aim of this section is to give explicitly the structurerifG) = F¢. (G), the
free algebra over a finite pos@tin the varietys'-.

Since the finitely generated subdirectly irreducible algebr&s-irare finite and
there are only finitely many-generated subdirectly irreducibles for every natural
numbem, it follows that%'; is alocally finite variety. Then the algebFaG) is finite,
and consequently, every meet-irreducible open filigr of F(G) is generated by a
join-irreducible open elemerg.

If 7" is a variety, the variety; generated by the finite simple algebrag/ins the
prime varietyassociated witlt” (see B]).
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In [3, Corollary 7.2], Berman and Blok showed that/ifis a locally finite variety
with the Fraser-Horn and Apple Properties, which, in addition, has the property that
every subalgebra of a finite simple algebra is a product of simple algebras, then the
number of directly indecomposable factor§ef(G) equals that oF, (G). They also
proved (B, Theorem 7.3]) that if a given finite simple algebkas a direct factor of
the free algebra iffg, there exists a directly indecomposable factoF o G) having
A as homomorphic image. These results can be applied to the vé&fietas this
variety has the Fraser-Horn and Apple Properties, and, in addition, every subalgebre
of a finite simple algebra is simple.

The prime varietys'+ is the variety.# of monadic Boolean algebras. Itis known
([17] and [8]) that the free monadic Boolean algelsa (G) is given by

2

Fo© = [[8D,

k=1

where('zf”) is the number of (monadic) epimorphisms fréiy (G) onto By, that is,

the number of (Boolean) epimorphisms fr&@0G) onto By, and|2[G]| is the cardinal
number of the greatest simple monadic algebra generated by a c@y of
So, from B, Corollary 7.5], the algebra(G) has a factorization as

ER o
FG) =[] AL,

k=1

where eachA, has as homomorphic image a factor of the free monadic Boolean
algebraF_, (G).

We will now determine the structure of the factéysof F(G).

Let 7 (Q(F(G))) be the set of join-irreducible elements@{F(G)). Observe that
M, is maximal (minimal) if and only ifp is minimal (maximal) in_# (Q(F(G))). Let
m, 9N respectively denote the set of minimal and maximal elemenig (Q(F(G))).
Then

S (QF(G)) =) C,,

pem

whereC, = {q € #(Q(F(G))) : q > p}. EveryC, looks like the diagram in the

following figure (Theoren?.4):

p
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Then

Q(F(G) = [ ] Ds.

pem

where D, is the distributive lattice such thay (D,) = C,. Thus the elements
p* = \/qECp g are complemented, the complement coincides with the complement in
F(G) and is given by

-pr= \/ o«

qe.Z (QF(GM\GCp

In particular,— p* is open.
We establish the following simple but useful lemma.

LEMMA 3.1. Letx € At(F(G)). Then there existp € _# (Q(F(G))) such that
X< p.

PROOF. Let p € m. If x < ¢ forsomeq € C,, then the lemma holds. Suppose that

X £ q, foreveryq € C,. In particularx £ p*. Thenx < —p* = \/qE/(Q(F(G)))\Cp g.
Sincex is an atom it follows thak < g for someq € ¢ (Q(F(G))) \ C,. O

The above lemma shows that the $et= {At(p*)}pem, Where A(p*) = {X €
At(F(G)) : x < p*}, is a partition of the set AE(G)).

Let Fp. andl .. respectively denote the principal filter and principal ideal generated
by p*. Then we have the following theorem.

THEOREM3.2. F(G) =¢ ]‘[pEm F(G)/Fy =¢ ]‘[pEm [

If p, @ € m are such that, = I, = By, then there exists an automorphisnof
F(G) such thatx(p) = q. Thena(C,) = Cy, thatis,a(p*) = g*, and consequently,
I = lg. Itis not difficult to see that the algebras, 1 < k < |2°!|, are the directly
indecomposable factoss, of F(G). Then

)

2/
THEOREM3.3. F(G) = [T, ' I

Our next objective is to determine the number of elementy Gf).

Let p e Z(Q(F(G))). If p € m, thenF(G)/M, = By and thus, there exist
atoms preceding. If p € 9, thenF(G)/M, = By,. Thus there ar& + | atoms
precedingp. In addition,k of these atoms precede the only elenwgrt m such that

q=p.
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If we putm, = {p € m : F(G)/M, = B,} andMy, = {p € M : F(G)/M, =
By, }, then the number of atoms of the free algebra s

ALFG) = Y |k + > 9l

1<k<|2i61]| 1<k<|201-1| 1<l <[ 20|

From what we have seen above,

[G]
|| = <|2k |>, 1<k=<|[29].

Now, givenk, I, 1 < k < |2¢] — 1, 1 < | < |2°]|, (see Theoren?.14), let
Ep(F(G), By,) be the set of all epimorphisms froR{G) ontoBy, and let AutBy)
be the set of all automorphismsBf,. Then it is readily verifiable that

| Ep(F(G), By)]

15 M| =
(15) [0 | | AULB)|

If h e Aut(By,), thenh is a Boolean automorphism such ttga) = a, and thus
his characterized by the bijectioh$, : A, — A, andh[,  : A, — A_,. Hence

Let us compute now the numerator df5f. LetG = {g,...,0,}. LetG* =
{9;, ..., 0;} beanisomorphic copy @&, andG*+1 = G*+{g;.,}. LetEF (B(G*+
1), By,) denote the set of all Boolean epimorphiskhgrom the free Boolean algebra
B(G* + 1) ontoBy,, such thatH (g, ,) = a.

Consider two cases:

. k <I.

In this case the open elememnbf By, belongs to every maximal subalgebreByf

(see the proof of Theoregh8). Let

¥ Ep(F(G), By)) — Ep'(B(G" + 1), By))

be the mapping defined by (F) = H, whereH is the extension of the mapping
h such thath(g*) = F(g) for everyi # n+ 1 andh(g;,,) = a. We have that
HB(G" + 1) = [H(G" + D]y = [F(G) U ({a}lgg = By, soH is onto and
consequentlyH e Ep'(B(G* + 1), By,). Itis clear thaty is one-to-one. To
see thaty is onto, letH € Ep (B(G* + 1), B,). Observe thaH (G*) € B for
any maximal subalgebr8 of By,. Indeed, if we suppose thad (G*) < B for

B a maximal subalgebra d@,,, then, sincea € B, [H(G*) U {a}] < B. But
By = HB(G* + 1)) = [H(G) U{H(g:, Dy = [H(G") U{a}ly, which is a
contradiction.
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As a consequence we have that(G*)]eo = By .

Now, letF be the extension of the mappirigsuch thatf (g;) = H(g"), 1 <i <n.
ThenF e Ep(F(G), By,) since[H(G*)]¢ = [F(G)ley = By, and it is clear that
¥ (F) = H. Therefore

|ER(F(G), Bl = |EP'(B(G" + 1), Byl

and this is the number of injective functiofis: At(By) — At(B(G* + 1)) such that
f (A) C At(gn1) and f(A_,) € At(—0gn,1), and since Atg,.1) = 2, it follows
that

|2[G]|! |2[G]|!
T (29— ke - Ny

|Ep(F(G), Bx))| = V|2[GJ|,|V|2[GJ|,|(

. k>1.

In this case (see TheoreB) there exist maximal subalgebras8p, which do not
contain the open elemeat LetH € Ep*(B(G* + 1)). If B is a maximal subalgebra
of By, such that € B, then from case IH(G*) £ B.

If B is a maximal subalgebra &, such thaa ¢ B andH (G*) € B, we claim
that [H(G*)]g = B. To see this, suppose thgtl (G*)]5 # B. Then, in the
partition P associated witliH (G*)] 5z there exists a blocR, such thatP, N A,| = 2
or [P N A = 2. Since the partition associated withH (G*)] 5 U {a}]y is
PN {As, Ay}, itfollows thatBy, # [[H(G")]g U{allg = [H(G") U{h(g;, )},
a contradiction.

From this we conclude that there exidte Ep*(B(G* + 1)) which do not satisfy
the condition[H (G*)]x = By,. If H is such a homomorphism, thdﬁ[[e*]%
[G*] — B is an epimorphism, wittB maximal subalgebra ana ¢ B. Since
[G*] = B(G) andB = By, then for each maximal subalgetBawith a ¢ B, there
exist Vjze « homomorphismsi such thatH (G*)]» # By,. Hence

|EP(F(G), Bx))l = |Ep*(B(G™ + 1), By))|
—{H € Ep'(B(G" + 1)) : [H(G)]g # Bii}l
- \/\zlGJH\/\z[GJ‘,k - Vk,l\/\zlG]\,k = V‘zlGJ\,k(\/\z[GJ\,l - Vk’|)

2611 21611 k!
~ (1287 = k)! <<|2[Gl| Dk —I)!)'

Consequently, if we pu('l‘) = 0, whenevel > Kk, ('l‘) = k!/I! (k — I)!, whenever
| <k, andM = [2¢], then|D, | = (V) (V) = ().
The following theorem gives the cardinality B{G).

THEOREM 3.4. |F(G)| = 2M@"-3",
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PrOOF. From the previous considerations it follows that

o meor- () x ()0

In addition,
M M
>k =M2"" and ) k 2t = M@t oMY,
1<k<M k 1<k<M-1 k
Thus
M M k
_ M—1
|ALF@G)| =M1+ B <k>(z |<| ) -y |<I>>
1<k<M-1 1<l<M 1<l<M
M M
_ M-1 M-1 _ k—1
=Mty B <k>|v|2 > <k>k2
1<k<M-1 1<k<M-1
— M2M71 _|_ (2M o 2)M2M71 o M(3M71 o 2M71)
— M (22M71 o 3M71)‘ D

From this theorem and the previous remarks, it is possible to evaluate the number
of join-irreducible elementgy, € My, for k andl given. Nevertheless, fqu, € my
it remains to evaluate how many covers it hasfh(Q(B(G))), since this will allow
us to determine the algebraic structurd-¢6).

From Theoren8.3and (L6) the closure algebrb, has

k+ Y I <<M> —~ <k>> =k + MYt - 2t = MMt 4 k(1 - 247
1<l<M I I
atoms, withM = [21!|. In addition, Q (1,;) = 1 & Bs, whereBs, is the Boolean
algebrawithS, =", _y (V) = (¥)) = 2" — 2* atoms. From this we conclude
COROLLARY 3.5. Q(F(G)) = [T, (1@ Ba)(T).

Let F(r) be the three-valued closure algebra witfiee generators. This a special
case of the free algebra over a poset, where the poset is an antichain. Then

THEOREM3.6. F(1) = [, 1), |F)l = 22@™¥ and Q(F(r) =
12,1 ® By)(), with § = 22 — 2,

PrOOF. Itis an immediate consequence of Coroll&$, Theoren3.4and Theo-
rem3.3. [
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The following example was also worked out #].[

ExamPLE 3.7. Let F(1) the free algebra with one generator, and let

A
QA Q(B)

0

ThenF(1) = A2 x B andQ(F(1)) = Q(A?) x Q(B) = (1® B,)? x B,. The dual
space of(1) looks like the following diagram:

A generator is given bg = {2, 3,5, 8, 9}, and the atoms can be obtained frgnn
the following way:

{1} = (V(Q(@) A =9) A =((V(Q(9) A —=9) AV(g A V(Q(9) A V(=9)));
{2} = Q(9);

{3l =9 A V(Q@) A V(-0);

{4} = (V(Q(9) A —9) A V(G A V(Q(9) A V(=09));

{8} = (V(@) A V(=9)) A =V(V(9) A —0));

{6} = Q(-9);

{7} = (V(@ A V(Q(=9)) A (=g A V(Q(=0)));

{8 = (@A V(Q(=9)) A =((V(9) A V(=9) A =V(V(9) A —0)));

{9} =g A QV(@) A QV(-9));

{10} = (Q(V(9)) A —9) A Q(V(-9)).
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