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(Received 30 September 1999; revised 26 February 2001)

Communicated by B. A. Davey

Abstract

In this paper, the variety of three-valued closure algebras, that is, closure algebras with the property that
the open elements form a three-valued Heyting algebra, is investigated. Particularly, the structure of the
finitely generated free objects in this variety is determined.
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1. Introduction and preliminaries

In a paper of paramount importance titled ‘The algebra of topology’, McKinsey and
Tarski [12] started the investigation of a class of algebraic structures which they
named closure algebras. Aclosure algebrais an algebra.A; ∨;∧;−;∇;0;1/ such
that.A; ∨;∧;−;0;1/ is a Boolean algebra and∇ is anadditive closure operator, that
is, ∇ is a unary operator onA that satisfies the ‘Kuratowski axioms’, for allx, y ∈ A:

∇.0/ = 0;(1)

x ≤ ∇.x/;(2)

∇.∇.x// = ∇.x/;(3)

∇.x ∨ y/ = ∇.x/ ∨ ∇.y/:(4)

Closure algebras have been extensively studied by several authors. Particularly,
Blok in an exhaustive and very deep work, developed in [4] the general properties of
the lattice of subvarieties of the variety of closure algebras.
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An important feature in the structure of a closure algebra is the set of open elements.
In a continuation of their work on closure algebras, McKinsey and Tarski showed in
[13] and [14] that the set of open elements of a closure algebra is a Heyting algebra.
Conversely, any Heyting algebra can be embedded as the lattice of open elements of
a closure algebra.

The present paper is devoted to a deeper investigation of a subvariety of the variety
of closure algebras, namely, the variety of three-valued closure algebrasC T (see [7]).
This is the subvariety of those closure algebras such that the set of open elements form
a three-valued Heyting algebra.

The variety of monadic algebras is the largest variety of closure algebras whose
associated variety of Heyting algebras consists of Boolean algebras; the variety of
‘three-valued closure algebras’ studied in this paper is the variety of closure algebras
whose associated Heyting algebras of open elements belong to the variety generated
by the three-element chain. This last variety is the unique cover in the lattice of
varieties of Heyting algebras of the variety of Boolean Heyting algebras.

When investigating the structure of algebras in a given variety it is of particular
interest to find out what the finitely generatedmembers are. In [4], Blok devotes a large
part of his work to obtain the closure algebra with one free generator, which shows
the difficulty of the problem (see also [5] and [6]). The main result in Section 3 is the
determination of the free finitely generated objects in the varietyC T . To this end, a
study of the varietyC T is carried out, paying particular attention to the determination
of simple and subdirectly irreducible algebras, as well as the characterization of
maximal subalgebras of subdirectly irreducible algebras. We also study the finitely
generated subdirectly irreducible algebras (Section 2).

Throughout this paper,D01, B, H andM will denote the equational classes of
all distributive lattices with 0 and 1, all Boolean algebras, all Heyting algebras and all
monadic Boolean algebras, respectively. IfK is a class of similar algebras, the lattice
of congruences of an algebraA ∈ K is denoted byCon.A/. In general, for a variety
V and A; B ∈ V , ACV B means thatA is aV -subalgebra ofB. The subalgebra
generated by a partX of A ∈ V is denoted by[X]V . Finally, the free algebra over a
finite posetG in V is denotedFV .G/.

With the operators∇ and − we can define a new unary operatorQ (interior
operator) by means ofQ.x/ = −∇.−x/, for all x ∈ A. This operator satisfies the
following conditions:

Q.1/ = 1;(5)

x ≥ Q.x/;(6)

Q.Q.x// = Q.x/;(7)

Q.x ∧ y/ = Q.x/ ∧ Q.y/:(8)
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In addition, it is readily verifiable that the following properties hold:

Q.0/ = 0;(9)

Q.Q.x/ ∨ Q.y// = Q.x/ ∨ Q.y/;(10)

if x ≤ y then Q.x/ ≤ Q.y/:(11)

Closure algebras can be defined by means of the equations (5) to (8) and in that case,
by defining∇.x/ = −Q.−x/ we obtain the closure operator satisfying equations (1)
to (4).

The equational class of closure algebras will be denoted byC . These algebras
were named interior algebras by Blok in [4]. Other authors called them topological
Boolean algebras, but they were named Lewis algebras by Monteiro after the founder
of the S4 logic [11]. We will use the most traditional name of closure algebras, though
we will make use of the interior operatorQ.

It is known thatC andH are generated by their finite members, but neither of
these two varieties is locally finite ([1, 12, 13]).

If A ∈ C , thenQ.A/ is a .0;1/-sublattice ofA, and it is a Heyting algebra if we
definea → b = Q.−a ∨ b/, for everya;b ∈ A. If b ∈ Q.A/, b is said to be open.

Conversely, ifA ∈ B andL is a .0;1/-sublattice ofA, then there exists a unique
interior operatorQ on A satisfying properties (5) to (8) and such thatL = Q.A/ if
and only if for everya ∈ A, the set.a] ∩ L has a greatest element. In this case,
Q.a/ = Max..a] ∩ L/ =∨{x ∈ L : x ≤ a}.

It is known that if L ∈ H , then the latticeCon.L/ of congruences ofL is
isomorphic to the latticeF.L/ of all filters of L. If F ∈ F.L/, then the congruence�
associated withF is defined by.a;b/ ∈ � ⇔ a ∧ u = b ∧ u for someu ∈ F .

If A ∈ C andF is a filter in A, F is said to be anopen filterif Q.x/ ∈ F whenever
x ∈ F . It is known ([13]) that Con.A/ is isomorphic to the latticeF.A/ of all open
filters of A, and it is not difficult to see thatF.A/ andF.Q.A// are isomorphic. So
we have:

THEOREM 1.1 ([6]). Let A ∈ C . ThenCon.A/ andCon.Q.A// are isomorphic.

Recall (see [1]) that a Heyting algebraL is subdirectly irreducible if and only if
L = L1 ⊕ 1, with L1 ∈ H andL1 ⊕ 1 is the lattice obtained by adjoining a new 1
to L1.

The following corollary follows immediately from Theorem1.1 and the above
remark.

COROLLARY 1.2. Let A ∈ C . ThenA is subdirectly irreducible if and only ifQ.A/
is subdirectly irreducible as a Heyting algebra, and hence,A is subdirectly irreducible
if and only if Q.A/ = L1 ⊕ 1, for someL1 ∈H .
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2. Three-valued closure algebras

In this section we investigate subdirectly irreducible algebras and maximal sub-
algebras of subdirectly irreducible algebras in the varietyC T . Recall that a closure
algebraA is said to be three-valued ifQ.A/ is a three-valued Heyting algebra, and
a three-valued Heyting algebra is a Heyting algebra.A;∧;∨;→;0;1/ such that
b = .¬a → b/ ∧ ..b → a/ → b/, for everya;b ∈ A, where¬a = a → 0 [16].

THEOREM 2.1 ([1, 2, 9]). The variety of three-valued Heyting algebras is generated
by the three-element chain.

The following theorem gives us an equational characterization of three-valued
closure algebras.

THEOREM 2.2. Let A ∈ C . Then,A ∈ C T if and only if for everyb;a ∈ A, the
following identity holds:

Q.b/ = .Q.−Q.a// → Q.b// ∧ ..Q.b/ → Q.a// → Q.b//:(12)

By a simple application of J´onsson’s Lemma (see [10]) we see from Theorem2.1
that the only subdirectly irreducibles in the variety of three-valued Heyting algebras
are, up to isomorphism,2, the 2-element chain, and3, the 3-element chain (see
also [16]). Then we can conclude:

THEOREM 2.3. Let A ∈ C T . A is subdirectly irreducible if and only if either
Q.A/ = {0;1} or Q.A/ = {0;a;1}.

Observe that the simple algebras inC are the simple monadic Boolean algebras [17].
As a consequence of Theorem2.1 we have the following characterization of the

ordered set of prime filters of an algebra in the variety of three-valued Heyting algebras.

THEOREM 2.4 ([16]). Let A be a Heyting algebra. Then the following are equiva-
lent:

.a/ A is a three-valued Heyting algebra.

.b/ Every prime filter ofA is either maximal or minimal, and every prime filter is
contained in at most one maximal prime filter.

A variety V has theFraser-Horn Propertyif there are no skew congruences on
any direct product of a finite number of algebras inV , that is, for allA1, A2 ∈ V ,
every� ∈ Con.A1 × A2/ is a product congruence�1 × �2, �i ∈ Con.Ai /, i = 1, 2.
Every congruence-distributive variety has the Fraser-Horn Property. In particular, the
varietyC T has the Fraser-Horn Property.
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If the congruence lattice of an algebraA has a unique coatom, thenA is directly
indecomposable. A varietyV has theApple Propertyif the converse holds as well
for all finite algebras; that is, if the finite directly indecomposables inV are precisely
the finite algebras whose congruence lattices have a unique coatom. IfA is a finite
directly indecomposable algebra inC T , then, from Theorem1.1, Q.A/ is directly
indecomposable as a three-valued Heyting algebra. So, from Theorem2.4, Q.A/ is
of the form 0⊕ B whereB is a finite Boolean algebra. ThenF.Q.A// has a unique
coatom and soCon.Q.A//, and consequentlyCon.A/, has a unique coatom. Hence
the varietyC T has the Apple Property.

The Fraser-Horn and Apple Properties, extensively studied in [3], will play an
important role in the determination of the free algebra over a finite poset in the
varietyC T .

2.1. Maximal subalgebras In this subsection we determine the maximal subalge-
bras of the finite subdirectly irreducible algebras.

In the rest of the paper,a will denote the only non-trivial open element of any non-
simple subdirectly irreducible algebra. The finite non-simple subdirectly irreducible
algebra withk + l atoms, where there arek atoms precedinga andl atoms preceding
−a, will be denoted byBk;l . Similarly, the simple monadic Boolean algebra with
k atoms will be denoted byBk (or Bk;0). Aa and A−a will be the sets of atoms
precedinga and−a, respectively. So, the set At.Bk;l / of atoms ofBk;l , can be written
At.Bk;l / = Aa∪̇A−a.

Recall that ifACB B, A, B finite, thenA is determined by a partitionP of the
set At.B/ of atoms ofB. If s ≤ k andt ≤ l then, identifying isomorphic algebras,
Bs;t CC Bk;l .

Next, we characterize maximal subalgebras of finite non-simple subdirectly irre-
ducible three-valued closure algebras.

Let M CC Bk;l . Consider two cases.
Case 1: a ∈ M .

LEMMA 2.5. Let M CC Bk;l and a ∈ M . M is maximal if and only ifM is a
maximal Boolean subalgebra ofBk;l .

PROOF. If M is not maximal as a Boolean subalgebra ofBk;l , then there exists
M ′
CB Bk;l such thatM  M ′ andM ′ 6= Bk;l . Let x ∈ M ′; thenQ.x/ ∈ {0;a;1}.

But {0;a;1} ⊆ M ′, soQ.x/ ∈ M ′. HenceM ′
CC Bk;l , a contradiction.

The converse is trivial.

Case 2: a 6∈ M .
Let PM be the partition of At.Bk;l / associated toM , PM = ⋃̇s

i =1Pi
M , (s ≤ k + l ),

wherePi
M are the blocks ofPM .
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LEMMA 2.6. Pi
M ∩ Aa 6= ∅.

PROOF. If there would exist a blockPi
M such thatPi

M ∩ Aa = ∅, andxi is the atom
of M associated to the blockPi

M , thenPi
M ⊆ A−a and hencexi ≤ −a. So−xi ≥ a

and−xi 6= 1. Consequently,Q.−xi / = a ∈ M , a contradiction.

Observe that ifM is a maximal subalgebra ofBk;l , with a =∈ M , then[M ∪{a}]B =
[M ∪ {a}]C = Bk;l . In addition, [a]C = {0;a;−a;1} is a C -subalgebra with
associated partitionPa = {Aa; A−a}, and [M ∪ {a}]C = [M ∪ [a]C ]C = [M ∪
[a]B]B = Bk;l . Since the partition associated to[M ∪ [a]B]B is the intersection of
PM andPa, then forx ∈ At.Bk;l /we have that either{x} = Pi

M ∩Aa or{x} = Pi
M ∩A−a.

From this we conclude that|Pi
M ∩ Aa| ≤ 1 and that|Pi

M ∩ A−a| ≤ 1, thus|Pi
M | ≤ 2.

But if |Pi
M | = 2, then by the previous lemma,|Pi

M ∩ Aa| = 1 and|Pi
M ∩ A−a| = 1. If

|Pi
M | = 1, then|Pi

M ∩ Aa| = 1 and|Pi
M ∩ A−a| = 0.

Let M CC Bk;l anda =∈ M . Then we have:

LEMMA 2.7. M is maximal if and only if for each blockPi
M the following conditions

are satisfied:

.i/ |Pi
M ∩ Aa| = 1.

.ii/ |Pi
M | = 1 or |Pi

M | = 2.
.iii / If |Pi

M | = 2 then|Pi
M ∩ A−a| = 1.

PROOF. If M is maximal, the conclusion follows from Lemma2.6and the previous
remark.

For the converse, letM ′ a subalgebra such thatM  M ′. Then PM properly
containsPM ′ . From the hypotheses there exists a blockPi

M such thatPi
M = Pi 1

M ′ ∪ Pi 2
M ′ ,

with Pi 2
M ′ ⊆ A−a. Let xi 2 the atom ofM ′ associated toPi 2

M ′ . Then, xi 2 ≤ −a, so
−xi 2 ≥ a andxi 2 6= 1. ThereforeQ.−xi 2/ = a ∈ M ′. SoBk;l = [M ∪ {a}]C ⊆ M ′.
HenceBk;l = M ′, andM is maximal.

The following theoremgives us the number of maximal subalgebrasof a non-simple
subdirectly irreducible algebra.

THEOREM 2.8. Let k ≥ 1, l ≥ 1 be arbitrary. Then, inBk;l , there exist
(

k
2

)
maximal

subalgebras isomorphic toBk−1;l ,
(

l
2

)
maximal subalgebras isomorphic toBk;l−1. If

k ≥ l there existVk;l = k!=.k − l /! maximal subalgebras isomorphic toBk.

PROOF. Let k, l be arbitrary and suppose thata ∈ M . Then, by Lemma2.5, the
partition PM hask + l − 1 blocks. That is, there exists a unique blockPi

M containing
two elements. We claim thatPi

M ⊆ Aa or Pi
M ⊆ A−a. To see this, suppose that

X = Pi
M ∩ Aa 6= ∅ andY = Pi

M ∩ A−a 6= ∅. Sincea ∈ M , [M ∪ {a}]C = M .
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X andY are blocks of the partition associated to[M ∪ {a}]C . Then X andY are
blocks ofPM , a contradiction. In these conditions it is easy to see that there exist

(k
2

)
partitions determining a maximal subalgebra isomorphic toBk−1;l , and

(l
2

)
partitions

determining a maximal subalgebra isomorphic toBk;l−1. Fork < l , observe that from
Lemma2.7, there are no maximal subalgebrasM such thata 6∈ M . Suppose that
k ≥ l . From Lemma2.7, if PM is the partition associated to a maximal subalgebra
M such thata 6∈ M , then each block has either a single element (necessarily inAa),
or two elements, one of them inAa and the other one inA−a. Then each partition
defines a one-to-one mappingg from A−a to Aa in the following way: forx ∈ A−a,
g.x/ is the elementy ∈ Aa such thaty belongs to the same blockPi

M asx. Since it is
clear that there arek blocks in PM , it follows that there areVk;l maximal subalgebras
isomorphic toBk.

2.2. Finitely generated subdirectly irreducible algebras Now we are going to
determine the largest simple algebra and the largest non-simple subdirectly irreducible
algebra which are homomorphic images of the free three-valued closure algebraF.G/
over a given posetG. We need the following results about the free Boolean algebra
over a poset.

DEFINITION 2.9. For a posetG, the Boolean algebraB.G/ is said to be free overG
provided the following conditions hold:

.B1/ G ⊆ B.G/ and[G]B = B.G/.

.B2/ Given an order-preservingmappingf from G to D, with D a Boolean algebra,
there exists a homomorphismh from B.G/ to D such thath|̀G = f .

The following is a construction ofB.G/ (see [15]).
For a posetG, consider the setE = 2[G] of all order–preserving mappings fromG

into 2. For i ∈ G, let Gi = { f ∈ E such thatf .i / = 1}. Let B be the field of sets
generated byG = {Gi : i ∈ G} inP.E/ ∼= 2E (P.E/ = the set of subsets of E). It
can be proved thatB is the free Boolean algebra over the posetG = {Gi : i ∈ G} ∼= G.

THEOREM 2.10. Let G be a finite poset. ThenB.G/ ∼= 2|2[G]| ∼=P (
2[G]).

Let B∗ ∈ C T be a subdirectly irreducible algebra generated by a posetG∗ which is
a homomorphic image ofG. Let f : G → G∗ be an onto order-preserving mapping.
Then f can be extended to a homomorphism of closure algebrasf : F.G/ → B∗.
Then

f .F.G// = f .[G]C / = [G∗]C = B∗:

If B∗ is simple,B∗ = [G∗]B. Thus the following theorem holds.
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THEOREM 2.11. Let B∗ ∈ C T a simple algebra that is a homomorphic image of
F.G/. Then|B∗| ≤ 2|2[G]| = |B.G/|.

If B∗ is not simple, thenB∗ = [G∗ ∪ {a}]B . Indeed,Q.B∗/ = {0;a;1} ⊆
[{a} ∪ G∗]B. HenceB∗ = [[{a} ∪ G∗]B]C = [{a} ∪ G∗]B . So we can conclude
that

|B∗| ≤ 2|2[G∗+1]| = |B.G∗ + 1/|;
whereG∗ + 1 is the cardinal sum of the posetG∗ and the 1-element poset.

We show that a non-trivial relation must hold amonga and the elements ofG∗, that
is, G∗ ∪{a} is not a free generating set forB∗, if we just consider the Boolean structure
of B∗. In other words,B∗ 6= B.G∗ + {a}/, and therefore|B∗| � |B.G∗ + {a}/|. To
see this, first observe thata ∈ Q.[G∗]B/. Indeed, suppose thata 6∈ Q.[G∗]B/, then
Q.[G∗]B/ = {0;1} and consequently[G∗]B = [[G∗]B]C = [G∗]C = B∗. Thus
a 6∈ B∗, a contradiction. Therefore,Q.[G∗]B/ = {0;a;1}.

Let G∗ = {−g : g ∈ G∗}. It is known that[G∗]B = [G∗ ∪ G∗]D 0;1
. If we put

G ∗ = G∗ ∪ G∗, then every elementy ∈ [G∗]B can be written

y =
n∧

i =1

∨
z∈Hi

z;

whereHi ⊆ G ∗.
In particular, sincea ∈ Q.[G∗]B/ it follows that there existsx ∈ [G∗]B , x 6= 1,

such thatQ.x/ = a. Then

a = Q.x/ = Q

(
n∧

i =1

∨
y∈Hi

y

)
=

n∧
i =1

Q

(∨
y∈Hi

y

)
:

But a is open meet-irreducible, soa = Q
(∨

x∈H x
)
, for someH ⊆ G ∗. Then

a ≤
∨
x∈H

x 6= 1:(13)

Let H ∗ = H ∪ {gi ∈ G∗ : gi 6∈ H and − gi 6∈ H }. Then

a ≤
∨

x∈H ∗
x:(14)

It is clear that ifgi ∈ G∗ then eithergi ∈ H ∗ or −gi ∈ H ∗, and, in addition, ifx ∈ H ∗

then−x 6∈ H ∗. HenceH ∗ is a generating set for[G∗]B .
The above inequality (14), will allow us to prove thatG∗ ∪ {a} cannot be a free

generating set forB∗, as a Boolean algebra. Indeed, leth : G∗ ∪ {a} → B.G∗/ × 2
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be given byh.g/ = .g;0/, g ∈ G∗, andh.a/ = .0;1/. Thenh.a/ 6≤ ∨
h.G/, soh

cannot be extended overB.G∗ + {a}/.
Hence we have that|B∗| 6= 2|2[G+1]| = |B.G + 1/|, and consequently, we obtain the

following theorem.

THEOREM 2.12. If B∗ is a non-simple subdirectly irreducible algebra which is a
homomorphic image of the free algebraF.G/, then|B∗| ≤ 2|2[G+1]|−1.

Let us see that the upper bound given in this theorem is the best, that is, that
there exists a non-simple subdirectly irreducible algebra which is generated as closure
algebra by a homomorphic image ofG and whose cardinality is the number given in
Theorem2.12.

Let G + 1 = {g1; g2; : : : ; gn} ∪ {gn+1} be a free generating set forB.G + 1/. Let
x = ∨n+1

i =1 gi . It is clear thatx is a dual atom. LetB∗ = B.G + 1/=Fx, where
Fx is the principal filter generated byx. Let k : B.G + 1/ → B.G + 1/=Fx,
the natural homomorphism. Then 1= k.x/ = k

(∨n+1
i =1 gi

) = ∨n+1
i =1 k.gi /. Thus∨n

i =1 k.gi / ≥ −k.gn+1/ = k.−gn+1/.
In B∗ we consider as a nontrivial open elementa = k.−gn+1/. Let Gn = {k.g1/;

k.g2/; : : : ; k.gn/}. Since
∨n

i =1 gi � x, it follows that
∨n

i =1 k.gi / � 1. So 1
Q
(∨n

i =1 k.gi /
) ≥ Q.k.−gn+1// = a. Therefore,Q

(∨n
i =1 k.gi /

) = a.
Hence, we can conclude thata ∈ [Gn]C . Then

B∗ = [k.G/]B = [Gn ∪ {a}]B = [Gn]C :
So B∗ is a non-simple subdirectly irreducible algebra with a generating setGn which
is a homomorphic image ofG, and|B∗| = 2|2[G+1]|=2 = 2|2[G+1]|−1. Then we have proved
the following theorem.

THEOREM 2.13. There exists a non-simple subdirectly irreducible algebraB∗ which
is a homomorphic image ofF.G/ and|B∗| = 2|2[G+1]|−1.

Now, let Fa be the open filter generated bya ∈ B∗. ThenB∗=Fa is simple and is a
homomorphic image ofF.G/. Then, by Theorem2.11, |B∗=Fa| ≤ 2|2[G]|, that is, there
are at most|2[G]| atoms preceding the open elementa in B∗. If h : B∗ → B∗=Fa is
the natural homomorphism,h.G∗/ is a generating set forB∗=Fa as a Boolean algebra.
In the same way as for non-simple subdirectly irreducible algebras, it can be seen that
h.G∗/ is not a free generating set forB∗=Fa, that is, B∗=Fa cannot be isomorphic
to the Boolean algebraB.G/. Therefore,|B∗=Fa| ≤ 2|2[G]|−1, that is, the number of
atoms preceding the elementa in a non-simple subdirectly irreducible algebra is at
most|2[G]| − 1.

If Ia is the principal ideal generated bya in B∗ andq : B∗ → B∗=Ia is the natural
Boolean homomorphism, thenq.B∗/ = [q.G∗/]B . Hence|B∗=Ia| ≤ 2|2[G]|. That
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is, there exist at most|2[G]| atoms not preceding the open elementa (preceding the
element−a).

THEOREM 2.14. Let B∗ be a non-simple subdirectly irreducible algebra which is
a homomorphic image ofF.G/. Then B∗ ∼= Bk;l with 1 ≤ k ≤ |2[G]| − 1 and
1 ≤ l ≤ |2[G]|. In addition, for every1 ≤ k ≤ |2[G]| − 1 and1 ≤ l ≤ |2[G]|, every
algebraB∗ ∼= Bk;l is a homomorphic image ofF.G/.

PROOF. From the construction ofB.G + 1/=Fx (x a dual atom), from the previous
theorems and remarks, and since|2[G+1]| − 1 = |2[G] × 2| − 1 = |2[G]| − 1+ |2[G]|, it
follows that

B.G + 1/=Fx
∼= B|2[G]|−1;|2[G]|:

The second part of the theorem is immediate, since every algebraBk;l , with 1 ≤ k ≤∣∣2[G]∣∣− 1, 1≤ l ≤ ∣∣2[G]∣∣, is aC -subalgebra ofB|2[G]|−1;|2[G]|.
For example (see [4, page 129,Lemma 6.1]), ifG = {g1}, the subdirectly irreducible

algebras which are homomorphic images ofF.G/ are, up to isomorphism, the algebras
listed in the following figure, where the open elements are highlighted. We also
represent the corresponding dual spaces.

B1 B2 B1;1 B1;2

3. Free algebras over a poset

The aim of this section is to give explicitly the structure ofF.G/ = FCT
.G/, the

free algebra over a finite posetG in the varietyC T .
Since the finitely generated subdirectly irreducible algebras inC T are finite and

there are only finitely manyn-generated subdirectly irreducibles for every natural
numbern, it follows thatC T is a locally finite variety. Then the algebraF.G/ is finite,
and consequently, every meet-irreducible open filterMp of F.G/ is generated by a
join-irreducible open elementp.

If V is a variety, the varietyV0 generated by the finite simple algebras inV is the
prime varietyassociated withV (see [3]).
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In [3, Corollary 7.2], Berman and Blok showed that ifV is a locally finite variety
with the Fraser-Horn and Apple Properties, which, in addition, has the property that
every subalgebra of a finite simple algebra is a product of simple algebras, then the
number of directly indecomposable factorsofFV0.G/ equals that ofFV .G/. They also
proved ([3, Theorem 7.3]) that if a given finite simple algebraA is a direct factor of
the free algebra inV0, there exists a directly indecomposable factor ofFV .G/ having
A as homomorphic image. These results can be applied to the varietyC T , as this
variety has the Fraser-Horn and Apple Properties, and, in addition, every subalgebra
of a finite simple algebra is simple.

The prime varietyC T 0 is the varietyM of monadic Boolean algebras. It is known
([17] and [8]) that the free monadic Boolean algebraFM .G/ is given by

FM .G/ ∼=
|2[G]|∏
k=1

Bk
.|2[G]|

k /;

where
(|2[G]|

k

)
is the number of (monadic) epimorphisms fromFM .G/ ontoBk, that is,

the number of (Boolean) epimorphisms fromB.G/ ontoBk, and
∣∣2[G]∣∣ is the cardinal

number of the greatest simple monadic algebra generated by a copy ofG.
So, from [3, Corollary 7.5], the algebraF.G/ has a factorization as

F.G/ ∼=
|2[G]|∏
k=1

Ak
.|2[G]|

k /;

where eachAk has as homomorphic image a factor of the free monadic Boolean
algebraFM .G/.

We will now determine the structure of the factorsAk of F.G/.
LetJ .Q.F.G/// be the set of join-irreducible elements ofQ.F.G//. Observe that

Mp is maximal (minimal) if and only ifp is minimal (maximal) inJ .Q.F.G///. Let
m,M respectively denote the set of minimal and maximal elements inJ .Q.F.G///.
Then

J .Q.F.G/// =
∑
p∈m

Cp;

whereCp = {q ∈ J .Q.F.G/// : q ≥ p}. EveryCp looks like the diagram in the
following figure (Theorem2.4):

: : :

p
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Then

Q.F.G// ∼=H
∏
p∈m

Dp;

where Dp is the distributive lattice such thatJ .Dp/ ∼= Cp. Thus the elements
p∗ = ∨

q∈Cp
q are complemented, the complement coincides with the complement in

F(G) and is given by

−p∗ =
∨

q∈J .Q.F.G///\Cp

q:

In particular,−p∗ is open.
We establish the following simple but useful lemma.

LEMMA 3.1. Let x ∈ At.F.G//. Then there existsp ∈ J .Q.F.G/// such that
x ≤ p.

PROOF. Let p ∈ m. If x ≤ q for someq ∈ Cp, then the lemma holds. Suppose that
x 6≤ q, for everyq ∈ Cp. In particular,x 6≤ p∗. Thenx ≤ −p∗ = ∨

q∈J .Q.F.G///\Cp
q.

Sincex is an atom it follows thatx ≤ q for someq ∈J .Q.F.G/// \ Cp.

The above lemma shows that the setP = {At.p∗/}p∈m, where At.p∗/ = {x ∈
At.F.G// : x ≤ p∗}, is a partition of the set At.F.G//.

Let Fp∗ andI p∗ respectively denote the principal filter and principal ideal generated
by p∗. Then we have the following theorem.

THEOREM 3.2. F.G/ ∼=C
∏

p∈m F.G/=Fp∗ ∼=C
∏

p∈m I p∗.

If p, q ∈ m are such thatI p
∼= Iq

∼= Bk, then there exists an automorphismÞ of
F.G/ such thatÞ.p/ = q. ThenÞ.Cp/ = Cq, that is,Þ.p∗/ = q∗, and consequently,
I p∗ ∼= Iq∗ . It is not difficult to see that the algebrasI p∗

k
, 1 ≤ k ≤ ∣∣2[G]∣∣, are the directly

indecomposable factorsAk of F.G/. Then

THEOREM 3.3. F.G/ ∼= ∏|2[G]|
k=1 I

.|2[G]|
k
/

p∗
k

.

Our next objective is to determine the number of elements ofF.G/.
Let p ∈ J .Q.F.G///. If p ∈ m, thenF.G/=Mp

∼= Bk and thus, there existk
atoms precedingp. If p ∈ M, thenF.G/=Mp

∼= Bk;l . Thus there arek + l atoms
precedingp. In addition,k of these atoms precede the only elementq ∈ m such that
q ≤ p.
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If we putmk = {p ∈ m : F.G/=Mp
∼= Bk} andMk;l = {p ∈ M : F.G/=Mp

∼=
Bk;l }, then the number of atoms of the free algebra is

| At.F.G//| =
∑

1≤k≤|2[G]|
|mk|k +

∑
1≤k≤|2[G]−1|;1≤l≤|2[G]|

|Mk;l |l :

From what we have seen above,

|mk| =
(∣∣2[G]∣∣

k

)
; 1 ≤ k ≤ ∣∣2[G]∣∣ :

Now, given k; l , 1 ≤ k ≤ ∣∣2[G]∣∣ − 1, 1 ≤ l ≤ ∣∣2[G]∣∣, (see Theorem2.14), let
Ep.F.G/;Bk;l / be the set of all epimorphisms fromF.G/ ontoBk;l , and let Aut.Bk;l /

be the set of all automorphisms ofBk;l . Then it is readily verifiable that

|Mk;l | = | Ep.F.G/;Bk;l /|
| Aut.Bk;l /| :(15)

If h ∈ Aut.Bk;l /, thenh is a Boolean automorphism such thath.a/ = a, and thus
h is characterized by the bijectionsh|̀Aa

: Aa → Aa andh|̀A−a
: A−a → A−a. Hence

| Aut.Bk;l /| = k!l !:
Let us compute now the numerator of (15). Let G = {g1; : : : ; gn}. Let G∗ =

{g∗
1; : : : ; g∗

n} be an isomorphic copy ofG, andG∗ +1 = G∗ +{g∗
n+1}. Let Ep∗.B.G∗ +

1/;Bk;l / denote the set of all Boolean epimorphismsH from the free Boolean algebra
B.G∗ + 1/ ontoBk;l , such thatH .g∗

n+1/ = a.
Consider two cases:

I. k < l .
In this case the open elementa of Bk;l belongs to every maximal subalgebra ofBk;l

(see the proof of Theorem2.8). Let

 : Ep.F.G/;Bk;l / → Ep∗.B.G∗ + 1/;Bk;l /

be the mapping defined by .F/ = H , whereH is the extension of the mapping
h such thath.g∗

i / = F.gi / for every i 6= n + 1 andh.g∗
n+1/ = a. We have that

H .B.G∗ + 1// = [H .G∗ + 1/]B = [F.G/ ∪ {a}]B = Bk;l , so H is onto and
consequently,H ∈ Ep∗.B.G∗ + 1/;Bk;l /. It is clear that is one-to-one. To
see that is onto, letH ∈ Ep∗.B.G∗ + 1/;Bk;l /. Observe thatH .G∗/ 6⊆ B for
any maximal subalgebraB of Bk;l . Indeed, if we suppose thatH .G∗/ ⊆ B for
B a maximal subalgebra ofBk;l , then, sincea ∈ B, [H .G∗/ ∪ {a}]B ⊆ B. But
Bk;l = H .B.G∗ + 1// = [H .G∗/ ∪ {H .g∗

n+1/}]B = [H .G∗/ ∪ {a}]B , which is a
contradiction.
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As a consequence we have that[H .G∗/]C = Bk;l .
Now, letF be the extension of the mappingf such thatf .gi / = H .g∗

i /, 1 ≤ i ≤ n.
Then F ∈ Ep.F.G/;Bk;l / since[H .G∗/]C = [F.G/]C = Bk;l , and it is clear that
 .F/ = H . Therefore

| Ep.F.G/;Bk;l /| = | Ep∗.B.G∗ + 1/;Bk;l /|;
and this is the number of injective functionsf : At.Bk;l / → At.B.G∗ + 1// such that
f .Ak/ ⊆ At.gn+1/ and f .A−a/ ⊆ At.−gn+1/, and since At.gn+1/ = 2[G], it follows
that

| Ep.F.G/;Bk;l /| = V|2[G]|;l V|2[G]|;k =
∣∣2[G]∣∣!

.|2[G]| − k/!

∣∣2[G]∣∣!
.|2[G]| − l /! :

II. k ≥ l .
In this case (see Theorem2.8) there exist maximal subalgebras inBk;l which do not

contain the open elementa. Let H ∈ Ep∗.B.G∗ + 1//. If B is a maximal subalgebra
of Bk;l such thata ∈ B, then from case I,H .G∗/ 6⊆ B.

If B is a maximal subalgebra ofBk;l such thata =∈ B andH .G∗/ ⊆ B, we claim
that [H .G∗/]B = B. To see this, suppose that[H .G∗/]B 6= B. Then, in the
partition P associated with[H .G∗/]B there exists a blockPi such that|Pi ∩ Aa| = 2
or |Pi ∩ A−a| = 2. Since the partition associated with[[H .G∗/]B ∪ {a}]B is
P ∩{Aa; A−a}, it follows thatBk;l 6= [[H .G∗/]B ∪{a}]B = [H .G∗/∪{h.g∗

n+1/}]B ,
a contradiction.

From this we conclude that there existH ∈ Ep∗.B.G∗ + 1// which do not satisfy
the condition[H .G∗/]C = Bk;l . If H is such a homomorphism, thenH |̀[G∗]B

:
[G∗]B → B is an epimorphism, withB maximal subalgebra anda =∈ B. Since
[G∗]B ∼= B.G/ andB ∼= Bk, then for each maximal subalgebraB with a =∈ B, there
existV|2[G]|;k homomorphismsH such that[H .G∗/]C 6= Bk;l . Hence

| Ep.F.G/;Bk;l /| = | Ep∗.B.G∗ + 1/;Bk;l /|
− |{H ∈ Ep∗.B.G∗ + 1// : [H .G∗/]C 6= Bk;l }|

= V|2[G] |;l V|2[G]|;k − Vk;l V|2[G]|;k = V|2[G]|;k.V|2[G]|;l − Vk;l /

= |2[G]|!
.|2[G]| − k/!

( |2[G]|!
.|2[G]| − l /! − k!

.k − l /!
)
:

Consequently, if we put
(

k
l

) = 0, wheneverl > k,
(

k
l

) = k!= l ! .k − l /!, whenever
l ≤ k, andM = |2[G]|, then|Mk;l | = (

M
k

) ((
M
l

)− (
k
l

))
.

The following theorem gives the cardinality ofF.G/.

THEOREM 3.4. |F.G/| = 2M.22M−1−3M−1/.
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PROOF. From the previous considerations it follows that

| At.F.G//| =
∑

1≤k≤M

k

(
M

k

)
+

∑
1≤l≤M;1≤k≤M−1

l

(
M

k

)((
M

l

)
−
(

k

l

))
:(16)

In addition,

∑
1≤k≤M

k

(
M

k

)
= M2M−1 and

∑
1≤k≤M−1

k

(
M

k

)
2k−1 = M.3M−1 − 2M−1/:

Thus

| At.F.G//| = M2M−1 +
∑

1≤k≤M−1

(
M

k

)( ∑
1≤l≤M

l

(
M

l

)
−
∑

1≤l≤M

l

(
k

l

))

= M2M−1 +
∑

1≤k≤M−1

(
M

k

)
M2M−1 −

∑
1≤k≤M−1

(
M

k

)
k2k−1

= M2M−1 + .2M − 2/M2M−1 − M.3M−1 − 2M−1/

= M.22M−1 − 3M−1/:

From this theorem and the previous remarks, it is possible to evaluate the number
of join-irreducible elementspk;l ∈Mk;l , for k andl given. Nevertheless, forpk ∈ mk

it remains to evaluate how many covers it has inJ .Q.B.G///, since this will allow
us to determine the algebraic structure ofF.G/.

From Theorem3.3and (16) the closure algebraI p∗
k

has

k +
∑

1≤l≤M

l

((
M

l

)
−
(

k

l

))
= k + M2M−1 − 2k−1k = M2M−1 + k

(
1 − 2k−1

)

atoms, withM = ∣∣2[G]∣∣. In addition,Q
(
I p∗

k

) ∼= 1 ⊕ BSk
, whereBSk

is the Boolean
algebra withSk = ∑

1≤l≤M

((
M
l

)− (
k
l

)) = 2M − 2k atoms. From this we conclude

COROLLARY 3.5. Q.F.G// ∼= ∏M
k=1

(
1 ⊕ BSk

).M
k/.

Let F.r / be the three-valued closure algebra withr free generators. This a special
case of the free algebra over a poset, where the poset is an antichain. Then

THEOREM 3.6. F.r / ∼= ∏2r

k=1 I .
2r

k /
p∗

k
, |F.r /| = 22r .22r +1−1−32r −1/ and Q.F.r // ∼=∏2r

k=1.1 ⊕ BSk
/.

2r

k /, with Sk = 22r − 2k.

PROOF. It is an immediate consequence of Corollary3.5, Theorem3.4 and Theo-
rem3.3.
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The following example was also worked out in [4].

EXAMPLE 3.7. Let F.1/ the free algebra with one generator, and let

A

B

Q.A/ Q.B/

ThenF.1/ ∼= A2 × B andQ.F.1// ∼= Q.A2/ × Q.B/ ∼= .1 ⊕ B2/
2 × B1. The dual

space ofF.1/ looks like the following diagram:

1 2 3 4 5 6 7 8 9 10

A generator is given byg = {2;3;5;8;9}, and the atoms can be obtained fromg in
the following way:

• {1} = .∇.Q.g// ∧ −g/∧ −..∇.Q.g// ∧ −g/∧ ∇.g ∧ ∇.Q.g// ∧ ∇.−g///;
• {2} = Q.g/;
• {3} = g ∧ ∇.Q.g// ∧ ∇.−g/;
• {4} = .∇.Q.g// ∧ −g/ ∧ ∇.g ∧ ∇.Q.g/ ∧ ∇.−g//;
• {5} = .∇.g/ ∧ ∇.−g// ∧ −∇.∇.g/ ∧ −g//;
• {6} = Q.−g/;
• {7} = .∇.g/ ∧ ∇.Q.−g/// ∧ .−g ∧ ∇.Q.−g///;
• {8} = .g ∧ ∇.Q.−g/// ∧ −..∇.g/ ∧ ∇.−g// ∧ −∇.∇.g/ ∧ −g///;
• {9} = g ∧ Q.∇.g// ∧ Q.∇.−g//;
• {10} = .Q.∇.g// ∧ −g/ ∧ Q.∇.−g//.
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[17] , ‘Alg èbres de Boole monadiques libres’,Algebra Universalis8 (1978), 374–380.

Departamento de Matem´atica
Universidad Nacional del Sur
8000 Bah´ıa Blanca
Argentina
e-mail: imabad@criba.edu.ar, usdiavar@criba.edu.ar

mailto:imabad@criba.edu.ar
mailto:usdiavar@criba.edu.ar

