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LATTICE POINTS ON CIRCLES
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Abstract

We prove that the lattice points on the circlesx2 + y2 = n are well distributed for most circles containing
lattice points.

2000Mathematics subject classification: primary 11N36.

1. Introduction

The number of lattice points on the circlex2 + y2 = n is denoted byr .n/. It is
known thatr .n/ is an unbounded function and it is a natural question to ask for the
distribution of ther .n/ lattice points on the circlex2 + y2 = n.

In order to give a measure of that distribution, we consider the polygon with vertices
at ther .n/ lattice points and denote byS.n/ the area of such a polygon. If the lattice
points are well distributed, the area of the polygon must be close to the area of the
circle, that is,S.n/=³n ∼ 1.

If r .n/ > 0, trivially 2=³ ≤ S.n/=³n < 1. In [1] we proved that the set{S.n/=³n :
r .n/ > 0} is dense in the interval[2=³;1]. We also proved that|S.n/=³n − 1| �
.log logn= logn/2 for infinitely many integers.

In this paper we prove that, in fact, for most integersn such thatr .n/ > 0, the
quantityS.n/=³n is close to 1.

THEOREM 1.1. For anyn ≤ x with r .n/ > 0,

S.n/

³n
> 1−

(
11 log log logx

log logx

)2

(1.1)

I am indebted to Laura Fainsilber for calling my attention to this problem.
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with at most

O

(
x

.log x/1=2 log logx log log logx

)
(1.2)

exceptions.

It should be noted that if we callBx = {n ≤ x : r .n/ > 0}, then|Bx| ∼ cx=.logx/1=2.

2. Background

In the proof of Theorem1.1 we will use the prime number theorem for Gaussian
primes on angular sectors, and Selberg’s sieve. We present them in a suitable form in
this section.

THEOREM 2.1. Let D be an angular sector of the circlex2 + y2 ≤ R2 with angle� .
Then

∑
²∈D

1 = �R2

³ log R
+ O

(
R2

log2 R

)
;(2.1)

where² = a + bi are primes inZ[i ] and the constant in the error term does not
depend on� .

PROOF. Stronger versions of this result can be found in [2] and [3].

The sieving functionS.A ; P; z/ denotes the number of terms of the sequenceA

that are not divisible by any primep ∈ P, p < z. We denote by³P.x/ the counting
function of the sequenceP.

THEOREM 2.2. If P is an infinite subset of primes such that

³P.x/ = Þx= logx + O
(
x= log2 x

)
andA = {1; : : : ; x}; then(2.2)

S.A ; P; x/ � x

.log x/Þ
:(2.3)

PROOF. It will be a consequence of Selberg’s sieve. For every square-free positive
integerd, let |Ad| denote the number of terms of the sequenceA which are divisible
by d. Then|Ad| = x=d + rd, with |rd| ≤ 1. Let

G.z/ =
∑

m<z;p|m implies p∈P

1

m
:
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Selberg’s sieve [4, page 180] implies that

S.A; P; z/ ≤ x

G.z/
+

∑
d<z2;d square-free

3!.d/:

Observe that

G.z/
∏

p<z;p6∈P

(
1 + 1

p
+ 1

p2
+ · · ·

)
≥
∑
m<z

1

m
� log z

and∏
p<z;p6∈P

(
1 + 1

p
+ 1

p2
+ · · ·

)
=

∏
p<z;p6∈P

p

p − 1
≤
∏

p

p2

p2 − 1

∏
p<z;p6∈P

(
1 + 1

p

)
:

The first product is a constant and the second product can be estimated by taking
logarithms:

log

( ∏
p<z;p6∈P

(
1 + 1

p

))
≤

∑
p<z;p6∈P

1

p
=
∑
p<z

1

p
−

∑
p<z;p∈P

1

p
:

The two sums can be handled using Abel’s summation together with the formula

³.x/ = x

log x
+ O

(
x

log2 x

)
; ³P.x/ = Þ

x

log x
+ O

(
x

log2 x

)
:

Then ∑
p<z

1

p
−

∑
p<z;p∈P

1

p
= .1 − Þ/ log logz + O.1/;

which yields

S.A ; P; z/ � x

.log z/Þ
+

∑
m<z2;m square -free

3!.m/:

Observe that∑
m<z2;m square-free

3!.m/ =
∑

m<z2;m square-free

.2!.m//log 3=log 2 ≤
∑

m<z2;m square-free

d2.m/ � z2 log3 z:

Now if we choosez = [x1=3], we obtainS.A ; P; x/ ≤ S.A ; P; z/ � x=.logx/Þ.

Next, we will present two proposition needed to prove Theorem1.1.

PROPOSITION2.3. Let {xj }2k
j =1 be a set of real numbers such that

xj ∈ I j =
(

j − 1

2k
;

j

2k

]
; j = 1; : : : ;2k

and for any real� let S = {
� +∑2k

j =1 ž j x j ; ž j = ±1
}
. Then, for anyj = 1; : : : k,

there existss ∈ S such that{s=2} ∈ Jj = .. j − 1/=k; j=k], where{s=2} denotes the
fractional part ofs=2.
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PROOF. Let Þ = � −∑2k
j =1 xj . Then we can write

S =
{
Þ +

2k∑
j =1

 j x j ;  j ∈ {0;2}
}
:

The numberssi =2 = Þ=2 + xi , satisfysi +1=2 − si =2 < 1=k for i = 1; : : : ;2k − 1
ands1=2 + 1 − s2k=2 < 1=k. Then, for each intervalJj , there existssi ∈ Ssuch that
{si=2} ∈ Jj .

PROPOSITION2.4. Let n = n1n2 such thatnj = x2
j + y2

j , xj + iy j = √
nj ei� j ,

j = 1;2. Then, the angles±�1 ± �2 correspond to lattice points on the circle
x2 + y2 = n.

PROOF. See [1] for more details.

3. Proof of Theorem1.1

For each primep = 2 or p ≡ 1 .mod 4/ let �p = .4=³/ tan−1.a=b/, wherea;b
are the only integers such thata2 + b2 = p, 0< a ≤ b. Then�p ∈ .0;1].

We split the interval.0;1] in the 2k intervalsI j = .. j −1/=2k; j=2k], j = 1; : : : ;2k
and we define the good numbers as

Gk
x = {

n ∈ Bx; n = p1 · · · p2km; with �pj
∈ I j

}
;(3.1)

where we recallBx = {n ≤ x : r .n/ > 0}.
In Proposition3.1 we will prove that if n ∈ Gk

x, the lattice points on the circle
x2+y2 = n are well distributed, and in Proposition3.2we will estimate the cardinality
of the bad numbers,Bk

x = Bx \ Gk
x . Theorem1.1 will be a consequence of these

propositions for a suitable value ofk.

PROPOSITION3.1. If n ∈ Gk
x, then

S.n/=³n > 1 − ³2=6k2:(3.2)

PROOF. We can writen = p1 · · · p2km.
Obviously,m has, at least, a representation as a sum of two squares,m = a2 + b2,

a + ib = √
mexp.i .³=4/�/.

Proposition2.4 implies that the angles.³=4/
(
� + ∑2k−1

j =1 ž j�pj

)
; ž j = ±1 corre-

spond to lattice points on the circlex2 + y2 = n.
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Suppose that.³=4/s is one of these angles. Then, due to the symmetry of the
lattice, the angle.³=4/s − .³=2/[s=2] = .³=2/{s=2} also corresponds to a lattice
point.

Now we apply Proposition2.3to conclude that for everyj = 1; : : : ; k there exists
an angles such that{s=2} ∈ Jj = .. j − 1/=k; j=k]. In other words, for every
j = 1; : : : ; k there exists a lattice point on the arc

√
n exp.³� i =2/, � ∈ Jj .

Again, due to the symmetry of the lattice we can find, for everyj = 1; : : : ; k and
for r = 0;1;2;3, a lattice point on the arc

√
n exp.³.� + r /i =2/, � ∈ Jj .

Now let us choose a lattice point foreach arc. LetP0 be the polygon with vertices
in these 4k lattice points. Obviously,S0.n/ ≤ S.n/, whereS0.n/ = Area.P0/. Now
we denote by�1; : : : �4k the angles between each pair of two consecutive lattice points.

If we consider a sector with angle� j and radius
√

n, an easy geometric argument
prove that the area of the part of the sector outside the triangle isn.� j − sin� j /=2 ≤
n�3

j =12. Then³n − S0.n/ ≤ .n=12/
∑4k

j =1 �
3
j . We know that� j ≤ ³=k and that∑4k

j =1 � j = 2³ . Therefore, the maximum happens when the half of the angles are 0
and the other half are³=k. That is,³n − S.n/ ≤ ³n − S0.n/ ≤ n³3=6k2.

PROPOSITION3.2. |Bk
x| � kx=.log1=2+1=4k x/+ kx3=4.

PROOF. If we apply Theorem2.1to the region

Dj = {
.a;b/ : a2 + b2 ≤ x; 0< a ≤ b; .4=³/ tan−1.a=b/ ∈ I j

}
we obtain

³Pj
.x/ = x

4k logx
+ O

(
x

log2 x

)
;(3.3)

wherePj = {p 6≡ 3 .mod 4/ : �p ∈ I j }.
On the other hand, if we denote byQ = {q ≡ 3 .mod 4/ : q primes}, the

prime number theorem for arithmetic progressions says that³Q.x/ = x=.2 logx/ +
O.x= log2 x/. Then, if Qj = Q ∪ Pj we obtain

³Q j
.x/ =

(
1

2
+ 1

4k

)
x

log x
+ O

(
x

log2 x

)
:(3.4)

We define, for any 1≤ l ≤ √
x, Al = {m ≤ x= l 2} andA ∗

l = {m ≤ x= l 2 :
m square free}. Now, suppose thatn ∈ Bk

x with n = l 2m, m square free. Because
r .n/ > 0, thenm has not prime divisorsq ≡ 3 .mod 4/. Sincen 6∈ Gk

x, then there
exists an integerj such thatm has no prime divisorsp with �p ∈ I j . Then, that
integern is shifted inS.A ∗

l ;Q j ; x= l 2/. Thus,

|Bk
x | ≤

∑
1≤l≤√

x

2k∑
j =1

S.A ∗
l ;Q j ; x= l 2/ ≤

∑
1≤l≤√

x

2k∑
j =1

S.Al ;Q j ; x= l 2/:(3.5)
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For l < x1=4 we apply Theorem2.2to eachS.Al ;Q j ; x= l 2/,

S.Al ;Q j ; x= l 2/ � x

l 2.log.x= l 2//1=2+1=4k
� x

l 2.log x/1=2+1=4k

and then ∑
1≤l≤x1=4

2k∑
j =1

S.Al ;Q j ; x= l 2/ � kx

.log x/1=2+1=4k
:

For l ≥ x1=4 we use the trivial estimateS.Al ;Q j ; x= l 2/ ≤ x= l 2 and we obtain∑
x1=4≤l

∑2k
j =1 S.Al ;Q j ; x= l 2/ � kx3=4.

To conclude Theorem1.1 we apply Proposition3.1 and Proposition3.2with k =
[log logx=.8 log log logx/]: Observe that ifx is large enough, then

k = [log logx=.8 log log logx/] > log logx=..8:5/ log log logx/:

Thus, forn ∈ Gk
x andx large enough,

S.n/

³n
> 1 − ³2

6

(
.8:5/ log log logx

log logx

)2

> 1−
(

11 log log logx

log logx

)2

:(3.6)

On the other hand,

|Bk.x/| � log logx

log log logx

x

.log x/1=2.log x/.2 log log logx/=.log logx/
(3.7)

� x

.log x/1=2 log logx log log logx
:
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