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LATTICE POINTS ON CIRCLES
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Abstract

We prove that the lattice points on the circiést- y> = n are well distributed for most circles containing
lattice points.

2000Mathematics subject classificatioprimary 11N36.

1. Introduction

The number of lattice points on the circié + y?> = n is denoted by (n). It is
known thatr (n) is an unbounded function and it is a natural question to ask for the
distribution of ther (n) lattice points on the circlg? + y? = n.

In order to give a measure of that distribution, we consider the polygon with vertices
at ther (n) lattice points and denote 5§(n) the area of such a polygon. If the lattice
points are well distributed, the area of the polygon must be close to the area of the
circle, thatis,S(n)/zn ~ 1.

If r(n) > 0O, trivially 2/7 < S(n)/7n < 1. In[1] we proved that the s¢BS(n)/zn :

r(n) > 0O} is dense in the intervdR/x, 1]. We also proved thatS(n)/mn — 1] «
(log logn/ logn)? for infinitely many integers.

In this paper we prove that, in fact, for most integarsuch that (n) > 0, the

guantity S(n) /7n is close to 1.

THEOREM1.1. For anyn < x withr (n) > 0,

2
(1.1) S(n) o1 <1llog log Iogx)
n log logx

| am indebted to Laura Fainsilber for calling my attention to this problem.
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with at most

X
(1.2) O ((Iog x)¥/2log logx log log Iogx)
exceptions.

It should be noted that if we cal, = {n < x : r(n) > 0}, then|B,| ~ cx/(logx)¥2.

2. Background

In the proof of Theoreni.1we will use the prime number theorem for Gaussian
primes on angular sectors, and Selberg’s sieve. We present them in a suitable form ir
this section.

THEOREM2.1. Let D be an angular sector of the circle + y? < R? with angled.
Then

O R? R?
2.1 1=
(2.1) Z nlogR+O<Iong>’

pebD

wherep = a + bi are primes inZ[i] and the constant in the error term does not
depend or.

PrROOF. Stronger versions of this result can be foundZhdnd [3]. O

The sieving functiorS(«/, P, z) denotes the number of terms of the sequesice
that are not divisible by any primp € P, p < z. We denote byrr(x) the counting
function of the sequence.

THEOREM 2.2, If P is an infinite subset of primes such that

(2.2) mp(X) = ax/logx + O (x/log?x) and.«/ = {1,...,x}, then
(2.3) S/, P,x) <

X
(logx)*’

ProOF. It will be a consequence of Selberg’s sieve. For every square-free positive
integerd, let | Aq| denote the number of terms of the sequentwhich are divisible
byd. Then|Ay| = x/d + rq, with |r4] < 1. Let

1

G(z) = > —.

m<z, p|mimplies pe P
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Selberg’s sieve4, page 180] implies that

S(A P, 2) < m + Z 3“)(d).

d<z2,d square-free
Observe that

1 1
G(2) 1_[ <1+ +F+ ) ZE»IOQZ

p<z pgP m<z
and

1 1 p p? 1
[] (1+=2+5+: ) [ < ] <1+ —) :
p<z,p¢P ( PP pezper P T PPl e P

The first product is a constant and the second product can be estimated by taking
logarithms:

oo T (1+3))= ¥ 2-32- 5 ¢

p<z,pgP p<z, ng p<z p<z, peP

The two sums can be handled using Abel’s summation together with the formula

X) =+ 0 (— (x) = —X+ox>
n()_logx+ log®x )’ e “logx log”x /)

Then

Z—— Z = (1—a)loglogz+ O(1),

p<z p<z, peP
which yields

X
S(«, P,z 3.
( ) < gz T >
m<z2,m square -free
Observe that
Z 3a)(m) — Z (2w(m))|093/|092 < Z dZ(m) < ZZ Iog3 z

m<z2,m square-free m<z2,m square-free m<z2,m square-free

Now if we choose = [x¥3], we obtainS(«/, P, x) < S(«, P, 2) « x/(logx)*. O

Next, we will present two proposition needed to prove Theaotein

PROPOSITION2.3. Let{x; }J?';l be a set of real numbers such that

j—1 .
XjElj:(JT,i}, J:l,,Zk

and for any realp let S = {¢ + 3% €;x;, ¢ = £1}. Then, foranyj =1, ...k,
there exists € Ssuch that{s/2} € J; = ((j — 1)/k, j/k], where{s/2} denotes the
fractional part ofs/2.
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PROOF. Leta = ¢ — Zf';l Xj. Then we can write

2k
S= {(X—Fzijj, Yi € {0,2}}-

=1

The numbers /2 = «/2 + X;, satisfys,;/2—s/2 < 1/kfori =1,...,2k -1
ands;/2+ 1 —sx/2 < 1/k. Then, for each interval;, there exists € Ssuch that
{s/2} € Jj. 0

PROPOSITION2.4. Letn = nin, such thatn; = x? + y?, x; +iy; = /€%,
j = 1,2. Then, the angles¢; + ¢, correspond to lattice points on the circle
X2+ y2=n.

ProOOF. See [I] for more details. O

3. Proof of Theorem1.1

For each primg = 2 or p = 1 (mod 4 let ¢, = (4/7) tan*(a/b), wherea, b
are the only integers such thait+ b> = p, 0 < a < b. Theng, € (0, 1].

We splitthe interval0, 1] inthe Xintervalsl; = ((j—1)/2k, j/2k], j =1,...,2K
and we define the good numbers as

3.1 G={neB;n=p;-- pam, withep, e},
X Pj ]

wherewe recalB, = {n <x: r(n) > 0}

In Proposition3.1 we will prove that ifn € G, the lattice points on the circle
x?+y? = nare well distributed, and in Propositi@®2we will estimate the cardinality
of the bad numbersBf = B, \ GX. Theoreml.1 will be a consequence of these
propositions for a suitable value kf

PROPOSITION3.1. If n € G, then
(3.2) S(n)/mn > 1 — 72 /6K>2.

PrROOF. We can writen = p; - - - pxm.

Obviously,m has, at least, a representation as a sum of two squaresa? + b?,
a+ib=.mexp((r/4)¢).

Proposition2.4 implies that the anglesr/4)(¢ + >.2 " €;¢y,). ¢; = %1 corre-
spond to lattice points on the circk@ + y? = n.
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Suppose thatr/4)s is one of these angles. Then, due to the symmetry of the
lattice, the anglgr/4)s — (/2)[s/2] = (x/2){s/2} also corresponds to a lattice
point.

Now we apply Propositio2.3to conclude that for every = 1, ..., k there exists
an angles such that{s/2} € J; = ((j — 1/k, j/k]. In other words, for every
j =1,..., kthere exists a lattice point on the ay@ exp(70i /2), 6 € J;.

Again, due to the symmetry of the lattice we can find, for every 1, ...,k and
forr =0, 1, 2, 3, alattice point on the argnexp(z (6 +r)i/2),6 € J;.

Now let us choose a lattice point feach arc. LeP, be the polygon with vertices
in these 4 lattice points. Obviouslyg(n) < S(n), whereS(n) = Area(Py). Now
we denote by, ... 04 the angles between each pair of two consecutitietapoints.

If we consider a sector with angfe and radius,/n, an easy geometric argument
prove that the area of the part of the sector outside the triangl@jis- sing;)/2 <
ne3/12. Thenwn — S(n) < (n/12 31, 6%, We know thaty; < r/k and that
Z‘j"il 0; = 2r. Therefore, the maximum happens when the half of the angles are 0
and the other half are/k. Thatis,m7n — S(n) < 7n — S(n) < nz3/6k>. O

PROPOSITION3.2. | BX| « kx/(log"*™/%* x) 4+ kx¥4,

ProOF. If we apply Theoren2.1to the region
Dj={@b):a°+b*<x, 0<a<b, (4/m)tan*(@/b) € I;}

we obtain

X X
(3.3) 77 (%) = 4k log x O (Iogzx> '

whereP; = {p # 3 (mod 4 : ¢, € |;}.

On the other hand, if we denote B = {q = 3 (mod 9 : q primeg, the
prime number theorem for arithmetic progressions saysihat) = x/(2logx) +
O(x/log® x). Then, ifQ; = Q U P; we obtain

34 X) = } i L O X
(34) 7o (X) = <2+4k> Iogx+ (Iogzx>'

We define, for any 1< | < /X, & = {m < x/I?} and.&/* = {(m < x/I? :
m square freg Now, suppose that € Bf with n = 12m, m square free. Because
r(n) > 0, thenm has not prime divisorg = 3 (mod 4. Sincen ¢ GX, then there
exists an integej such thatm has no prime divisorg with ¢, € |;. Then, that
integern is shifted inS(<*, Q;, x/12). Thus,

2k 2k
35) B = > DY S Qux/1H = > Y S, QpLx/1P).

1<l</X j=1 1<l<x j=1
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Forl < x¥*we apply Theorerd.2to eachS(«4, Q;, x/1?),

) 2 X X
S(4, Qj, x/1%) < 12(log(x/12))1/2+1/4% < 12(log x)1/2+1/4

and then

2k
kx
2 2 St QI < g

1<l<x¥4 j=1

Forl > x¥* we use the trivial estimat&(«, Q;, x/1?) < x/1? and we obtain
D g ZJZk:l S, Qj, x/1%) < kx¥/*. O

To conclude Theorerh.1 we apply Propositior3.1 and Propositior8.2 with k =
[loglogx/(8logloglogx)]. Observe that ik is large enough, then

k = [loglogx/(8logloglogx)] > log logx/((8.5) log log logx).

Thus, forn € GX andx large enough,

2 2 2
eo)  2-1-T (2 o0 09100 -1 (M) |
b

6 log logx log logx
On the other hand,

log logx X

X

< (log x)¥2log logx log log logx

(3.7) IBu(X)| <
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