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Abstract

The graph product of a family of groups lies somewhere between their direct and free products, with
the graph determining which pairs of groups commute. We show that the graph product of quasi-lattice
ordered groups is quasi-lattice ordered, and, when the underlying groups are amenable, that it satisfie
Nica’s amenability condition for quasi-lattice orders. The associated Toeplitz algebras have a universal
property, and their representations are faithful if the generating isometries satisfy a joint properness
condition. When applied to right-angled Artin groups this yields a uniqueness theorem@rhgebra
generated by a collection of isometries such that any two of them eit@mmute or else have orthogonal
ranges. The analogous result fails to hold for the nonabelian Artin groups of finite type considered by
Brieskorn and Saito, and Deligne.

2000Mathematics subject classificatioprimary 20F36, 22D25, 46L05, 46L55, 47B35.
Keywords and phrasegraph product, quasi-lattice order, covariant isometric representation, Toeplitz
algebra, Artin group.

1. Introduction

Several celebrated results @f-algebra theory assert that t-algebra generated
by a semigroup of isometries does not depend on the specific isometries, providec
they satisfy a properness condition. The situations described by these results are o
considerable interest, stemming from the fact that the algebraic structure given by the
semigroup operation determines a uni@ifenorm on thex-algebra generated by the
isometries. As examples we have Coburn’s theorem oRtha&lgebra generated by a
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single isometry4], Douglas’ theorem on thé*-algebra of a one parameter semigroup
of isometries 11], and the generalization by Murphy to the Toepl@z-algebra of a
totally ordered groupl7]; in all these cases the properness condition simply says that
the isometries are not unitary.

Moving away from total orders on abelian groups, Nid&][considered a class
of partially ordered group&G, P) he calledguasi-lattice ordered Inspired by what
happens with the left regular (Toeplitz) representation of the positive &niee
isolated a key covariance condition, which is automatic for total orders, and defined
a universalC*-algebraC*(G, P) whose representations are given by the covariant
isometric representations ¢&f. He proved that the uniqueness of tBé-algebra
generated by a covariantisometric representation depends on an amenability propert
of the quasi-lattice order that is strictly weaker than amenability of the underlying
group. Indeed, he showed that Cuntz’s restjion the uniqueness of the*-algebra
7 0, generated by isometries with orthogonal ranges can be seen as an amenability
result for the canonical quasi-lattice order on the free group ganerators. In this
case the covariance condition requires that the generating isometries have orthogone
ranges, and the properness condition says that the sum of these ranges is not the who
Hilbert space.

In [16] Laca and Raeburn associated a semigroup dynamical system to each quasi
lattice order and showed that the corresponding crossed product is canonically isomor:
phic to the universaC*-algebraC*(G, P). This approach led to two main advances.
The first one was the generalisation to all quasi-lattice orders of some key estimates o
Cuntz [6], which provides a convenient framework in which to study faithfulness of
representations and uniqueness properties. The second one was a direct proof of th
amenability of the quasi-lattice orders on a large class of (nonamenable) free produc
groups, which widened the range of application of the uniqueness results.

Direct products and free products of groups are both special cases of the more
general construction of a graph product of groups (see Seztimiow), and in this
paper we address the natural questions of whether graph products support quasi
lattice orders, and under which conditions these quasi-lattice orders are amenable ir
the sense of Nicallg]. Our main technical results are Theorég) which shows that
graph products of quasi-lattice ordered groups are indeed quasi-lattice ordered, an
Theorem20, which gives a sufficient condition for their amenability. Combining this
with the results of 16] in Theorem21, we characterize faithful representations and
give a uniqueness result for the Toeplitz algebras of graph products.

An interesting class of examples is that of graph products of copig€#,df),
otherwise known as graph groups or right-angled Artin groups. It follows from our
main results that, in the language of NicES], they are all amenable quasi-lattice
orders, giving a unified statement of the amenability of the canonical quasi-lattice
orders on all free groups and all free abelian groups, as well as providing many new
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examples of amenable quasi-lattice orders. The corresponding Toeplalgebras

are thus universal and unique. We state this main result in terms of generators anc
relations in Theorerfi4, which contains, as extreme cases, Cuntz’s theorem (in which
the generating isometries have mutually orthogonal ranges) and a multivariable versior
of Coburn’s theorem, (in which the generating isometsieommute, that is, they
commute with each other and with each other’s adjoints). 3gedr results related

to this last situation.

Other interesting quasi-lattice orders are provided by the family of Artin groups of
finite type, with the embedded Artin monoid as positive cané ]. These examples,
which include the braid groups, degtice groups because every pair of elements has
a least common upper bound. In Sectbwe prove, using an argument essentially
due to Nica, that if a group is lattice ordered and amenable as a quasi-lattice order
then the group itself has to be amenable. Thus, in contrast to what happens with grapl
products, only the Artin groups of finite type that are amenable (and hence abelian)
give rise to amenable quasi-lattice orders. The nonabelian Artin groups of finite type
appear then as an important class of groups having canonical non-amenable quas
lattice orders. As a consequence, @iealgebra generated by a covariant isometric
representation depends, in general, on the specific representation, Ti3&orem

2. Graph products of groups

Graph products were defined in the thesis of Grééh &nd have been subsequently
studied by various other authors. We refer the readelrdigind the referencestherein
for further background.

Let I denote a graph with vertex sat, and edge seE(") C {{l,J} : 1,J €
A andl # J}; the edges of” have no orientation and there is no edge joining a
point to itself. We say that verticdsand J areadjacentin T if there is an edge
{I,J} € E(I'). Note that a vertex is never adjacent to itself. Givenraifa {G, },c4
of groups, we define thgraph productl’, ., G, to be the quotient of the free product
x,G, by the smallest normal subgroup containing the elemeptsx; *x,* for all
pairsx; € G, x, € G; wherel andJ are adjacentii’. When theG, are all copies
of Z, the graph product is calledgraph group or right-angled Artin group We shall
not need to assume thatis finite.

Suppose, for the rest of this section, that we are given a grags above, and
groups{G, },ca, and letG = TI'|., G, denote the graph product. We may take as a
generating set foG the set

(G:]_[G| \ {1}.
leA

Givenx € G we write | (x) for the unique vertex such thatx € G,. We say thak
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belongso | (x).

By an expressionX for an elementx € G we mean a word in the generators
G representingk. Given an expressioX = Xx;x,--- X, the elements; are called
syllablesof X and the numbelris called theengthof X, writtenl = ¢(X). We say
thatl € A isavertexof X if | = | (%) for x; a syllable ofX.

Given an expressioX = x;X, - - - X for x € G, the graph product relations allow
one to modifyX to obtain a different expression farby replacing a subexpression
X X1 With ;1% if 1(x) is adjacent tol (x,1). In the terminology of 4], such
a substitution is called ahuffle and we shall say that two expressions sheffle
equivalentif one may be obtained from the other via a finite sequence of shuffles. If
the expressioX contains a subexpression of the forw;_. ¢, with | (X)) = | (X11),
then we may give a shorter expressionXdsy anamalgamationthat is by deleting
X X; 41 in the case thax;., = x* or otherwise by replacing the two syllablgs; ., ,
with the single syllabl&k; € G such tha; = X X ;1.

We say that an expressiorresducedf it is not shuffle equivalent to any expression
which admits an amalgamation.

LEmMMA 1. Given an expressio = x;%, - - - X, the following are equivalent

(i) Xisreduced
(i) foralli < j such thatl (x) = I (x;) there existk such thai < k < j and
I (%) is not adjacent td (x;).

PrOOF. That (ii) is a consequence of (i) is obvious. We note that the truth
of condition (i) is invariant under shuffles, while an amalgamation can never be
performed on an expression satisfying (ii). Thus (ii) implies (i). O

Given an expressiol = x;x, - -- X for x € G, one may easily produce a reduced
expression fox via a finite process of shuffling and amalgamatingX fails condition
(if) of Lemmal, thatis, there exisis< j suchthat (x;) = | (x;) andl (x)) commutes
with 1 (x) for alli < k < j, then an obvious sequence of shuffles will allow the
syllablesx; andx; to be amalgamated, reducing the lengthXof One may continue
reducing the length in this manner until condition (ii) is satisfied. The following
theorem, due to Greerl§], reduces the solution of the word problem in a graph
product of groups to the solution of the word problem in each of the component
groups (seel4] for an equivalent formulation).

THEOREM 2 (Green L3]). Any two reduced expressions for the same elemdat of
are shuffle equivalent.

As a simple consequence of Theor2me may define thieength?(x) of an element
x € G to be the length of any reduced expresskoifior X, note that’(x) is also the
minimal length of any expression far If X is a reduced expression far we are
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also justified in referring to a syllable or a vertex ¥fas asyllable ofx or avertex
of x, respectively.

Let X = x3%, - -- X be a reduced expression, agdany syllable ofX. If | (x) is
adjacent td (x;) for all j < i then we say tha; is aninitial syllable of X, and that
| (x) is aninitial vertexof X. We write A(X) for the set of all initial vertices oK.
The following facts are easily checked.

LEMMA 3. Let X = x;%5 - - - X, be a reduced expression.
(i) If x is an initial syllable ofX, thenX is shuffle equivalent to the expression

XXy Xi—aXipa -+ X

(i) The initial vertices ofX are pairwise adjacent.

(i) For eachl € A(X) there exists a unique initial syllable &f belonging tol .
We define the functiady : A(X) — G such thatsx(l) is equal to the initial syllable
of X belonging tol .

(iv) If X" is another expression which is shuffle equivalenXtathen A(X') =
A(X) andé8y = 8.

By virtue of Lemma3 (iv) and Theoren? we may make the following definitions.

DEFINITION 4. Let x € G. We define the set ahitial verticesof x to be the set
A(X) = A(X) whereX is any reduced expression far We also define, for each
| € A, the elemenk; to be the initial syllable ok that belongs td if | is an initial
vertex ofx, and 1 if not; that is,

Sx (1) if | € AX);
1 if | ¢ AX).

Given an expressioXX = XX, --- X let reuX) denote the expressiofix _; - - - X;.
This allows us to define the set @ihal verticesof x € G to be the setA" (x) =
A(rev(X)), whereX is any reduced expression for Similarly also, foreachl € A,
we define the element

Xr _ (Srev(X)(I) |f I € Ar (X);
S K if 1 ¢ A"(X),

whereX is any reduced expression for

Observe that, by using Lemn®a(i) and (ii), one may always find, for any given
elementx € G, a reduced expression which begins with the product, in any order, of
thex, for | € A(x). Equally, one may always find a reduced expressioxfahich
ends with the product, in any order, of thgfor I € A"(x).
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LEMMA 5. Givenx, y € G, letD = A"(x) N A(y), and suppose tha = x|y, is
nontrivial foreachl € D. We define an expressidn= [, _, z (inany orde). Then,
if X([T,coX{)and([],.p y1)Y are reduced expressions ferandy respectively, we
have thatX ZY is a reduced expression fary.

PrROOF. Since each elemeast is nontrivial, it is clear that both expressiodZ and
ZY are reduced since they are formally equivalent to the given reduced expressions
for x andy respectively. (Two expressiongX,---X andy;Y. - - - Y, areformally
equivalentf k =1 andl (x) = I (y) forall1 <i <1.)

Suppose thaKZY = wyw, - -- w; is not reduced. Then, by Lemmia one may
findi < j such thatl (wj) = I (w;) andl (w;) is adjacent td (wy) for all k with
i <k < j. Butw; andw; are not both inX Z nor both inZY, since these are reduced
expressions. Thus; must be from the subexpressidhandw; from Y. But now
it follows thatw; is a final syllable ofX Z andw; an initial syllable ofZY. That is,

I (w) = I(w;) = J for someJ € D. But this contradicts the fact that there is a
syllablewy = z; lying betweeny; andw;. O

3. Quasi-lattice orders and their graph products

Let G be a group and e be a submonoid (subsemigroup containing the identity)
of G such thatP N P~ = {1}. Then we may define a left-invariant partial order on
G by x < ywhenevex'y € P. Note thatx € P if and only if 1 < x. We observe,
indeed, that every left-invariant partial order Gnarises in this fashion. We say that
(G, P) is apartially ordered groupwith positive coneP.

DEFINITION 6. A partially ordered grougG, P) is quasi-lattice orderedf every
finite set inG with an upper bound iG has a (necessarily unique) least upper bound
in G. Equivalently, every paix, y of elements ofc with a common upper bound in
G has a least upper bound, which we denotexbyy. If x andy have no common
upper bound irG, then we writex v y = oo for convenience.

Given the groups with positive coneP we may equally define a right-invariant
partial order orG by x <, y whenevelyx! € P. If x andy have a greatest lower
bound for<,, we denote it by A, y. Clearly one has

(1) x <y ifandonlyif y*<x™* and xA y=(x'v yfl)fl
LEMMA 7. For a partially ordered grougG, P) the following statements are equiv-
alent.

(i) (G, P)is aquasi-lattice order.
(i) Everyfinite set s with a common upper bound i has a least upper bound
in P.
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(i) Every elemenk of G having an upper bound i? has a least upper bound
in P.

(iv) If x € PP1, then there exist a pair of elemertsb € P with x = ab™! and
such that for every, v € P with ab™* = uv=?, one hasa < u andb < v. (The pair
a, bis clearly unique.

(V) Every pairu, v of elementsirP has a greatest lower boundx, v with respect
to the right-invariant partial order orG.

(vi) If x € PP1, then there exist a pair of elemertsb € P with x = ab~* and
suchthaa A, b = 1.

Assuming tha(i)—(vi) hold, and givenx € P P~1, there is in fact a unique pair
a, b € P satisfying statemerfti), being precisely the pam, b of statemen(iv).

ProOOF. We prove (i) implies (ii) implies (iii) implies (i) first. Clearly (ii) follows
from (i) by observing that a (least) upper boundRnfor a finite setF is the same
thing as a (least) upper bound féru {1}. Statement (iii) is obviously a special case
of (ii). Finally, (iii) states that the condition of Definitiod holds for all pairsx, 1,
and (i) may be recovered from this by left invariance of the partial order.

(iii) implies (iv): Supposex € PP~1. Thenx has an upper bound iR, and by
(ii) we can takea to be the least upper bound i and writex = ab~tforb € P. If
x = uv~tforu, v € P, thenu is an upper bound fax so we havea < u, and hence
alsob < v (sinceb™*v = a~'u € P).

(iv) implies (v): Givenu,v € P, letx = uv=t. Then the paila,b € P of (iv)
determines an element, := a~*u = b~*v which one checks to be the greatest right
lower boundu A, v. For if w is a common right lower bound then= cw and
v = dw, for somec,d € P, and one hasd™! = uv=! = ab™!. But, by (iv), both
a < candb < d, so thatw <, wy.

(v) implies (vi): Givenx € PP, chooseu, v € P such thatx = uv~!. Using
(v) we may writeu = a(u A, v) andv = b(u A, v) for somea,b € P. Clearly
uv!=abtandan, b=1.

(vi) implies (iii): Let x € G have an upper boundlin P. Thenx € PP~%, and by
(vi) we can writex = ab ' fora,b € Pwitha A, b= 1, orrathema™* v bt = 1,
using (1). Now, for anyu € P that is an upper bound fot, we have 1< u and
ab! <u. Thusa=a(@?!vb?) =1vab?! < u. Therefore is the least upper
bound ofx in P.

Finally suppose that (i)—(vi) hold and l&t= uv~— for u,v € P. Then, as in the
proof of (iv) implies (v), we havel A, v = a~'u = b~!v wherea, b € P is the unique
pair of statement (iv). Thus the pair, v satisfies the condition of statement (vi),
namelyu v, v = 1, ifand only ifu = aandv = b. O

ReEmMARK 8. We make the following remarks concerning Lemrha
(1) Our definition of quasi-lattice order differs slightly from the one originally given
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in [18, Section 2.1], which appears here as statement (ii). Nica had also given an
equivalent form of (ii) consisting of two conditions: QL1, which is statement (iii),
and QL2, which is the statement of Definitiérfor all pairsx, y € P. By Lemma7
the various definitions are equivalent; in particular QL2 is not needed as it follows
from QL1.

(2) In[18] and [16] least upper bounds are always assumed to ##, iout no such
assumption is made here. This causes a slight discrepancy in notation: in this pape!
the least upper bound iR of x andy would be writtenx v y v 1.

(3) While statements (v) and (vi) may appear to be conditions only on the méxoid
in factthey are not, because one must haveithat u A, v not only for every common
right lower boundw in P but also for every common right lower boundin G.

Suppose, now, thad = I',., G, is a graph product in which each gro@, for
| € A, is partially ordered with positive corig. We say that a reduced expression
X = XX - - - X is positiveif x; € Py, foralli =1,2,... 1. Note that this property
is invariant under shuffle equivalence. We say that an elemeniG is positiveif
it has a positive reduced expression. It follows, by Theorhat every reduced
expression for a positive element is positive. lRtdenote the submonoid @
consisting of all positive elements. This is just the submonoid generated by the union
ofthe P, for | € A. Moreover, two positive elements are equaPiif and only if their
reduced expressions are shuffle equivalent. Thumsay be presented as theonoid
graph productl’, ., P, that is the monoid obtained from the free prodygct, P, by
introducing the relationgy = yx for all x € P, andy € P; with | adjacent toJ
in A.

It is easily seen thaP N P~! = {1} and hence thatG, P) is a partially ordered
group. We refer to(G, P) as thegraph product oved” of the partially ordered
groups{(G,, P)}ica, and write(G, P) = T' . (G,, P)). Note that eackG,, P,) isa
partially ordered subgroup @6, P). That s, the inclusion map is order preserving.

LEMMA 9. Suppose thalG, P) = T' ., (G,, P)) is agraph product of quasi-lattice
ordered groups and denote kY (x, y) the intersectiomA’ (x) N A" (y) of the final
vertex sets of elementsandy in G. For any pairu, v € P, there exisa,b € P
satisfying the following conditions.

(i) abt=uv* witha<u,b<v,anda A, b =1forall | € A"(a,b).

(Note that by Lemma@ (v) A, is defined in each quasi-lattice ordég, , P,).)

(i) Writing reduced expressions: ([ ], . @) and ([ ] ., (b)) ") B for aand

b-! respectively, one has that

2 Al T (a{(bDl)} B
A" (a,b)

is a reduced expression fab2.
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PrOOF. (i): We proceed by induction of(u) + £(v), the case where = v = 1
being trivially true. Giveru, v € P we have

u=a- J] W) and v=0- J] @A),

le A" (u,v) le A" (u,v)

where(, 7 € P and09~* = uv~. Now if both u] (U] A, v))~* andv! (U] A, v))~*
are nontrivial for each € A'"(a, b), then these are precisely the final syllables of
0 and 9 respectively (in particularA™ (0, 9) = A'(u,v)). Puttinga = 4,b = 9
satisfies the claim in this case. Otherwise, same, v] equals eitheu; or v| for
somel € A"(a, b). Inthis cas€(0) + £(0) < £(u) + £(v), and the result follows by
induction.

(i): This is a straightforward application of Lemmdathe conditiora] A, b} = 1
ensuring that the syllables! (bf)~*) are nontrivial. O

THEOREM10. A graph product(G, P) = T',c,(G,, P,) of quasi-lattice ordered
groups is a quasi-lattice ordered group.

PrOOF. We prove thatG, P) satisfies condition (iv) of Lemma

Givenx € P P~ Lemmadimplies thatx has areduced expressi¥n= X;X, - - - Xy,
in which each syllable lies in P, , P/ ,. (More specificallyX may take the form
of (2), with the strictly positive syllables appearing first and strictly negative syllables
appearing last). Since eacfs,, P,) is quasi-lattice ordered we may, in view of
Lemma?7 (vi), write eachx; uniquely asa b * with a A, by = 1. Define elements
a,be Pbya=@aa- - -a,andb = b,b,_1---b;. Since any shuffle of the
syllablesxy, x,, ... , X, induces a legal shuffle of the nontrivials (respectively the
nontrivial b;’s) it follows by Theorem2 that the pair of elements, b is uniquely
determined by (independently of the choice of reduced expression).

Given any paiu, v € P with uv = x, leta, b € P be any pair as in Lemma
The unique paig, b which we have just defined may be computed from any reduced
expression fo, in particular from expressior2) of Lemma9 (ii). It follows that
a = a andb = b. This shows thak = ab ' and thata < u andb < v for every
u, v € P such thatk = uv~?, as required by Lemma(iv). O

LEmMMA 11. Suppose thatG, P) is a graph product of partially ordered groups
(Gy, P)forl € A. Letx,z e P besuchthal < x <z Then, for each € A,

(i) x <z,and

(i) writing x = x, X/, eitherx, = z or | is adjacent to every vertex &f.

PrOOF. We havez = xw, wherex, zandw are all positive. LeD = A"(X)NA(w)
and take reduced expressiod§[],_, x}) for x and([],_p ws)W for w. Note that
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Xjw, is nontrivial, for eachl € D, since itis a product of nontrivial positive elements.
Thus, by Lemmd, we have the following (necessarily positive) reduced expression
for z:

Z=X (]‘[(xgwj)> W.

JeD

If zz = 1 then the lemma is trivially true. Thus we suppasez 1 and ask where
the initial syllablez, might appear in the above expression.
Case 1.If the initial syllablez falls in the subexpressioX, then it is also an initial
syllable of the reduced expression given forThusx, = z, satisfying (i) and (ii).
Case 2.1f | € D and the initial syllablez, happens to be the syllabigw,), then
every vertex ofX and everyJ € D other thanl itself is adjacenttd. It follows that
X| is also an initial syllable ok. Thatisx, = x|, andx” has a reduced expression

X ( l_[ xg).
JeD;J#I

Soz = x,w, giving part (i), and is adjacent to every vertex af giving part (ii).
Case 3. If the initial syllablez falls in the subexpressiow, then every vertex of
X is adjacent tol and, in particularx, = 1. Both parts of the lemma are again
satisfied. O

DEFINITION 12. We consider a graph produ¢B, P) = I';c,(Gj, P;y) of quasi-
lattice orders, and choodee A. Given elementx,y € P, write X = x;x’ and
y = vyiy. We say that the elements y € P arel-adjacentif the following three
conditions hold:

(@ x; andy, have a common upper bound;
(b) eitherx, = x; vy, orl is adjacent to every vertex af;
(c) eithery, = x, vy, orl is adjacent to every vertex gf.

This definition allows us to give an inductive algorithm for deciding whether two
elementsx, y € P have a common upper bound, and for computing y when it
exists. Notice first that ik € G, andy € G, then the least common upper bound of
x andy in (G, P) is given by

XV, Yy if | =J;
XVYy=1q1Xxy | andJ are adjacent;
00 if 1 andJ are not adjacent.



[11] Toeplitz algebras of Artin groups 233

PrROPOSITION13. Suppose thatG, P) = T';c,(G;, Py) is a graph product of
guasi-lattice ordered groups. Let y € P and, for an arbitrary choice of € A,
write x = x;x" andy =y, y'. Then we have the following.

(i) The elementg, y € P have a common upper bound if and only if they are
| -adjacent andk’ v y’ # oo.
(i) Suppose that the elememntsy € P do have a common upper bound. Then

XVy=(XVy)- X VYy).
Note that conditiongb) and (c) of Definition12 apply to this expression.

PrROOF. Suppose initially that the elementsandy arel -adjacent and, by condi-
tion (a) of Definition12, write x; vV 'y, = x,u = y,v for someu, v € P,. Then, by
condition (b), eitheu = 1 or | is adjacent to every vertex of, in which casex’
has nol component. In either case one has that= x'u = u v x’. Similarly, by
condition (c), we havey = y'v = v v y. Therefore, supposing in addition that
X' VY # oo we have:

) X VYDX' VYY) =xux Vvyy
=xUuvx)yvy@vy)
=X VY)VXVYy=XVY.

It follows thatx andy have a common upper bound axd’ y is given by the above
equation.

On the other hand, suppose that x vy # oco. We first observe that andy
arel-adjacent. Clearly, vy, < z, justifying (a), and conditions (b) and (c) follow
directly from Lemmall (ii). Finally, sincex v y # oo, the equalities of §) may be
read in reverse order to show thdtv y’ # oo. O

REMARK 14. To see that Propositioh3 leads to an effective algorithm, we note
that by always choosing € A(x) U A(y) we ensure that(x) + £(y') is always
strictly less thart(x) + £(y).

4. Amenability for graph products of quasi-lattice orders

Let (G, P) be a quasi-lattice ordered groupedall from [Lg] that an isometric rep-
resentatior’V : P — Isom(2#) on a Hilbert space? is covariantif it is compatible
with the quasi-lattice structure in the sense that

VIV =V, VY, forx,yeP.

XVy Yxvy
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The notation is meant to include the conventigp = 0, so in particular covariance
implies V, V'V, V' = 0 whenx andy have no common upper bound.

The main example of such a representation is the Toeplitz representation
P — Isom(¢?(P)), defined byT,e, := &,, Wheree, denotes the typical orthonormal
basis vector of?(P). TheC*-algebra generated by tfg is called theToeplitzC*-
algebra of the quasi-lattice ordered gro@, P) and is denoted” (G, P). Nica also
considered th€*-algebraC* (G, P), universal for covariantisometric representations
of P and made the following definition.

DEFINITION 15. When the canonical homomorphism®f (G, P) to .7 (G, P) is
injective we say thatG, P) is anamenable quasi-lattice order

There is a semigroup*-dynamical systerniBp, P, «) canonically associated 1,
inwhich Bp is theC*-subalgebra of*(P) generated by the characteristic functiops 1
of the semi-infinite intervalgy, co) for y € P; the endomorphisra, corresponding
to x € P is defined by (1,) = 1,,. Covariant isometric representationsffre in
one to one correspondence with covariant representations of the semigroup dynamice
system(Bp, P, «) and this leads to the realisation®f(G, P) as a semigroup crossed
product, seel6, Section 2] for the details. There is a canonical conditional expectation
from Bp %, P onto Bp, which is faithful if and only if (G, P) is amenable 18,
Section 4.3]. This property, taken as the definition of amenabilitgofP) in [16], is
instrumental in the direct proof of amenability for free product orders, which we aim
to generalise in this section.

We will need the following reformulation of Proposition 6.6 d&ff.

PrROPOSITION16 (Laca, Raeburrlfg]). Supposep : (G, P) — (¥4, %) is an or-
der preserving homomorphism of quasi-lattice ordered groups such that, whenever
X,y € P have a common upper bound i

@ ¢(x) =¢(y)onlyifx =y, and
(D) (X)) V(y) =p(XVy).
If 4 is an amenable group, thei®, P) is an amenable quasi-lattice order.

ReEMARK 17. Proposition 6.6 of ]6] should have been stated like this. The reason
is that the proof indicated there, modelled on thatid, [Proposition 4.2], requires
that the conditional expectation for the coactior%obn C*(G, P) be faithful, which
is true if ¥ is amenable byl9]. We do not know whether Proposition 6.6 dff is
correct as originally stated; however all that is required for the other result§]iis|
the version stated above.

Suppose now thatG, P) = TN, (G, P)) is a graph product of quasi-lattice
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ordered groups. We define the group homomorphism

¢:(G.P)— EP(G.P)

leA

such that each factqiG,, P,) of (G, P) is mapped to the corresponding factor in
the direct sum@, _, (G,, P) via the identity onG,. In what follows we shall, for
simplicity, write ¢ (u) asu wheneveu € G, for somel € A.

We view the direct produd®,_, (G, P,) as a graph product (over the full graph
on A). Letx € G and letX be any reduced expression for Then, choosing a
vertex! € A, we observe thap(x), is simply the product of all those syllables Xf
which belong to the vertek, taken in the order in which they appear. In particular, if
X = X X' theng (X)), = x,¢(x');. Onthe other hand;(x); = ¢ (X'); forall J # |.

LEMMA 18. Let ¢ be the map defined above. Suppose that € P satisfy
X V'y # oo and, for an arbitrary choice of € A, writex = x;x’andy = y,y'. Then

4) PN VoY) =X VY- (@X) Voy)).

ProOF. We refer to the final claim of Propositioh3, which states that either
Vi <X =X Vy, orl is adjacentto every vertex af. The latter condition implies,
in particular, thatp (x), = x; and¢ (X)), = 1. A similar statement also holds with
respect toy’. Thus we have the following four cases to consider:
Case 1.¢(x), = X, and¢(y), = y,: Since in this case (x'), and¢(y"), are both
trivial, (4) is self-evident.
Case 2.¢(X); = X, andx;, <y, =X VY Inthiscasep(X), <y, < ¢(y),. Also
#(X)y =Landx, vy, =Y. Thus @) reduces t@(y), = Yi¢(Y).
Case 3.y, < x; =X Vy, and¢(y), =y,: This case is similar to Case 2.
Case 4. X, =y, = X, VY. (4) follows in this case by left invariance of the
guasi-lattice order. O

PrROPOSITION1O. Let (G, P) = TI'|cA (G, P)) be a graph product of quasi-lattice
ordered groups. Then the mgp: (G, P) — @,_, (G, P)) (defined by the identity
on each factoris an order preserving homomorphism such that, whengygre P
have a common upper bound i the following hold

@ ¢(x)=¢(y) onlyifx =y, and
(b)) P VPy) =d(XVY).

ProOOF. The induced map is clearly an order preserving homomorphism. Suppose
throughout thak, y € P have a common upper bound.
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We first prove condition (a) assuming that (b) holds: Observe first of all that if
u € P thenu, < ¢(u), foreveryl. So¢(u) = 1 implies thatu = 1. Suppose that
¢ (X) = ¢(y). Then, by condition (b), we have

P(XVY) =d(X) VoY) =d(X) =o(y).

Writing X vV y = xu = yv foru, v € P, it follows that¢ (u) = ¢ (v) = 1. But by the
preceding observation we must then have v = 1 and hence = .

We now prove condition (b): Choodec A such that eithex, # 1 ory, # 1, and
write x = x;x’andy =y, y'. By PropositiorL3we may writexvy = (X, Vy,) (X' VY'),
and hence

PXVYy) =X VyoX Vvy).

By induction on¢(x) + £(y) we have thap (X' vV y') = ¢(X') V¢ (y). Thusitremains
to show that

5) POV AY) =X VY- (@X) VoY),

Note that in the direct produg®,_, (G,, P;) every element may be written
& = [],., &. Combining this with Propositioi3 we have:

(6) OOV oY) = (@00 Vo) [ @005 Vo).

JeA;J#I|

Let (6) denote the equation similarly obtained for the pdiandy’. We recall that
d(X); = ¢(X)y ande(y); = ¢(y); forall J # 1. Thus, 6) follows from (6)
and @) via Lemmals. O

We can now extend Theorem 6.7 Gff to graph products of amenable groups.

THEOREM 20. Any graph product of a family of quasi-lattice orders in which the
underlying groups are amenable is an amenable quasi-lattice oftfet is, the
Toeplitz representation is faithjul

PrROOF. Let (G, P) denote a graph product of the fami{@,, P,),.» Of quasi-
lattice orders, and legt¢, &) denote their direct product. By Proposititf, the map
¢ : (G, P) — (¢, 2) induced by the identity oeach factor satisfies the hypothesis
of Propositionl6. If eachG, is amenable as a group, then s¢islt then follows, by
Propositionl6, that(G, P) is an amenable quasi-lattice order. O
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As an application of TheorefD, we obtain the following characterisation of faith-
fulness of representations 6f (G, P), and the consequent result about uniqueness
of the C*-algebra generated by a covariant isometric representatiéh dflonoid
representationy : P — Isom(s#) andW : Q — Isom(s#) are said tok-commute
if every V, or V¢ for x € P commutes with everyV, or Wy for y € Q, and to be
orthogonalto one another it/;W, = 0 forallx € P andy € Q.

THEOREM 21. Let (G, P) be the graph product of a famil§G,, P,),c, of quasi-
lattice ordered groups.

() If{V, : P = Isom(s7)}, ., is a family of covariant isometric representations
such thatV, x-commutes wittv/; whenl and J are adjacent inC" andV, is orthog-
onal to V; when! and J are not adjacent ifl", then there is a (unique) isometric
covariant representatio’V : P — Isom(s#) such thatV|p = V,. All covariant
representations oP arise this way.

Suppose that eadB,, for | € A, is an amenable group. Then we also have the
following:

(i) The representation of the universal algeb@4 (G, P) associated toV is
faithful if and only if

(7) l_[(l —V,V¥)#£0 forevery finite subset U(P| \ {1)).

xeF leA

(i) If {V;} and {W,} are two families of covariant isometric representations as
in part (i) satisfying(7), then the canonical map,(x) — W, (x) extends to an
isomorphism o€*(V, : x € P) ontoC*(W, : x € P).

PrROOF. The isometries satisfy the commuting relations which deffirees a graph
product of monoids. Therefore the maps P, — V,(s) extend to an isometric
representatioV of the monoidP =T",., P,.

We need to show that this representation is covariant, that is, we need to show tha
ViyVavy = LV V, Vy for all x andy in P.

We proceed by induction of(x) + £(y). Choosel € A(x) U A(y) and write
x = xx andy = y,y. Sincex, andy, cannot both be trivial, this ensures that
LX) + L(Y) < €(X) + L£(y).

Suppose firstthat v y < co. By Propositionl3and the induction hypothesis, we
have
(8) vayvx*vy = VZVX/VXny/VyfVZ*,
wherez = x, vy, € P,. Moreoverx andy arel -adjacent, and from Defition 12 (b)
and (c) we have four cases to consider:
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Case 1.The vertex is adjacentto all the vertices gfand ofy’. ThenV, x-commutes
with V. and withV,,, so that §) becomes
Vo Vg = Vi VLV, Vy

=V VoV, VoV, ViV, Vg by covariance oV

X X

=V, Vo Vo ViV, VoV =V Ve

Case 2.z = x, and| is adjacent to all vertices of. Writez = y,v, withv € P;;
thenV, ViV; = V'V, ViVy = V'V, V. Thus @) becomes

Ve Visy = VOV VAV V) =V V.

XVy Yxvy

Case 3.z=1y, andl is adjacentto all vertices of. (This is analogous to Case 2.)
Case 4.z = x; = y,. InsertingV;'V, in the middle of the right-hand side o8)(we
getV,,, Ve, = VL VeV Vi

Suppose now that v 'y = co. Then by conventior,, V;,, = 0 and it suffices
to show that\/X*Vy = 0. Clearly ifx; vy, = oo then, by covariance d¥,, we have
VeV, = 0,s0V;V, = 0. Thus, we may suppose thatv y, # oo and hence that

VeV, =V, V" wherex, vy, =XU=Yyuv.

Thus
vy Vv, = \AA'AYA \

LetA = a;a,- - - & be areduced expression fgr Either condition (c) of Definitiori 2
holds orv # 1 andA has a syllable with vertex not adjacentitoSuppose the latter,
and leta; be the first syllable ofA for which | (&) is not adjacent td. Note that
I (&) # | becausey’ cannot have initial vertex. Write « = aa,---a_; and
B = & 418,12 - &. We now have

VIV, = VIV, VW,V =V, VIV, V, =0

using the fact tha¥ 7V, = 0 by orthogonality.

We may thus suppose that condition (c) of Definitibh holds, in which case
V)V, =V, Vr. By a similar argument we may suppose also that condition (b)
holds and thav;V, = V,V,;. We have already assumed thxatv y, # oo (part (a)
of Definition 12). All these conditions together imply thatandy are | -adjacent
(Definition 12) and that

ViV, = ViV, V.

By Propositionl3 (i) we now havex' vy’ = oo (sincex v y = oo andx is | -adjacent
to y), and applying the induction hypothesistcandy’ completes the proof that is
covariant.
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To prove (ii) observe first that from Theore2fi and [L6, Theorem 3.7], it follows
that a representation is faithful if and only if

l_[(l —V,V¥) #£0 for every finite subsef c P.

xeF

It is equivalent to consider only products of the form stated’)rbecause replacing
eachx € F by one of its initial syllables has the effect of replaciegch factor
(1 -V, V) by a smaller one. Part (iii) follows from Theorezd and Corollary 3.8
and Corollary 3.9 of16]. O

REMARK 22. In some cases conditio)(is automatically satisfied by all covariant
representations, in which case the Toeplitzalgebrais simple, and purely infinite by
[15, Theorem 5.4]. The best known example of thigis [6]. See [L6, Corollary 5.2
and Corollary 5.3] andg, Theorem 2.4] for more examples involving free products.

5. The C*-algebra of a right-angled Artin semigroup of isometries

Let A be a set (usually taken to be finite, although we shall not make this restriction
here). A matrixM = (mgy)sica iS aCoxeter matriif mgy = mys € {2,3, ... , 0o}
for s #t andmss = 1. Denote by(st)™ the wordsts---, beginning withs and
having lengthm, in which the letters andt alternate.

TheArtin group Ay associated tdM is the group with presentation

(A | (st)™t = (ts)™ for eachs, t € A),

in which arelation of the fornist)>® = (ts)> isto be interpreted as vacuous. TAmin
monoid A}, is defined via the same presentation, taken in the category of monoids
(semigroups with unit), sed]. We may viewA,, as a partially ordered group with
positive conePy, generated by\. The conePy is in general a quotient o\, via
the obvious map, although in many cases of interest this map is known to be injective
(see p] for the most recent results).

Adding the relations® = 1 fors € A to the above ones yields a somewhat unusual
presentation of the more familiar Coxeter grodfy, associated witiM, which is
usually presented via the relatiogst)™: = 1.

DerINITION 23. If the Coxeter groupVy, is finite, the associated Artin groufsy,
is said to be ofinite type [1].

A Coxeter group and its associated Artin grofip are said to beight-angledif
every nondiagonal entry of the Coxeter matvixs either 2 oro; see for exampled).
(By abuse we also refer to the matrix as right-angled.)
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The terminology is motivated by noting that the right-angled Coxeter groups are
those linear reflection groups whose reflecting hyperplanes are mutually orthogonal
or parallel.

Every right-angled Coxeter matr over A determines a graph with vertex set
A having an edge joiningandt whenms; = 2. The only relations in the presentation
of Ay say that two generators commute if they are joined by an edge, Hgpie
precisely the graph produ€t.,Z of copies ofZ. In this connection, right-angled
Artin groups are also referred to geaph groupssee [L4].

By virtue of Theoren? the right-angled Artin monoid\;, may be identified with
the positive cone of the corresponding Artin groyp, and(Ay, A;,) is a quasi-lattice
order by TheoreniO. Applying Theoren?0 we see that this quasi-lattice order is
amenable, and hence the Toeplitz representatid@ oAy, A;,) is faithful. As with
Coburn’s and Cuntz’s theorems, it is more appealing to formulate the result in terms
of the generators themselves; indeed, notice that assertion (iii) below does not contair
any explicit reference to quasi-lattice orders or Artin groups.

THEOREM 24. LetT be a graph with set of vertice’s and supposgVs : s € A}is
a collection of isometries on Hilbert space such that for every pair of distinct vertices
sandt one has

VsVt = ViV, and  VJV, =WV if sandt are adjacentinl’, and
VoV, =0 if sandt are not adjacentir.

Let Ay = [seaZ(S) be the right-angled Artin group associatedIto Then

(i) the mapss — V;, fors € A, extend to a covariant isometric representation
V of the right-angled Artin semigrougy;,
(i) the corresponding representation®f (Ay, Afy) is faithful if and only if

(9) [J0 —VVo) #0  foreveryfiniteF c A, and

seF

(i) if {W; : s € A}is another collection of isometries satisfying the same relations
and condition(9), then the map/s — W; extends to &*-algebra isomorphism of
C*(Vs:se A)toC*(W; :se A).

PROOF. Since the generatoig satisfy the stated relations, the collection of iso-
metric representatiori® € N — V['}s, satisfies the hypothesis of Theorém (i)
and so extends to an isometric representation of the semigkfumiving (i). The
amenability hypothesis is satisfieddause in this case each factor in the graph product
is isomorphic taz, so (ii) and (iii) follow directly from Theoren21. Notice that the
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necessary and sufficient condition for faithfulness in (ii) is equivalent to the one ob-
tained in Theorem1 because every projection of the fori#) (najorates a projection
of the form

l_[(l —V,V¥) for some finiteF C A,

seF

to see this it suffices to replace each syllable- s" € N(s) by the corresponding
generatos. O

REMARK 25. If the setA of generators is finite, the projectidr_, (I — T,T¢
belongs to the Toeplitz algebr& (Ay, A})). Since every nontrivial element i, is
bounded below by a generator, it follows frod8[ Proposition 6.3] that the compact
operators orf?(P) are contained inZ (Ay, A,) as the ideal generated by this pro-
jection. Itis easy to see thal)(holds if and only if it holds forlF = A, so this ideal
is minimal.

6. Non-amenability of lattice ordered groups

Next we concentrate on partially ordered groups in which least common upper
bounds always exist.

DEFINITION 26. A partially ordered grougG, P) is lattice orderedf every pair of
elements has a least common upper bound. By leftinvariance, an equivalent conditior
is that every element € G have a least upper bound ih

Lattice orders are special cases of quasi-lattice orders; in fact we have the following
characterisation, see for example].

LeEmmMA 27. The following are equivalent for a partially ordered grou@, P):

(i) (G, P)is lattice ordered.
(i) (G, P) is quasi-lattice ordered an® = P P2,
(i) (G, P) is quasi-lattice orderedP generatess (in which case we sa§G, P)
is connectefl andaP NbP £ @ forall a,b e P.

ProOF. (i) implies (ii): Suppose&(G, P) is lattice ordered and let € G; then
X < X Vv 1sothatbotta := x v 1andb := x*aare inP. Clearlyx = ab™.

(i) implies (iii): If G = PP~! then obviouslyP generatess. Given a pair
a,b e P,writea *b asxy ! with x, y € P. Thenax = by € aPNbP.

(iii) implies (i): Suppose (iii) holds. Take anye G and (using the connectedness)
write X = a,a, - - - &, with eacha; € P or P~1. Since any elemerat b fora,b e P
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may be rewrittercd! for c,d € P (by findingac = bd € aP N bP), any such
expression fox may ultimately be simplified to the form = uv=! with u, v € P.
Thusx has an upper bound € P and, sincgG, P) is a quasi-lattice order, it must
have a least upper boundr So (i) holds. O

For a quasi-lattice ordeiG, P), we know that ifG is amenable thenG, P) is
amenable, by]8, Section 4.5], see alsd§, Lemma 6.5]. It turns out that for lattice
ordered groups the converse is also true; the proof follows the argument outlined in
Remark 2 of L8, Section 5.1].

ProOPOSITION28. If (G, P) is lattice ordered and amenab(e the sense of Nica,
Definition15) thenG is an amenable group.

PrROOF. Suppos€e G, P) is an amenable lattice order, and denote the left regular
representation d? on¢2(P) by W. As observed by Nica, the mape P — 1 € Cis
a (one-dimensional) covariant isometric representation, so the\whap- 1 extends
to give a one-dimensional representation{G, P), and an easy argument shows
that

(10)

D rW

seP

=> ks

seP

for every finitely (or countably) supported nonnegative function ¢*(P).

Notice that the sum}_, AW; is the operator of left-convolution by € ¢*(P) on
€%(P), and that {0) implies that|| >, AsWs| = 1 for every probability density
A. Since the support of can be chosen to contain an arbitrary finite subsel® of
including the identity, we have that condition (e) 8f Theorem 1] holds, witlp = 2,

U =1 € P, and¢ a probability density whose support contains {1}. By [9,
Theorem 1], the semigroup has a left-invariant mean. (Day’s Theorem is about
right-amenability and right-convolutions, but there is no difficulty in transforming it
into a theorem for left-amenability and left-convolutions.)

Finally, the grougG = P P~tis amenable, by Corollary 3.6 o2{]. O

By Proposition 5.5 and Theorem 5.6 dfj [if Ay is of finite type then the Artin
semigroupA;, embeds as a subsemigroupAy and the pair(Ay, A;,) is a lattice
ordered group (see alsd(). We wish to apply Propositior28 to characterize
amenability of these lattice orders; the first observation is that most Artin groups are
not amenable.

PrOPOSITION29. Let M be a Coxeter matrix over a finite sat The Artin group
Ay is amenabldas a group) if and only if it is the free abelian group oA, that is,
msy = 2forall s,t € A, s #t.
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PROOF. In[5]itis shown that the set of elemens= {Q; = s? : s € A} generates
a subgrouH,, of Ay with presentation

(11) (2] QsQ = QQs if Mgy = 2).

That is, Hy is a right-angled Artin group. In particulaHy contains at least one
free subgroup of rank 2, and hence is not amenable, unless of course 2 for all
s #1t € A. Inthe latter casd\, is free abelian and therefore amenable. O

As a consequence of Propositidf, the analog of Theorer®l (ii) fails for non-
abelian Artin groups of finite type, instead we have the following non-uniqueness
result.

THEOREM 30. Let Ay be a nonabelian Artin group of finite type. Suppd$e :
s € A} is a collection of isometries satisfying the Artin relations relativév/to

(12) (stt)ms’I = (Vtvs)ms’I Ss,teA.

Then the map — V; extends to an isometric representation, denoted als¥ byf
the Artin semigroupd;,. The representatiol is covariant provided that

(13) VAVAVAVARSS VYA

svt Vsvt

s,teA.

The Toeplitz representation on ¢£2( A},) satisfieg12) and(13) and, moreover, the
projection[], (1 — T,T,) does not vanish. However, the Toeplitz representation of
C*(Aw, A}, is not faithful in particular, theC*-algebra generated by a collection
{Vs : s € A}as aboveis not canonically unique, even if we asspfpél— V, V) # O.

PrOOF. The map can be extended to an isometric representation because the givel
isometries satisfy the relationd), which constitute a presentation Af;.

Suppose thatl@3) holds. We need to show that the covariance condition holds for
every pairx,y € Al,. We use the length homomorphidm Aj, — N such that
I(s) = 1for each generatare A. Choosex, y such that the covariance condition is
not satisfied and such thigix v y) is minimised. Amongst the possible pairs, choose
one so thak(x) is the smallest possible.
Case 1.Supposd (x) = 1, so thatx is actually a generata. Writey = tzfort a
generator, so that, V' = V,(V'V)V, V) = V, V"V, V;\. Then, by (3),

VSVS*VyV;‘ = VSVS*VtVt*VyVy* =V, VI

svt “svt

A%
Now s v t andy have a common left factdr writing s v t = tu andy = tz we have

V., V&

svt “svt

VAMEAVAVAVAVAVAVAS

u-u
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Sincesvy=svtvy=t(uV2z),we havethat(u v z) <I(sVy)and covariance
follows by applying the induction hypothesis¥QV,"V,V;" in this expression.
Case 2.Suppose now(x) > 1, and writex = sufor s a generator. PV y = sz
sothatx vy =xvsvy=s(uvVz. Sincel(svy) <l(xvy)andl(s) <I(x),the
induction hypothesis implies that VeV, vV = V,V,V V(. Applying V" on the left
and using the fact that 'V, = 1 this equation becomé4'Vv, Vy = V,V; V. We then
have:V, V;V Vi = V.V ViV Vi = VV ViV, VS Ve, Sincex vy = s(u v z) we
havel (u v 2) < I(x Vv y), and covariance follows in this case, as before, by applying
the induction hypothesis t4,V;V,V;".

It is clear that the Toeplitz representation satisfies the stated relations, and the
projection]], (1 — T,T;) does not vanish a € ¢?(A};). The quasi-lattice ordered
group (Au, A}}) is not amenable by Propositidt8 and Propositior29 and the last

assertion follows, see.p, Corollary 3.9]. O

ReEMARK 31. Since Theoren80 shows that the Toeplitz algebr& (Ay, A;,) of
a nonamenable finite type Artin grou, is not universal for covariant isometric
representations, it is generally hard to decide whether a given collection of isometries
satisfying the Artin relations and the covariance condition actually generates a repre-
sentation of7 (Ay, A;,). In any case, it follows from Theorem 6.7 and Corollary 6.8
of [12) that a given a representation of (Ay, A},) is faithful if and only if the
generating family of isometries is proper, in the sensefthatl — V. V) # 0.

Our results about Toeplitz algebras cover the Artin groufg, A),) that are
presently known to be quasi-lattice ordered, namely the finite type Artin groups from
[1, 10] and the right-angled Artin groups dealt with by Theoréf It would be
interesting to formulate and decide questions of amenability and uniqueness in the
remaining cases. It is known that, far finite, the monoidA;, always has a quasi-
lattice structure (se€l[ 10]), but even when it is known thak,, embeds canonically
in Ay this is not enough to show thahy,, A;,) is quasi-lattice ordered, which is
essential for our techniques.

Note added in proof. At the time this paper was written the best known results on
the ‘injectivity of the Artin monoid’ were contained ir2]. Since then, the proof that
A}, embeds canonically i, for any Coxeter matriM has been announced by Luis
Paris in a preprint entitled ‘Artin monoids inject in their groups’.
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