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Abstract

The graph product of a family of groups lies somewhere between their direct and free products, with
the graph determining which pairs of groups commute. We show that the graph product of quasi-lattice
ordered groups is quasi-lattice ordered, and, when the underlying groups are amenable, that it satisfies
Nica’s amenability condition for quasi-lattice orders. The associated Toeplitz algebras have a universal
property, and their representations are faithful if the generating isometries satisfy a joint properness
condition. When applied to right-angled Artin groups this yields a uniqueness theorem for theC∗-algebra
generated by a collection of isometries such that any two of them either∗-commute or else have orthogonal
ranges. The analogous result fails to hold for the nonabelian Artin groups of finite type considered by
Brieskorn and Saito, and Deligne.
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1. Introduction

Several celebrated results inC∗-algebra theory assert that theC∗-algebra generated
by a semigroup of isometries does not depend on the specific isometries, provided
they satisfy a properness condition. The situations described by these results are of
considerable interest, stemming from the fact that the algebraic structure given by the
semigroup operation determines a uniqueC∗-norm on the∗-algebra generated by the
isometries. As examples we have Coburn’s theorem on theC∗-algebra generated by a
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single isometry [4], Douglas’ theorem on theC∗-algebra of a one parameter semigroup
of isometries [11], and the generalization by Murphy to the ToeplitzC∗-algebra of a
totally ordered group [17]; in all these cases the properness condition simply says that
the isometries are not unitary.

Moving away from total orders on abelian groups, Nica [18] considered a class
of partially ordered groups.G; P/ he calledquasi-lattice ordered. Inspired by what
happens with the left regular (Toeplitz) representation of the positive coneP, he
isolated a key covariance condition, which is automatic for total orders, and defined
a universalC∗-algebraC∗.G; P/ whose representations are given by the covariant
isometric representations ofP. He proved that the uniqueness of theC∗-algebra
generated by a covariant isometric representation depends on an amenability property
of the quasi-lattice order that is strictly weaker than amenability of the underlying
group. Indeed, he showed that Cuntz’s result [7] on the uniqueness of theC∗-algebra
T On generated byn isometries with orthogonal ranges can be seen as an amenability
result for the canonical quasi-lattice order on the free group onn generators. In this
case the covariance condition requires that the generating isometries have orthogonal
ranges, and the properness condition says that the sum of these ranges is not the whole
Hilbert space.

In [16] Laca and Raeburn associated a semigroup dynamical system to each quasi-
lattice order and showed that the corresponding crossed product is canonically isomor-
phic to the universalC∗-algebraC∗.G; P/. This approach led to two main advances.
The first one was the generalisation to all quasi-lattice orders of some key estimates of
Cuntz [6], which provides a convenient framework in which to study faithfulness of
representations and uniqueness properties. The second one was a direct proof of the
amenability of the quasi-lattice orders on a large class of (nonamenable) free product
groups, which widened the range of application of the uniqueness results.

Direct products and free products of groups are both special cases of the more
general construction of a graph product of groups (see Section2 below), and in this
paper we address the natural questions of whether graph products support quasi-
lattice orders, and under which conditions these quasi-lattice orders are amenable in
the sense of Nica [18]. Our main technical results are Theorem10, which shows that
graph products of quasi-lattice ordered groups are indeed quasi-lattice ordered, and
Theorem20, which gives a sufficient condition for their amenability. Combining this
with the results of [16] in Theorem21, we characterize faithful representations and
give a uniqueness result for the Toeplitz algebras of graph products.

An interesting class of examples is that of graph products of copies of.Z;N/,
otherwise known as graph groups or right-angled Artin groups. It follows from our
main results that, in the language of Nica [18], they are all amenable quasi-lattice
orders, giving a unified statement of the amenability of the canonical quasi-lattice
orders on all free groups and all free abelian groups, as well as providing many new
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examples of amenable quasi-lattice orders. The corresponding ToeplitzC∗-algebras
are thus universal and unique. We state this main result in terms of generators and
relations in Theorem24, which contains, as extreme cases, Cuntz’s theorem (in which
the generating isometries have mutually orthogonal ranges) and a multivariable version
of Coburn’s theorem, (in which the generating isometries∗-commute, that is, they
commute with each other and with each other’s adjoints). See [20] for results related
to this last situation.

Other interesting quasi-lattice orders are provided by the family of Artin groups of
finite type, with the embedded Artin monoid as positive cone [1, 10]. These examples,
which include the braid groups, arelattice groups, because every pair of elements has
a least common upper bound. In Section6 we prove, using an argument essentially
due to Nica, that if a group is lattice ordered and amenable as a quasi-lattice order,
then the group itself has to be amenable. Thus, in contrast to what happens with graph
products, only the Artin groups of finite type that are amenable (and hence abelian)
give rise to amenable quasi-lattice orders. The nonabelian Artin groups of finite type
appear then as an important class of groups having canonical non-amenable quasi-
lattice orders. As a consequence, theC∗-algebra generated by a covariant isometric
representation depends, in general, on the specific representation, Theorem30.

2. Graph products of groups

Graph products were defined in the thesis of Green [13], and have been subsequently
studied by various other authors. We refer the reader to [14] and the references therein
for further background.

Let 0 denote a graph with vertex set3, and edge setE.0/ ⊆ { {I ; J} : I ; J ∈
3 and I 6= J}; the edges of0 have no orientation and there is no edge joining a
point to itself. We say that verticesI and J areadjacentin 0 if there is an edge
{I ; J} ∈ E.0/. Note that a vertex is never adjacent to itself. Given a family {GI }I ∈3
of groups, we define thegraph product0I ∈3GI to be the quotient of the free product
∗3GI by the smallest normal subgroup containing the elementsx1x2x−1

1 x−1
2 for all

pairsx1 ∈ GI , x2 ∈ GJ whereI andJ are adjacent in0. When theGI are all copies
of Z, the graph product is called agraph group, or right-angled Artin group. We shall
not need to assume that0 is finite.

Suppose, for the rest of this section, that we are given a graph0, as above, and
groups{GI }I ∈3, and letG = 0I ∈3GI denote the graph product. We may take as a
generating set forG the set

G =
∐
I ∈3

GI \ {1} :

Given x ∈ G we write I .x/ for the unique vertexI such thatx ∈ GI . We say thatx
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belongsto I .x/.
By an expressionX for an elementx ∈ G we mean a word in the generators

G representingx. Given an expressionX = x1x2 · · · xl , the elementsxi are called
syllablesof X and the numberl is called thelengthof X, written l = `.X/. We say
that I ∈ 3 is avertex of X if I = I .xi / for xi a syllable ofX.

Given an expressionX = x1x2 · · · xl for x ∈ G, the graph product relations allow
one to modifyX to obtain a different expression forx by replacing a subexpression
xi xi +1 with xi +1xi if I .xi / is adjacent toI .xi +1/. In the terminology of [14], such
a substitution is called ashuffle, and we shall say that two expressions areshuffle
equivalentif one may be obtained from the other via a finite sequence of shuffles. If
the expressionX contains a subexpression of the formxi xi +1, with I .xi / = I .xi +1/,
then we may give a shorter expression forx by anamalgamation, that is by deleting
xi xi +1 in the case thatxi +1 = x−1

i or otherwise by replacing the two syllablesxi xi +1

with the single syllablêxi ∈ G such that̂xi = xi xi +1.
We say that an expression isreducedif it is not shuffle equivalent to any expression

which admits an amalgamation.

LEMMA 1. Given an expressionX = x1x2 · · · xl , the following are equivalent:

.i/ X is reduced;
.ii/ for all i < j such thatI .xi / = I .xj / there existsk such thati < k < j and

I .xk/ is not adjacent toI .xi /.

PROOF. That (ii) is a consequence of (i) is obvious. We note that the truth
of condition (ii) is invariant under shuffles, while an amalgamation can never be
performed on an expression satisfying (ii). Thus (ii) implies (i).

Given an expressionX = x1x2 · · · xl for x ∈ G, one may easily produce a reduced
expression forx via a finite process of shuffling and amalgamating. IfX fails condition
(ii) of Lemma1, that is, there existsi < j such thatI .xi / = I .xj / andI .xi / commutes
with I .xk/ for all i < k < j , then an obvious sequence of shuffles will allow the
syllablesxi andxj to be amalgamated, reducing the length ofX. One may continue
reducing the length in this manner until condition (ii) is satisfied. The following
theorem, due to Green [13], reduces the solution of the word problem in a graph
product of groups to the solution of the word problem in each of the component
groups (see [14] for an equivalent formulation).

THEOREM 2 (Green [13]). Any two reduced expressions for the same element ofG
are shuffle equivalent.

As a simple consequence of Theorem2we may define thelength`.x/ of an element
x ∈ G to be the length of any reduced expressionX for x, note that̀ .x/ is also the
minimal length of any expression forx. If X is a reduced expression forx, we are
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also justified in referring to a syllable or a vertex ofX as asyllable ofx or avertex
of x, respectively.

Let X = x1x2 · · · xl be a reduced expression, andxi any syllable ofX. If I .xi / is
adjacent toI .xj / for all j < i then we say thatxi is aninitial syllable of X, and that
I .xi / is aninitial vertexof X. We write1.X/ for the set of all initial vertices ofX.
The following facts are easily checked.

LEMMA 3. Let X = x1x2 · · · xl be a reduced expression.

.i/ If xi is an initial syllable ofX, thenX is shuffle equivalent to the expression

xi x1 · · · xi −1xi +1 · · · xl :

.ii/ The initial vertices ofX are pairwise adjacent.
.iii / For eachI ∈ 1.X/ there exists a unique initial syllable ofX belonging toI .

We define the functionŽX : 1.X/ → G such thatŽX.I / is equal to the initial syllable
of X belonging toI .
.iv/ If X′ is another expression which is shuffle equivalent toX, then1.X′/ =

1.X/ andŽX′ = ŽX .

By virtue of Lemma3 (iv) and Theorem2 we may make the following definitions.

DEFINITION 4. Let x ∈ G. We define the set ofinitial verticesof x to be the set
1.x/ = 1.X/ whereX is any reduced expression forx. We also define, for each
I ∈ 3, the elementxI to be the initial syllable ofx that belongs toI if I is an initial
vertex ofx, and 1 if not; that is,

xI =
{
ŽX.I / if I ∈ 1.x/;
1 if I =∈ 1.x/:

Given an expressionX = x1x2 · · · xl let rev.X/ denote the expressionxl xl−1 · · · x1.
This allows us to define the set offinal verticesof x ∈ G to be the set1r .x/ =
1.rev.X//, whereX is any reduced expression forx. Similarly also, foreachI ∈ 3,
we define the element

xr
I =

{
Žrev.X/.I / if I ∈ 1r .x/;

1 if I =∈ 1r .x/;

whereX is any reduced expression forx.

Observe that, by using Lemma3 (i) and (ii), one may always find, for any given
elementx ∈ G, a reduced expression which begins with the product, in any order, of
thexI for I ∈ 1.x/. Equally, one may always find a reduced expression forx which
ends with the product, in any order, of thexr

I for I ∈ 1r .x/.
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LEMMA 5. Givenx; y ∈ G, let D = 1r .x/ ∩1.y/, and suppose thatzI = xr
I yI is

nontrivial for eachI ∈ D. We define an expressionZ = ∏
I ∈D zI (in any order). Then,

if X
(∏

I ∈D xr
I

)
and

(∏
I ∈D yI

)
Y are reduced expressions forx and y respectively, we

have thatX ZY is a reduced expression forxy.

PROOF. Since each elementzI is nontrivial, it is clear that both expressionsX Z and
ZY are reduced since they are formally equivalent to the given reduced expressions
for x and y respectively. (Two expressionsx1x2 · · · xl and y1y2 · · · yk are formally
equivalentif k = l andI .xi / = I .yi / for all 1 ≤ i ≤ l .)

Suppose thatX ZY = w1w2 · · ·wl is not reduced. Then, by Lemma1, one may
find i < j such thatI .wi / = I .w j / and I .wi / is adjacent toI .wk/ for all k with
i < k < j . Butwi andw j are not both inX Z nor both inZY, since these are reduced
expressions. Thuswi must be from the subexpressionX andw j from Y. But now
it follows thatwi is a final syllable ofX Z andw j an initial syllable ofZY. That is,
I .wi / = I .w j / = J for someJ ∈ D. But this contradicts the fact that there is a
syllablewk = zJ lying betweenwi andw j .

3. Quasi-lattice orders and their graph products

Let G be a group and letP be a submonoid (subsemigroup containing the identity)
of G such thatP ∩ P−1 = {1}. Then we may define a left-invariant partial order on
G by x ≤ y wheneverx−1y ∈ P. Note thatx ∈ P if and only if 1 ≤ x. We observe,
indeed, that every left-invariant partial order onG arises in this fashion. We say that
.G; P/ is apartially ordered groupwith positive coneP.

DEFINITION 6. A partially ordered group.G; P/ is quasi-lattice orderedif every
finite set inG with an upper bound inG has a (necessarily unique) least upper bound
in G. Equivalently, every pairx, y of elements ofG with a common upper bound in
G has a least upper bound, which we denote byx ∨ y. If x andy have no common
upper bound inG, then we writex ∨ y = ∞ for convenience.

Given the groupG with positive coneP we may equally define a right-invariant
partial order onG by x ≤r y wheneveryx−1 ∈ P. If x and y have a greatest lower
bound for≤r , we denote it byx ∧r y. Clearly one has

x ≤r y if and only if y−1 ≤ x−1; and x ∧r y = (
x−1 ∨ y−1

)−1
:(1)

LEMMA 7. For a partially ordered group.G; P/ the following statements are equiv-
alent.

.i/ .G; P/ is a quasi-lattice order.
.ii/ Every finite set inG with a common upper bound inP has a least upper bound

in P.
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.iii / Every elementx of G having an upper bound inP has a least upper bound
in P.
.iv/ If x ∈ P P−1, then there exist a pair of elementsa;b ∈ P with x = ab−1 and

such that for everyu; v ∈ P with ab−1 = uv−1, one hasa ≤ u andb ≤ v. (The pair
a;b is clearly unique.)
.v/ Every pairu; v of elements inP has a greatest lower boundu∧r v with respect

to the right-invariant partial order onG.
.vi/ If x ∈ P P−1, then there exist a pair of elementsa;b ∈ P with x = ab−1 and

such thata ∧r b = 1.

Assuming that(i)–(vi) hold, and givenx ∈ P P−1, there is in fact a unique pair
a;b ∈ P satisfying statement(vi), being precisely the paira;b of statement(iv).

PROOF. We prove (i) implies (ii) implies (iii) implies (i) first. Clearly (ii) follows
from (i) by observing that a (least) upper bound inP for a finite setF is the same
thing as a (least) upper bound forF ∪ {1}. Statement (iii) is obviously a special case
of (ii). Finally, (iii) states that the condition of Definition6 holds for all pairsx;1,
and (i) may be recovered from this by left invariance of the partial order.

(iii) implies (iv): Supposex ∈ P P−1. Thenx has an upper bound inP, and by
(iii) we can takea to be the least upper bound inP, and writex = ab−1 for b ∈ P. If
x = uv−1 for u; v ∈ P, thenu is an upper bound forx so we havea ≤ u, and hence
alsob ≤ v (sinceb−1v = a−1u ∈ P).

(iv) implies (v): Givenu; v ∈ P, let x = uv−1. Then the paira;b ∈ P of (iv)
determines an elementw0 := a−1u = b−1v which one checks to be the greatest right
lower boundu ∧r v. For if w is a common right lower bound thenu = cw and
v = dw, for somec;d ∈ P, and one hascd−1 = uv−1 = ab−1. But, by (iv), both
a ≤ c andb ≤ d, so thatw ≤r w0.

(v) implies (vi): Givenx ∈ P P−1, chooseu; v ∈ P such thatx = uv−1. Using
(v) we may writeu = a.u ∧r v/ andv = b.u ∧r v/ for somea;b ∈ P. Clearly
uv−1 = ab−1 anda ∧r b = 1.

(vi) implies (iii): Let x ∈ G have an upper boundu in P. Thenx ∈ P P−1, and by
(vi) we can writex = ab−1 for a;b ∈ P with a ∧r b = 1, or rathera−1 ∨ b−1 = 1,
using (1). Now, for anyu ∈ P that is an upper bound forx, we have 1≤ u and
ab−1 ≤ u. Thusa = a.a−1 ∨ b−1/ = 1 ∨ ab−1 ≤ u. Thereforea is the least upper
bound ofx in P.

Finally suppose that (i)–(vi) hold and letx = uv−1 for u; v ∈ P. Then, as in the
proof of (iv) implies (v), we haveu ∧r v = a−1u = b−1v wherea;b ∈ P is the unique
pair of statement (iv). Thus the pairu; v satisfies the condition of statement (vi),
namelyu ∨r v = 1, if and only ifu = a andv = b.

REMARK 8. We make the following remarks concerning Lemma7.

.1/ Our definition of quasi-lattice order differs slightly from the one originally given
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in [18, Section 2.1], which appears here as statement (ii). Nica had also given an
equivalent form of (ii) consisting of two conditions: QL1, which is statement (iii),
and QL2, which is the statement of Definition6 for all pairsx; y ∈ P. By Lemma7
the various definitions are equivalent; in particular QL2 is not needed as it follows
from QL1.
.2/ In [18] and [16] least upper bounds are always assumed to be inP, but no such
assumption is made here. This causes a slight discrepancy in notation: in this paper,
the least upper bound inP of x andy would be writtenx ∨ y ∨ 1.
.3/ While statements (v) and (vi) may appear to be conditions only on the monoidP,
in fact they are not, because one must have thatw ≤r u∧r v not only for every common
right lower boundw in P but also for every common right lower boundw in G.

Suppose, now, thatG = 0I ∈3GI is a graph product in which each groupGI , for
I ∈ 3, is partially ordered with positive conePI . We say that a reduced expression
X = x1x2 · · · xl is positiveif xi ∈ PI .xi / for all i = 1;2; : : : ; l . Note that this property
is invariant under shuffle equivalence. We say that an elementx ∈ G is positiveif
it has a positive reduced expression. It follows, by Theorem2, that every reduced
expression for a positive element is positive. LetP denote the submonoid ofG
consisting of all positive elements. This is just the submonoid generated by the union
of thePI for I ∈ 3. Moreover, two positive elements are equal inP if and only if their
reduced expressions are shuffle equivalent. ThusP may be presented as themonoid
graph product0I ∈3PI , that is the monoid obtained from the free product∗I ∈3PI by
introducing the relationsxy = yx for all x ∈ PI and y ∈ PJ with I adjacent toJ
in 3.

It is easily seen thatP ∩ P−1 = {1} and hence that.G; P/ is a partially ordered
group. We refer to.G; P/ as thegraph product over0 of the partially ordered
groups{.GI ; PI /}I ∈3, and write.G; P/ = 0I ∈3.GI ; PI /. Note that each.GI ; PI / is a
partially ordered subgroup of.G; P/. That is, the inclusion map is order preserving.

LEMMA 9. Suppose that.G; P/ = 0I ∈3.GI ; PI / is a graph product of quasi-lattice
ordered groups and denote by1r .x; y/ the intersection1r .x/ ∩ 1r .y/ of the final
vertex sets of elementsx and y in G. For any pair u; v ∈ P, there exista;b ∈ P
satisfying the following conditions.

.i/ ab−1 = uv−1, with a ≤ u, b ≤ v, andar
I ∧r br

I = 1 for all I ∈ 1r .a;b/.
(Note that by Lemma7 (v) ∧r is defined in each quasi-lattice order.GI ; PI /.)
.ii/ Writing reduced expressionsA · .∏

1r .a;b/ ar
I / and

(∏
1r .a;b/.b

r
I /

−1
)
B for a and

b−1 respectively, one has that

A

[ ∏
1r .a;b/

.ar
I .b

r
I /

−1/

]
B(2)

is a reduced expression forab−1.
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PROOF. (i): We proceed by induction oǹ.u/ + `.v/, the case whereu = v = 1
being trivially true. Givenu; v ∈ P we have

u = û ·
∏

I ∈1r .u;v/

.ur
I ∧r v

r
I / and v = v̂ ·

∏
I ∈1r .u;v/

.ur
I ∧r v

r
I / ;

whereû; v̂ ∈ P andûv̂−1 = uv−1. Now if both ur
I .u

r
I ∧r v

r
I /

−1 andvr
I .u

r
I ∧r v

r
I /

−1

are nontrivial for eachI ∈ 1r .a;b/, then these are precisely the final syllables of
û and v̂ respectively (in particular,1r .û; v̂/ = 1r .u; v/). Putting a = û;b = v̂

satisfies the claim in this case. Otherwise, someur
I ∧r v

r
I equals eitherur

I or vr
I for

someI ∈ 1r .a;b/. In this casè .û/+ `.v̂/ < `.u/+ `.v/, and the result follows by
induction.

(ii): This is a straightforward application of Lemma5, the conditionar
I ∧r br

I = 1
ensuring that the syllables.ar

I .b
r
I /

−1/ are nontrivial.

THEOREM 10. A graph product.G; P/ = 0I ∈3.GI ; PI / of quasi-lattice ordered
groups is a quasi-lattice ordered group.

PROOF. We prove that.G; P/ satisfies condition (iv) of Lemma7.
Givenx ∈ P P−1, Lemma9 implies thatx has a reducedexpressionX = x1x2 · · · xm

in which each syllablexi lies in PI .xi /
P−1

I .xi /
. (More specifically,X may take the form

of (2), with the strictly positive syllables appearing first and strictly negative syllables
appearing last). Since each.GI ; PI / is quasi-lattice ordered we may, in view of
Lemma7 (vi), write eachxi uniquely asai b

−1
i with ai ∧r bi = 1. Define elements

a, b ∈ P by a = a1a2 · · · am and b = bmbm−1 · · · b1. Since any shuffle of the
syllablesx1; x2; : : : ; xm induces a legal shuffle of the nontrivialai ’s (respectively the
nontrivial bi ’s) it follows by Theorem2 that the pair of elementsa;b is uniquely
determined byx (independently of the choice of reduced expression).

Given any pairu; v ∈ P with uv−1 = x, let a;b ∈ P be any pair as in Lemma9.
The unique paira;b which we have just defined may be computed from any reduced
expression forx, in particular from expression (2) of Lemma9 (ii). It follows that
a = a andb = b. This shows thatx = ab−1 and thata ≤ u andb ≤ v for every
u; v ∈ P such thatx = uv−1, as required by Lemma7 (iv).

LEMMA 11. Suppose that.G; P/ is a graph product of partially ordered groups
.GI ; PI / for I ∈ 3. Let x; z ∈ P be such that1 ≤ x ≤ z. Then, for eachI ∈ 3,

.i/ xI ≤ zI , and
.ii/ writing x = xI x′, eitherxI = zI or I is adjacent to every vertex ofx′.

PROOF. We havez = xw, wherex, zandw are all positive. LetD = 1r .x/∩1.w/
and take reduced expressionsX

(∏
J∈D xr

J

)
for x and

(∏
J∈D wJ

)
W for w. Note that
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xr
JwJ is nontrivial, for eachJ ∈ D, since it is a product of nontrivial positive elements.

Thus, by Lemma5, we have the following (necessarily positive) reduced expression
for z:

Z = X

(∏
J∈D

.xr
JwJ/

)
W:

If zI = 1 then the lemma is trivially true. Thus we supposezI 6= 1 and ask where
the initial syllablezI might appear in the above expression.
Case 1.If the initial syllablezI falls in the subexpressionX, then it is also an initial
syllable of the reduced expression given forx. ThusxI = zI , satisfying (i) and (ii).
Case 2. If I ∈ D and the initial syllablezI happens to be the syllable.xr

IwI /, then
every vertex ofX and everyJ ∈ D other thanI itself is adjacent toI . It follows that
xr

I is also an initial syllable ofx. That isxI = xr
I , andx′ has a reduced expression

X

( ∏
J∈D;J 6=I

xr
J

)
:

SozI = xIwI giving part (i), andI is adjacent to every vertex ofx′ giving part (ii).
Case 3. If the initial syllablezI falls in the subexpressionW, then every vertex of
x is adjacent toI and, in particular,xI = 1. Both parts of the lemma are again
satisfied.

DEFINITION 12. We consider a graph product.G; P/ = 0J∈3.GJ ; PJ/ of quasi-
lattice orders, and chooseI ∈ 3. Given elementsx; y ∈ P, write x = xI x′ and
y = yI y′. We say that the elementsx; y ∈ P are I -adjacentif the following three
conditions hold:

.a/ xI andyI have a common upper bound;

.b/ eitherxI = xI ∨ yI or I is adjacent to every vertex ofx′;

.c/ eitheryI = xI ∨ yI or I is adjacent to every vertex ofy′.

This definition allows us to give an inductive algorithm for deciding whether two
elementsx; y ∈ P have a common upper bound, and for computingx ∨ y when it
exists. Notice first that ifx ∈ GI andy ∈ GJ , then the least common upper bound of
x andy in .G; P/ is given by

x ∨ y =




x ∨I y if I = J;

xy I andJ are adjacent;

∞ if I andJ are not adjacent.
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PROPOSITION13. Suppose that.G; P/ = 0J∈3.GJ ; PJ/ is a graph product of
quasi-lattice ordered groups. Letx; y ∈ P and, for an arbitrary choice ofI ∈ 3,
write x = xI x′ and y = yI y′. Then we have the following.

.i/ The elementsx; y ∈ P have a common upper bound if and only if they are
I -adjacent andx′ ∨ y′ 6= ∞.
.ii/ Suppose that the elementsx; y ∈ P do have a common upper bound. Then

x ∨ y = .xI ∨ yI / · .x′ ∨ y′/:

Note that conditions(b) and (c) of Definition12apply to this expression.

PROOF. Suppose initially that the elementsx andy are I -adjacent and, by condi-
tion (a) of Definition12, write xI ∨ yI = xI u = yI v for someu; v ∈ PI . Then, by
condition (b), eitheru = 1 or I is adjacent to every vertex ofx′, in which casex′

has noI component. In either case one has thatux′ = x′u = u ∨ x′. Similarly, by
condition (c), we havevy′ = y′v = v ∨ y′. Therefore, supposing in addition that
x′ ∨ y′ 6= ∞ we have:

.xI ∨ yI /.x
′ ∨ y′/ = xI ux′ ∨ yI vy′(3)

= xI .u ∨ x′/ ∨ yI .v ∨ y′/

= .xI ∨ yI / ∨ x ∨ y = x ∨ y:

It follows thatx andy have a common upper bound andx ∨ y is given by the above
equation.

On the other hand, suppose thatz = x ∨ y 6= ∞. We first observe thatx and y
are I -adjacent. ClearlyxI ∨ yI ≤ z, justifying (a), and conditions (b) and (c) follow
directly from Lemma11 (ii). Finally, sincex ∨ y 6= ∞, the equalities of (3) may be
read in reverse order to show thatx′ ∨ y′ 6= ∞.

REMARK 14. To see that Proposition13 leads to an effective algorithm, we note
that by always choosingI ∈ 1.x/ ∪ 1.y/ we ensure that̀.x′/ + `.y′/ is always
strictly less thaǹ .x/+ `.y/.

4. Amenability for graph products of quasi-lattice orders

Let .G; P/ be a quasi-lattice ordered group. Recall from [18] that an isometric rep-
resentationV : P → Isom.H / on a Hilbert spaceH is covariantif it is compatible
with the quasi-lattice structure in the sense that

VxV ∗
x VyV ∗

y = Vx∨yV ∗
x∨y for x; y ∈ P:
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The notation is meant to include the conventionV∞ = 0, so in particular covariance
impliesVxV ∗

x VyV ∗
y = 0 whenx andy have no common upper bound.

The main example of such a representation is the Toeplitz representationT :
P → Isom.`2.P//, defined byTx"y := "x y, where"x denotes the typical orthonormal
basis vector of̀ 2.P/. TheC∗-algebra generated by theTx is called theToeplitzC∗-
algebra of the quasi-lattice ordered group.G; P/ and is denotedT .G; P/. Nica also
considered theC∗-algebraC∗.G; P/, universal for covariant isometric representations
of P and made the following definition.

DEFINITION 15. When the canonical homomorphism ofC∗.G; P/ to T .G; P/ is
injective we say that.G; P/ is anamenable quasi-lattice order.

There is a semigroupC∗-dynamical system.BP; P; Þ/ canonically associated toP,
in whichBP is theC∗-subalgebra of̀∞.P/ generatedby the characteristic functions 1y

of the semi-infinite intervals[y;∞/ for y ∈ P; the endomorphismÞx corresponding
to x ∈ P is defined byÞx.1y/ = 1x y. Covariant isometric representations ofP are in
one to one correspondence with covariant representations of the semigroup dynamical
system.BP; P; Þ/ and this leads to the realisation ofC∗.G; P/ as a semigroup crossed
product, see [16, Section 2] for the details. There is a canonical conditional expectation
from BP oÞ P onto BP, which is faithful if and only if .G; P/ is amenable [18,
Section 4.3]. This property, taken as the definition of amenability of.G; P/ in [16], is
instrumental in the direct proof of amenability for free product orders, which we aim
to generalise in this section.

We will need the following reformulation of Proposition 6.6 of [16].

PROPOSITION16 (Laca, Raeburn [16]). Suppose� : .G; P/ → .G ;P/ is an or-
der preserving homomorphism of quasi-lattice ordered groups such that, whenever
x; y ∈ P have a common upper bound inP,

.a/ �.x/ = �.y/ only if x = y, and

.b/ �.x/ ∨ �.y/ = �.x ∨ y/.

If G is an amenable group, then.G; P/ is an amenable quasi-lattice order.

REMARK 17. Proposition 6.6 of [16] should have been stated like this. The reason
is that the proof indicated there, modelled on that of [16, Proposition 4.2], requires
that the conditional expectation for the coaction ofG on C∗.G; P/ be faithful, which
is true ifG is amenable by [19]. We do not know whether Proposition 6.6 of [16] is
correct as originally stated; however all that is required for the other results in [16] is
the version stated above.

Suppose now that.G; P/ = 0I ∈3.GI ; PI / is a graph product of quasi-lattice
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ordered groups. We define the group homomorphism

� : .G; P/ −→
⊕
I ∈3
.GI ; PI /

such that each factor.GI ; PI / of .G; P/ is mapped to the corresponding factor in
the direct sum

⊕
I ∈3.GI ; PI / via the identity onGI . In what follows we shall, for

simplicity, write�.u/ asu wheneveru ∈ GI for someI ∈ 3.
We view the direct product

⊕
I ∈3.GI ; PI / as a graph product (over the full graph

on 3). Let x ∈ G and let X be any reduced expression forx. Then, choosing a
vertex I ∈ 3, we observe that�.x/I is simply the product of all those syllables ofX
which belong to the vertexI , taken in the order in which they appear. In particular, if
x = xI x′ then�.x/I = xI�.x′/I . On the other hand,�.x/J = �.x′/J for all J 6= I .

LEMMA 18. Let � be the map defined above. Suppose thatx; y ∈ P satisfy
x ∨ y 6= ∞ and, for an arbitrary choice ofI ∈ 3, write x = xI x′ andy = yI y′. Then

�.x/I ∨ �.y/I = .xI ∨ yI / · .�.x′/I ∨ �.y′/I / :(4)

PROOF. We refer to the final claim of Proposition13, which states that either
yI ≤ xI = xI ∨ yI or I is adjacent to every vertex ofx′. The latter condition implies,
in particular, that�.x/I = xI and�.x′/I = 1. A similar statement also holds with
respect toy′. Thus we have the following four cases to consider:
Case 1.�.x/I = xI and�.y/I = yI : Since in this case�.x′/I and�.y′/I are both
trivial, (4) is self-evident.
Case 2.�.x/I = xI andxI ≤ yI = xI ∨ yI : In this case�.x/I ≤ yI ≤ �.y/I . Also
�.x′/I = 1 andxI ∨ yI = yI . Thus (4) reduces to�.y/I = yI�.y′/I .
Case 3.yI ≤ xI = xI ∨ yI and�.y/I = yI : This case is similar to Case 2.
Case 4. xI = yI = xI ∨ yI : (4) follows in this case by left invariance of the
quasi-lattice order.

PROPOSITION19. Let .G; P/ = 0I ∈3.GI ; PI / be a graph product of quasi-lattice
ordered groups. Then the map� : .G; P/ → ⊕

I ∈3.GI ; PI / (defined by the identity
on each factor) is an order preserving homomorphism such that, wheneverx; y ∈ P
have a common upper bound inP, the following hold:

.a/ �.x/ = �.y/ only if x = y, and

.b/ �.x/ ∨ �.y/ = �.x ∨ y/.

PROOF. The induced map is clearly an order preserving homomorphism. Suppose
throughout thatx; y ∈ P have a common upper bound.
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We first prove condition (a) assuming that (b) holds: Observe first of all that if
u ∈ P thenuI ≤ �.u/I for every I . So�.u/ = 1 implies thatu = 1. Suppose that
�.x/ = �.y/. Then, by condition (b), we have

�.x ∨ y/ = �.x/ ∨ �.y/ = �.x/ = �.y/:

Writing x ∨ y = xu = yv for u; v ∈ P, it follows that�.u/ = �.v/ = 1. But by the
preceding observation we must then haveu = v = 1 and hencex = y.

We now prove condition (b): ChooseI ∈ 3 such that eitherxI 6= 1 or yI 6= 1, and
write x = xI x′ andy = yI y′. By Proposition13we may writex∨y = .xI ∨yI /.x′∨y′/,
and hence

�.x ∨ y/ = .xI ∨ yI /�.x
′ ∨ y′/ :

By induction oǹ .x/+`.y/ we have that�.x′ ∨ y′/ = �.x′/∨�.y′/. Thus it remains
to show that

�.x/ ∨ �.y/ = .xI ∨ yI / · .�.x′/ ∨ �.y′//:(5)

Note that in the direct product
⊕

J∈3.GJ ; PJ/ every element¾ may be written
¾ = ∏

J∈3 ¾J . Combining this with Proposition13we have:

�.x/ ∨ �.y/ = .�.x/I ∨ �.y/I /
∏

J∈3;J 6=I

.�.x/J ∨ �.y/J/:(6)

Let (6′) denote the equation similarly obtained for the pairx′ and y′. We recall that
�.x/J = �.x′/J and�.y/J = �.y′/J for all J 6= I . Thus, (5) follows from (6)
and (6′) via Lemma18.

We can now extend Theorem 6.7 of [16] to graph products of amenable groups.

THEOREM 20. Any graph product of a family of quasi-lattice orders in which the
underlying groups are amenable is an amenable quasi-lattice order(that is, the
Toeplitz representation is faithful).

PROOF. Let .G; P/ denote a graph product of the family.GI ; PI /I ∈3 of quasi-
lattice orders, and let.G ;P/ denote their direct product. By Proposition19, the map
� : .G; P/ → .G ;P/ induced by the identity oneach factor satisfies the hypothesis
of Proposition16. If eachGI is amenable as a group, then so isG . It then follows, by
Proposition16, that.G; P/ is an amenable quasi-lattice order.
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As an application of Theorem20, we obtain the following characterisation of faith-
fulness of representations ofC∗.G; P/, and the consequent result about uniqueness
of the C∗-algebra generated by a covariant isometric representation ofP. Monoid
representationsV : P → Isom.H / andW : Q → Isom.H / are said to∗-commute
if every Vx or V ∗

x for x ∈ P commutes with everyWy or W∗
y for y ∈ Q, and to be

orthogonalto one another ifV ∗
x Wy = 0 for all x ∈ P andy ∈ Q.

THEOREM 21. Let .G; P/ be the graph product of a family.GI ; PI /I ∈3 of quasi-
lattice ordered groups.

.i/ If {VI : PI → Isom.H /}I ∈3 is a family of covariant isometric representations
such thatVI ∗-commutes withVJ whenI and J are adjacent in0 and VI is orthog-
onal to VJ when I and J are not adjacent in0, then there is a (unique) isometric
covariant representationV : P → Isom.H / such thatV|PI

= VI . All covariant
representations ofP arise this way.

Suppose that eachGI , for I ∈ 3, is an amenable group. Then we also have the
following:

.ii/ The representation of the universal algebraC∗.G; P/ associated toV is
faithful if and only if∏

x∈F

.1 − VxV ∗
x / 6= 0 for every finite subsetF ⊂

⋃
I ∈3
.PI \ {1}/:(7)

.iii / If {VI } and {WI } are two families of covariant isometric representations as
in part (i) satisfying(7), then the canonical mapVI .x/ 7→ WI .x/ extends to an
isomorphism ofC∗.Vx : x ∈ P/ ontoC∗.Wx : x ∈ P/.

PROOF. The isometries satisfy the commuting relations which defineP as a graph
product of monoids. Therefore the mapss ∈ PI 7→ VI .s/ extend to an isometric
representationV of the monoidP = 0I ∈3PI .

We need to show that this representation is covariant, that is, we need to show that
Vx∨yV ∗

x∨y = Vx V ∗
x VyV ∗

y for all x andy in P.
We proceed by induction oǹ.x/ + `.y/. ChooseI ∈ 1.x/ ∪ 1.y/ and write

x = xI x′ and y = yI y′. SincexI and yI cannot both be trivial, this ensures that
`.x′/+ `.y′/ < `.x/+ `.y/.

Suppose first thatx ∨ y < ∞. By Proposition13and the induction hypothesis, we
have

Vx∨yV ∗
x∨y = VzVx′ V ∗

x′ Vy′ V ∗
y′ V ∗

z ;(8)

wherez = xI ∨ yI ∈ PI . Moreover,x andy areI -adjacent, and from Definition 12(b)
and (c) we have four cases to consider:
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Case 1.The vertexI is adjacent to all the vertices ofx′ and ofy′. ThenVI ∗-commutes
with Vx′ and withVy′, so that (8) becomes

Vx∨yV ∗
x∨y = Vx′ V∗

x′ VzV
∗

z Vy′ V ∗
y′

= Vx′ V∗
x′ VxI

V ∗
xI

VyI
V∗

yI
Vy′ V ∗

y′ by covariance ofVI

= VxI
Vx′ V ∗

x′ V ∗
xI

VyI
Vy′ V∗

y′ V∗
yI

= Vx V∗
x VyV∗

y :

Case 2. z = xI and I is adjacent to all vertices ofy′. Write z = yI v, with v ∈ PI ;
thenVy′ V ∗

y′ V ∗
z = V ∗

v Vy′ V ∗
y′ V ∗

yI
= V ∗

z VyV ∗
y . Thus (8) becomes

Vx∨yV ∗
x∨y = VzVx′ V ∗

x′ V ∗
z VyV ∗

y = Vx V ∗
x VyV ∗

y :

Case 3.z = yI and I is adjacent to all vertices ofx′. (This is analogous to Case 2.)
Case 4.z = xI = yI . InsertingV ∗

z Vz in the middle of the right-hand side of (8) we
getVx∨yV ∗

x∨y = Vx V ∗
x VyV ∗

y .
Suppose now thatx ∨ y = ∞. Then by conventionVx∨yV∗

x∨y = 0 and it suffices
to show thatV ∗

x Vy = 0. Clearly if xI ∨ yI = ∞ then, by covariance ofVI , we have
V ∗

xI
VyI

= 0, soV ∗
x Vy = 0. Thus, we may suppose thatxI ∨ yI 6= ∞ and hence that

V∗
xI

VyI
= VuV ∗

v wherexI ∨ yI = xI u = yI v:

Thus

V ∗
x Vy = V ∗

x′ VuV ∗
v Vy′:

Let A = a1a2 · · · ak be a reduced expression fory′. Either condition (c) of Definition12
holds orv 6= 1 andA has a syllable with vertex not adjacent toI . Suppose the latter,
and letai be the first syllable ofA for which I .ai / is not adjacent toI . Note that
I .ai / 6= I becausey′ cannot have initial vertexI . Write Þ = a1a2 · · · ai −1 and
þ = ai +1ai +2 · · · ak. We now have

V ∗
v Vy′ = V ∗

v VÞVai
Vþ = VÞV∗

v Vai
Vþ = 0

using the fact thatV ∗
v Vai

= 0 by orthogonality.
We may thus suppose that condition (c) of Definition12 holds, in which case

V ∗
v Vy′ = Vy′ V ∗

v . By a similar argument we may suppose also that condition (b)
holds and thatV∗

x′ Vu = VuV ∗
x′. We have already assumed thatxI ∨ yI 6= ∞ (part (a)

of Definition 12). All these conditions together imply thatx and y are I -adjacent
(Definition12) and that

V ∗
x Vy = VuV ∗

x′ Vy′ V ∗
v :

By Proposition13(i) we now havex′ ∨ y′ = ∞ (sincex ∨ y = ∞ andx is I -adjacent
to y), and applying the induction hypothesis tox′ andy′ completes the proof thatV is
covariant.
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To prove (ii) observe first that from Theorem20 and [16, Theorem 3.7], it follows
that a representation is faithful if and only if∏

x∈F

.1 − VxV ∗
x / 6= 0 for every finite subsetF ⊂ P:

It is equivalent to consider only products of the form stated in (7) because replacing
eachx ∈ F by one of its initial syllables has the effect of replacingeach factor
.1 − VxV ∗

x / by a smaller one. Part (iii) follows from Theorem20 and Corollary 3.8
and Corollary 3.9 of [16].

REMARK 22. In some cases condition (7) is automatically satisfied by all covariant
representations, in which case the ToeplitzC∗-algebra is simple, and purely infinite by
[15, Theorem 5.4]. The best known example of this isO∞ [6]. See [16, Corollary 5.2
and Corollary 5.3] and [8, Theorem 2.4] for more examples involving free products.

5. TheC∗-algebra of a right-angled Artin semigroup of isometries

Let3 be a set (usually taken to be finite, although we shall not make this restriction
here). A matrixM = .ms;t /s;t∈3 is aCoxeter matrixif ms;t = mt;s ∈ {2;3; : : : ;∞}
for s 6= t andms;s = 1. Denote by〈st〉m the wordsts· · · , beginning withs and
having lengthm, in which the letterss andt alternate.

TheArtin group AM associated toM is the group with presentation

〈3 | 〈st〉ms;t = 〈ts〉ms;t for eachs; t ∈ 3〉;
in which a relation of the form〈st〉∞ = 〈ts〉∞ is to be interpretedas vacuous. TheArtin
monoid A+

M is defined via the same presentation, taken in the category of monoids
(semigroups with unit), see [1]. We may viewAM as a partially ordered group with
positive conePM generated by3. The conePM is in general a quotient ofA+

M via
the obvious map, although in many cases of interest this map is known to be injective
(see [2] for the most recent results).

Adding the relationss2 = 1 for s ∈ 3 to the above ones yields a somewhat unusual
presentation of the more familiar Coxeter groupWM associated withM , which is
usually presented via the relations.st/ms;t = 1.

DEFINITION 23. If the Coxeter groupWM is finite, the associated Artin groupAM

is said to be offinite type, [1].
A Coxeter group and its associated Artin groupAM are said to beright-angledif

every nondiagonal entry of the Coxeter matrixM is either 2 or∞; see for example [3].
(By abuse we also refer to the matrix as right-angled.)
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The terminology is motivated by noting that the right-angled Coxeter groups are
those linear reflection groups whose reflecting hyperplanes are mutually orthogonal
or parallel.

Every right-angled Coxeter matrixM over3 determines a graph0 with vertex set
3 having an edge joinings andt whenms;t = 2. The only relations in the presentation
of AM say that two generators commute if they are joined by an edge, henceAM is
precisely the graph product0I ∈3Z of copies ofZ. In this connection, right-angled
Artin groups are also referred to asgraph groups, see [14].

By virtue of Theorem2 the right-angled Artin monoidA+
M may be identified with

the positive cone of the corresponding Artin groupAM , and.AM ; A+
M/ is a quasi-lattice

order by Theorem10. Applying Theorem20 we see that this quasi-lattice order is
amenable, and hence the Toeplitz representation ofC∗.AM ; A+

M/ is faithful. As with
Coburn’s and Cuntz’s theorems, it is more appealing to formulate the result in terms
of the generators themselves; indeed, notice that assertion (iii) below does not contain
any explicit reference to quasi-lattice orders or Artin groups.

THEOREM 24. Let0 be a graph with set of vertices3 and suppose{Vs : s ∈ 3} is
a collection of isometries on Hilbert space such that for every pair of distinct vertices
s andt one has

VsVt = Vt Vs and V ∗
s Vt = Vt V

∗
s if s andt are adjacent in0, and

V∗
s Vt = 0 if s andt are not adjacent in0:

Let AM = 0s∈3Z〈s〉 be the right-angled Artin group associated to0. Then

.i/ the mapss → Vs, for s ∈ 3, extend to a covariant isometric representation
V of the right-angled Artin semigroupA+

M ,
.ii/ the corresponding representation ofC∗.AM ; A+

M/ is faithful if and only if

∏
s∈F

.I − VsV ∗
s / 6= 0 for every finiteF ⊂ 3; and(9)

.iii / if {Ws : s ∈ 3} is another collection of isometries satisfying the same relations
and condition(9), then the mapVs 7→ Ws extends to aC∗-algebra isomorphism of
C∗.Vs : s ∈ 3/ to C∗.Ws : s ∈ 3/.

PROOF. Since the generatorsVs satisfy the stated relations, the collection of iso-
metric representations{n ∈ N 7→ Vn

s }s∈3 satisfies the hypothesis of Theorem21 (i)
and so extends to an isometric representation of the semigroupA+

M , giving (i). The
amenability hypothesis is satisfied because in this case each factor in the graph product
is isomorphic toZ, so (ii) and (iii) follow directly from Theorem21. Notice that the



[19] Toeplitz algebras of Artin groups 241

necessary and sufficient condition for faithfulness in (ii) is equivalent to the one ob-
tained in Theorem21because every projection of the form (7) majorates a projection
of the form ∏

s∈F

.I − VsV∗
s / for some finiteF ⊂ 3;

to see this it suffices to replace each syllablex = sn ∈ N〈s〉 by the corresponding
generators.

REMARK 25. If the set3 of generators is finite, the projection
∏

s∈3.I − TsT∗
s /

belongs to the Toeplitz algebraT .AM ; A+
M/. Since every nontrivial element inA+

M is
bounded below by a generator, it follows from [18, Proposition 6.3] that the compact
operators oǹ 2.P/ are contained inT .AM ; A+

M/ as the ideal generated by this pro-
jection. It is easy to see that (9) holds if and only if it holds forF = 3, so this ideal
is minimal.

6. Non-amenability of lattice ordered groups

Next we concentrate on partially ordered groups in which least common upper
bounds always exist.

DEFINITION 26. A partially ordered group.G; P/ is lattice orderedif every pair of
elements has a least common upper bound. By left invariance, an equivalent condition
is that every elementx ∈ G have a least upper bound inP.

Lattice orders are special cases of quasi-lattice orders; in fact we have the following
characterisation, see for example [18].

LEMMA 27. The following are equivalent for a partially ordered group.G; P/:

.i/ .G; P/ is lattice ordered.
.ii/ .G; P/ is quasi-lattice ordered andG = P P−1.
.iii / .G; P/ is quasi-lattice ordered,P generatesG (in which case we say.G; P/

is connected), anda P ∩ bP 6= ∅ for all a;b ∈ P.

PROOF. (i) implies (ii): Suppose.G; P/ is lattice ordered and letx ∈ G; then
x ≤ x ∨ 1 so that botha := x ∨ 1 andb := x−1a are inP. Clearlyx = ab−1.

(ii) implies (iii): If G = P P−1 then obviouslyP generatesG. Given a pair
a;b ∈ P, write a−1b asxy−1 with x; y ∈ P. Thenax = by ∈ a P ∩ bP.

(iii) implies (i): Suppose (iii) holds. Take anyx ∈ G and (using the connectedness)
write x = a1a2 · · · ak with eachai ∈ P or P−1. Since any elementa−1b for a;b ∈ P
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may be rewrittencd−1 for c;d ∈ P (by finding ac = bd ∈ a P ∩ bP), any such
expression forx may ultimately be simplified to the formx = uv−1 with u; v ∈ P.
Thusx has an upper boundu ∈ P and, since.G; P/ is a quasi-lattice order, it must
have a least upper bound inP. So (i) holds.

For a quasi-lattice order.G; P/, we know that ifG is amenable then.G; P/ is
amenable, by [18, Section 4.5], see also [16, Lemma 6.5]. It turns out that for lattice
ordered groups the converse is also true; the proof follows the argument outlined in
Remark 2 of [18, Section 5.1].

PROPOSITION28. If .G; P/ is lattice ordered and amenable(in the sense of Nica,
Definition15) thenG is an amenable group.

PROOF. Suppose.G; P/ is an amenable lattice order, and denote the left regular
representation ofP on`2.P/ by W. As observed by Nica, the mapx ∈ P 7→ 1 ∈ C is
a (one-dimensional) covariant isometric representation, so the mapWx 7→ 1 extends
to give a one-dimensional representation ofT .G; P/, and an easy argument shows
that ∥∥∥∥∥

∑
s∈P

½sWs

∥∥∥∥∥ =
∑
s∈P

½s(10)

for every finitely (or countably) supported nonnegative function½ in `1.P/.
Notice that the sum

∑
s ½sWs is the operator of left-convolution by½ ∈ `1.P/ on

`2.P/, and that (10) implies that
∥∥∑

s∈P ½sWs

∥∥ = 1 for every probability density
½. Since the support of½ can be chosen to contain an arbitrary finite subset ofP
including the identity, we have that condition (e) of [9, Theorem 1] holds, withp = 2,
U = 1 ∈ P, and� a probability density whose support contains¾ ∪ {1}. By [9,
Theorem 1], the semigroupP has a left-invariant mean. (Day’s Theorem is about
right-amenability and right-convolutions, but there is no difficulty in transforming it
into a theorem for left-amenability and left-convolutions.)

Finally, the groupG = P P−1 is amenable, by Corollary 3.6 of [21].

By Proposition 5.5 and Theorem 5.6 of [1], if AM is of finite type then the Artin
semigroupA+

M embeds as a subsemigroup ofAM and the pair.AM ; A+
M/ is a lattice

ordered group (see also [10]). We wish to apply Proposition28 to characterize
amenability of these lattice orders; the first observation is that most Artin groups are
not amenable.

PROPOSITION29. Let M be a Coxeter matrix over a finite set3. The Artin group
AM is amenable(as a group) if and only if it is the free abelian group on3, that is,
ms;t = 2 for all s; t ∈ 3, s 6= t .
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PROOF. In [5] it is shown that the set of elementsQ = {Qs = s2 : s ∈ 3} generates
a subgroupHM of AM with presentation

〈Q | QsQt = Qt Qs if ms;t = 2〉:(11)

That is, HM is a right-angled Artin group. In particular,HM contains at least one
free subgroup of rank 2, and hence is not amenable, unless of coursems;t = 2 for all
s 6= t ∈ 3. In the latter caseAM is free abelian and therefore amenable.

As a consequence of Proposition29, the analog of Theorem21 (ii) fails for non-
abelian Artin groups of finite type, instead we have the following non-uniqueness
result.

THEOREM 30. Let AM be a nonabelian Artin group of finite type. Suppose{Vs :
s ∈ 3} is a collection of isometries satisfying the Artin relations relative toM :

〈VsVt〉ms;t = 〈Vt Vs〉ms;t s; t ∈ 3:(12)

Then the maps 7→ Vs extends to an isometric representation, denoted also byV, of
the Artin semigroupA+

M . The representationV is covariant provided that

VsV
∗

s Vt V
∗

t = Vs∨t V
∗

s∨t s; t ∈ 3:(13)

The Toeplitz representationT on`2.A+
M/ satisfies(12) and (13) and, moreover, the

projection
∏

3.1 − TsT
∗

s / does not vanish. However, the Toeplitz representation of
C∗.AM ; A+

M/ is not faithful; in particular, theC∗-algebra generated by a collection
{Vs : s ∈ 3} as above is not canonically unique, even if we assume

∏
3.1−VsV ∗

s / 6= 0.

PROOF. The map can be extended to an isometric representation because the given
isometries satisfy the relations (12), which constitute a presentation ofA+

M .
Suppose that (13) holds. We need to show that the covariance condition holds for

every pairx; y ∈ A+
M . We use the length homomorphisml : A+

M → N such that
l .s/ = 1 for each generators ∈ 3. Choosex; y such that the covariance condition is
not satisfied and such thatl .x ∨ y/ is minimised. Amongst the possible pairs, choose
one so thatl .x/ is the smallest possible.
Case 1.Supposel .x/ = 1, so thatx is actually a generators. Write y = tz for t a
generator, so thatVyV ∗

y = Vt.V
∗

t Vt/VzV ∗
y = Vt V

∗
t VyV ∗

y . Then, by (13),

VsV∗
s VyV∗

y = VsV
∗

s Vt V
∗

t VyV ∗
y = Vs∨t V

∗
s∨t VyV ∗

y :

Now s ∨ t andy have a common left factort ; writing s ∨ t = tu andy = tz we have

Vs∨t V
∗

s∨t VyV ∗
y = Vt VuV ∗

u VzV ∗
z V ∗

t :
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Sinces ∨ y = s ∨ t ∨ y = t .u ∨ z/, we have thatl .u ∨ z/ < l .s ∨ y/ and covariance
follows by applying the induction hypothesis toVuV ∗

u VzV ∗
z in this expression.

Case 2.Suppose nowl .x/ > 1, and writex = su for s a generator. Puts ∨ y = sz,
so thatx ∨ y = x ∨ s ∨ y = s.u ∨ z/. Sincel .s ∨ y/ ≤ l .x ∨ y/ andl .s/ < l .x/, the
induction hypothesis implies thatVsV ∗

s VyV ∗
y = VsVzV ∗

z V ∗
s . Applying V ∗

s on the left
and using the fact thatV ∗

s Vs = 1 this equation becomesV∗
s VyV∗

y = VzV
∗

z V ∗
s . We then

have:Vx V ∗
x VyV ∗

y = VsVuV ∗
u V ∗

s VyV ∗
y = VsVuV ∗

u VzV
∗

z V∗
s . Sincex ∨ y = s.u ∨ z/ we

havel .u ∨ z/ < l .x ∨ y/, and covariance follows in this case, as before, by applying
the induction hypothesis toVuV ∗

u VzV ∗
z .

It is clear that the Toeplitz representation satisfies the stated relations, and the
projection

∏
3.1 − TsT

∗
s / does not vanish atŽ1 ∈ `2.A+

M/. The quasi-lattice ordered
group.AM ; A+

M/ is not amenable by Proposition28 and Proposition29 and the last
assertion follows, see [16, Corollary 3.9].

REMARK 31. Since Theorem30 shows that the Toeplitz algebraT .AM ; A+
M/ of

a nonamenable finite type Artin groupAM is not universal for covariant isometric
representations, it is generally hard to decide whether a given collection of isometries
satisfying the Artin relations and the covariance condition actually generates a repre-
sentation ofT .AM ; A+

M/. In any case, it follows from Theorem 6.7 and Corollary 6.8
of [12] that a given a representation ofT .AM ; A+

M/ is faithful if and only if the
generating family of isometries is proper, in the sense that

∏
3
.1 − VsV

∗
s / 6= 0.

Our results about Toeplitz algebras cover the Artin groups.AM ; A+
M/ that are

presently known to be quasi-lattice ordered, namely the finite type Artin groups from
[1, 10] and the right-angled Artin groups dealt with by Theorem10. It would be
interesting to formulate and decide questions of amenability and uniqueness in the
remaining cases. It is known that, for3 finite, the monoidA+

M always has a quasi-
lattice structure (see [1, 10]), but even when it is known thatA+

M embeds canonically
in AM this is not enough to show that.AM ; A+

M/ is quasi-lattice ordered, which is
essential for our techniques.

Note added in proof. At the time this paper was written the best known results on
the ‘injectivity of the Artin monoid’ were contained in [2]. Since then, the proof that
A+

M embeds canonically inAM for any Coxeter matrixM has been announced by Luis
Paris in a preprint entitled ‘Artin monoids inject in their groups’.
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