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Abstract

CertainC∗-algebras on generators and relations are associated to directed graphs. For a finite graph
0, C∗-algebraO0 is canonically isomorphic to Cuntz-Krieger algebra corresponding to the adjacency
matrix of 0. It is shown that if a countably infinite graph0 is strongly connected,O0 is simple and
purely infinite.

2000Mathematics subject classification: primary 46L05, 46L35.

1. Introduction and notation

Let 0 be a countable directed graph. Denote vertices of0 by U;V;W ∈ V .0/ and
edges byu; v;w ∈ E .0/. If v ∈ E .0/ is connectingU andV , callU the sourceof v
andV the rangeof v, and write

s.v/ = U; r .v/ = V:

Let H be an infinite-dimensional Hilbert space. To every edgev ∈ E .0/ we associate
a non-zero partial isometrysv, acting onH , with the following properties:

.i/ svs∗
vsws∗

w = Žv;wsvs∗
v ; for all v;w ∈ E .0/;

.ii/ s∗
vsvs∗

wsw = Žr .v/;r .w/s∗
vsv; for all v;w ∈ E .0/;

.iii / s∗
vsvsus∗

u = Žr .v/;s.u/sus∗
u; for all u; v ∈ E .0/;

.iv/ s∗
vsv = ∑

r .v/=s.w/ sws∗
w; if the set{w ∈ E .0/; s.w/ = r .v/} is finite.

DEFINITION 1. With the notation as above, we set

O0;{sv } = C∗.sv; v ∈ E .0//
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and callO0;{sv } a Cuntz-Krieger algebra associated to0 and the family{sv}. The
corresponding universalC∗-algebra will be denotedO0.

REMARK 1. In general,O0;{sv } defined above depends on the choice of generating
partial isometries. Note also that arguments from [5] show thatO0 exists, for any0.

DEFINITION 2. Let 0 be a directed graph. We call0 infinite if the setE .0/ is
infinite, androw finite if, for each vertex, the number of outgoing edges is finite. The
adjacency matrixof 0 is defined as

A0.u; v/ =
{

1; r .u/ = s.v/

0; r .u/ 6= s.v/;

for all pairs of edges.u; v/ in E .0/.

DEFINITION 3. Let A be a non-negative,n × n-matrix. Call A irreducible if for
each pair of indices.i; j / from {1; : : : ;n}, there isk ∈ N such thatAk.i; j / 6= 0. A
directed graph0 is calledstrongly connected(or transitive) if for all pairs of vertices
.U;V /, there exists a pathv1 · · · vk such thats.v1/ = U andr .vk/ = V .

If 0 is finite, strongly connected and every loop in0 has an exit—in other words,
if A0 is an irreducible, non-permutation matrix,O0 is canonically isomorphic to the
Cuntz-Krieger algebraOA0 (see [4]). In particular,O0 is simple and purely infinite,
andO0;{sv } does not depend on the choice of generators.

In this note, we give a simple proof of an analogous theorem for infinite graphs (the
theorem is proved at the end of the paper—see Theorem2.6):

THEOREM 1.1. Let0 be a countably infinite, strongly connected graph. ThenO0

is simple and purely infinite.

We should point out that the above theorem has been proved by Laca and Exel (see
[6, 16.2 and 14.1]). Using the presentation ofO0 as the crossed product algebra for a
partial dynamical system, they extended to the infinite case some of the main results
known to hold in the finite case—including the above criterion forO0 to be simple
and purely infinite.

An important special case of Theorem2.6 is when0 is assumed to be row finite
(in which case it suffices to use only relations (i) and (ii )—the usual Cuntz-Krieger
relations). This situation has been studied by Kumjian, Pask and Raeburn (see [14,
Corollary 3.10.]). Using a groupoid approach, they carry out a detailed analysis of
how the distribution of loops affects the structure ofO0 , for any row-finite graph0.
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In contrast to that, the method used here is just an adaptation of the original proof
of Cuntz. Namely, in analogy withO∞, we use the fact that

O0 = lim−→EAn
;

where we show that eachEAn
is a universal algebra on generators and relations,

canonically isomorphic to an extension of some Cuntz-Krieger algebra by a direct
sum of a finite number of copies of compact operators. We then modify the proof of
[1, Theorem 3.4] to this slightly more general setup. Finally, it is clear that algebras
O0 satisfy the UCT, so are within the range of Kirchberg’s classification (see [12, 13]).

Let us also mention that results similar to Theorem2.6appear in [10, 11], albeit in
a different setting, and thatO0 can be realized as a Pimsner algebraOX , for a suitable
choice of bimoduleX (see [16]).

2. Preliminaries and results

Let0 be a countably infinite, directed graph. Unless stated otherwise, it is always
assumed that0 is strongly connected. Relabel the edges of0 asv1; v2; : : : , write
A0.i; j / for A0.vi ; v j / and denote the partial isometrysvi

by si . Also, let An stand for
the upper-left hand corner of the matrixA0, and

MAn
= {¼ = si1 · · · si k

; i j ∈ {1; : : : ;n} andAn.i j ; i j +1/ = 1}:

REMARK 2. It is easy to see that, with0 as above, there exists an increasing filtration
.0i /i ∈N of 0, where each0i is a finite, strongly connected graph. Furthermore, we
will assume that the edges of0 (hence, the generators ofO0) are labelled in a way
compatible with this filtration.

LEMMA 2.1. Let 0 be a countably infinite directed graph. Then0 is strongly
connected if and only if there exists a strictly increasing sequence of integers.nk/k∈N
such that eachAnk

is an irreducible, non-permutation matrix.

PROOF. If 0 is infinite and strongly connected, there exists a vertex with at least
two outgoing edges. Together with the above ordering, that gives the sequence.Ank

/.
The other direction is obvious.

REMARK 3. Assume that0 is as above and denoteEAn;{si } = C∗{s1; : : : ; sn},
pi = si s∗

i , qi = s∗
i si and ri = s∗

i si − ∑n
j =1 An.i; j /sj s∗

j . Since the projectionsqi

andqj are either equal or orthogonal, the same holds forr i andr j , i; j = 1; : : : ;n,
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so denote bym1; : : : ;mk distinct projections amongr1; : : : ; rn, for somek ≤ n. Set
I . j / = C∗{s¼mj s∗

¹ ;¼; ¹ ∈ MAn
}, for every j , and

In = I .1/ ⊕ · · · ⊕ I .k/:

We then haveI . j / ∼= K , for all j , whereK stands for the compact operators on a
separable Hilbert space (see [1, Proposition 3.1]). Furthermore, ifAn is assumed to
be irreducible and non-permutation,

EAn;{si }=In
∼= OAn

:(1)

The following result is analogous to [3, Lemma 3.1]:

PROPOSITION2.2. Let0 be a countably infinite, strongly connected directed graph,
and letsi , i ∈ N, be a set of generators ofO0;{si }. Then, for anym ∈ N, the algebra
EAm;{si } = C∗{s1; : : : ; sm} does not depend on the choice of generators.

PROOF. Suppose thatsi ∈ B.H /. As above, we setri = s∗
i si −∑m

j =1 A.i; j /sj s∗
j .

Let m0 > m be such that for each non-zerori , i = 1; : : : ;m, there is j .i / ∈
{m + 1; : : : ;m0} such that

ri sj .i /s
∗
j .i / = sj .i /s

∗
j .i /;

and let n > m0 be such thatAn is irreducible and non-permutation. Note that
Lemma2.1(and Remark2) imply that suchm0 andn exist. We want to construct partial
isometriestm+1; : : : ; tn ∈ B.H / such thatC∗.s1; : : : ; sm; tm+1; : : : ; tn/ is canonically
isomorphic toOAn

.
Let I be a subset of{m + 1; : : : ;n} defined by: j ∈ I if and only if there is

1 ≤ i ≤ m such thatA.i; j / = 1 andA.i; k/ = 0, for k = j + 1; : : : ;n. For j ∈ I ,
let p̃j = ri −∑ j

k=m+1 A.i; k/sks∗
k . Note thatp̃j = sj s∗

j + s∗
i si −∑n

k=1 A.i; k/sks∗
k , and

that p̃j does not depend on the choice ofi in the above formula. Forj not in I , set
p̃j = sj s∗

j . Define projections̃qj , for j = m + 1; : : : ;n, by

q̃j =
m∑

k=1

A. j; k/sks∗
k +

m∑
k=m+1

A. j; k/ p̃k:

Since0 is strongly connected, everysi s∗
i is an infinite-dimensional projection, so the

same holds for̃pj andq̃j . For j = m + 1; : : : ;n, let t j be any partial isometry such
thatt j t∗

j = p̃j andt∗
j t j = q̃j . Then

s∗
i si =

m∑
j =1

A.i; j /sj s
∗
j +

n∑
j =m+1

A.i; j /t j t
∗
j ; i = 1; : : : ;m;
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and

t∗
i ti =

m∑
j =1

A.i; j /sj s
∗
j +

n∑
j =m+1

A.i; j /t j t
∗
j ; i = m + 1; : : : ;n;

hence,A = C∗.s1; : : : ; sm; tm+1; : : : ; tn/ ∼= OAn
canonically.

If s′
i ∈ B.H /, i = 1;2;3; : : : , is another set of generators forO0 , the above

procedure givest ′
m+1; : : : ; t ′

n such thatA ′ = C∗{s′
1; : : : ; s′

m; t ′
m+1; : : : ; t ′

n} ∼= OAn
, and

the map

si 7→ s′
i ; i = 1; : : : ;m; t j 7→ t ′

j ; j = m + 1; : : : ;n

extends to an isomorphism fromA intoA ′, mappingEAm;{si } ontoEAm;{s′
i }.

COROLLARY 2.3. Let0 be as in Proposition2.2. ThenO0 does not depend on the
choice of generators.

REMARK 4. It is clear that Proposition2.2 and Corollary2.3 will remain true as
long as one can construct a canonical embedding ofEAnk

into some Cuntz-Krieger
algebra that does not depend on the choice of generators. This has already been
argued by Cuntz and Krieger in [4, Remark 2.15]. Note also thatEAnk

can be described
as aC∗-algebra associated to some inverse semigroup (see, for example, [9]).

The following result, due to Cuntz (see [3, Proposition 1.6]), describes simple
purely infiniteC∗-algebras. We use this in the proof of Theorem2.6:

PROPOSITION2.4. Let theC∗-algebraA satisfy:

.i/ A 6= 0;C.
.ii/ For every" > 0 and every positivea;b ∈ A , there isc ∈ A such that

‖b − cac∗‖ < ".

ThenA is simple and purely infinite.

LEMMA 2.5. Let An be irreducible. Then there exists a non-unitary isometryv ∈
EAn

, such that

lim
k→∞

.v∗/kxvk = 0; for all x ∈ In:

PROOF. In the case ofO∞, this has been proved in [1, Proposition 3.1, Remark 2].
Since we do not necessarily have an isometry among the generators ofEAn

, we have
to construct one. Letpi andmi be as in Remark3. Note that

for all j there isi such thatsi mj = si s
∗
i si mj 6= 0;
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and denote thatsi by t̃ j . Also,

for all j there isi such thatsi pj = si s
∗
i si pj 6= 0:

Denote thatsi by t j , and set

v =
n∑

i =1

ti pi +
k∑

j =1

t̃ j mj :

We immediately getv∗v = 1 andvv∗ < 1, sov is a proper isometry. Lets¼ =
si1si2 · · · si p

, and note thatv∗s¼ 6= 0 implies

v∗s¼ =
(

n∑
i =1

pi t
∗
i si1 +

k∑
j =1

mj t̃
∗
j si1

)
si2 · · · si p

= .pj1 + · · · + pjm + mk1 + · · · + mkl
/pi2.si2 · · · si p

/ = si2 · · · si p
:

It remains to be shown thatv∗mjv = 0, j = 1; : : : ; k. Sincepi mj = 0, we get

v∗ml =
n∑

i =1

pi t
∗
i .ti t

∗
i /ml +

k∑
j =1

mj t̃
∗
j .t̃ j t̃

∗
j /ml = 0; l = 1; : : : ; k:

DEFINITION 4. Let Þ be the action ofT = {z ∈ C; |z| = 1} on O0, given on
generators byÞt.sv/ = tsv , v ∈ E0, and set

P.x/ =
∫
T

Þt .x/dt; x ∈ O0(2)

(see [1]).

Now we are ready to prove the result announced in the Introduction. The proof
closely follows the proof of [1, Theorem 3.4]:

THEOREM 2.6. Let 0 be a countably infinite, directed, strongly connected graph.
ThenO0 is simple and purely infinite.

PROOF. Let positive elementsa;b ∈ O0 and 0< " < 1=4 be given. Leta = zz∗,
for somez ∈ O0, and lety ∈ EAm

, for somem ∈ N, be a finite linear combination of
words insi ; s∗

i such that‖b − y‖ < ". We can assume that‖P.y/‖ = 1 and‖z‖ = 1.
From Lemma2.1 there isn > m such thatAn is irreducible and non-permutation.

With t1; : : : ; tn as in Proposition2.2, we considerC∗-algebrasA1 = C∗{s1; : : : ; sm;

tm+1; : : : ; tn}, EAn
, andA2 = EAn

=In. Denote by³ the quotient mapEAn
→ EAn

=In. It
follows from (1) and Proposition2.2that the map

si 7→ ³.si /; i = 1; : : : ;m; t j 7→ ³.sj /; j = m + 1; : : : ;n
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extends to an isomorphism fromA1 intoA2. Let P1.x/ andP2.x/ stand forP.x/ (see
(2) above), computed inA1 andA2, respectively. Sincey is a word insi ; s∗

i , with i
only in {1; : : : ;m}, P1.y/ = P.y/. Together with the above isomorphism, that gives

‖P2.³.y//‖ = ‖P1.y/‖ = ‖P.y/‖ = 1:

From [1, Remark 1.13], there iŝw ∈ A2 such that‖ŵ‖ ≤ 1+", andŵ³.y/ŵ∗ = 1.
Lifting from the quotient gives

wyw∗ = 1 + In

in EAn
, with ‖w‖ ≤ 1+ 2". Then, from Lemma2.5, there isv ∈ EAn

andk ∈ N, such
that

‖.v∗/kwyw∗vk − 1‖ < ":
Hence, we get

‖z.v∗/kwbw∗vkz∗ − a‖ < 4";

which completes the proof.

REMARK 5. If a directed graph0 is row finite and strongly connected, [15, Theo-
rem 4.2.4] gives the K-theory ofO0:

K0.O0/ ∼= Z̃
∞= Im.1 − At

0/Z̃
∞ and K1.O0/ ∼= Ker.1 − At

0/Z̃
∞

(see [2, 15]). In case of general0, see [7]. Finally, note that the K-theory ofO0 can
be computed in the same way as that ofO∞ (see [3]). That has been done in [8].
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