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Abstract

CertainC*-algebras on generators and relations are associated to directed graphs. For a finite grapt
I, C*-algebrad’r is canonically isomorphic to Cuntz-Krieger algebra corresponding to the adjacency
matrix of I". It is shown that if a countably infinite gragh is strongly connected? is simple and

purely infinite.

2000Mathematics subject classificatioprimary 46L05, 46L.35.

1. Introduction and notation

LetT" be a countable directed graph. Denote verticeB by U, V, W € ¥ (I") and
edges by, v, w € &T). If v € &£(T') is connecting) andV, callU the sourceof v
andV the rangeof v, and write

s(v) =U, r(@)=V.

Let H be an infinite-dimensional Hilbert space. To every edge& (I") we associate
a non-zero partial isometig;, acting onH, with the following properties:

(i) ss's,s) =34,,S5s, foralv,w e &(T);
(il) s's,s's, = 8w rwS's, forallv,w e &(I');
(i) s's,sS = 6w swsus,, forallu,v e &£(T);
(V) SIS, = D\ (1)—sw) Sy [f the setfw € &(I); s(w) = r(v)} is finite.

DEFINITION 1. With the notation as above, we set
Oris) =C7(s); v e &)
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and callor s, a Cuntz-Krieger algebra associated fband the family{s,}. The
corresponding universél*-algebra will be denotedr.

REMARK 1. In general gy s, defined above depends on the choice of generating
partial isometries. Note also that arguments fréifrshow thato- exists, for anyl".

DEFINITION 2. Let T" be a directed graph. We cdll infinite if the set&’ (") is
infinite, androw finiteif, for each vertex, the number of outgoing edges is finite. The
adjacency matribof I is defined as

1, ru) =s(v)

A =
e {o, () # S(v).

for all pairs of edgesu, v) in &(I").

DEFINITION 3. Let A be a non-negativa) x n-matrix. Call A irreducible if for
each pair of indicesi, j) from {1,... ,n}, there isk € N such thatAX(i, j) # 0. A
directed grapli” is calledstrongly connectebr transitive) if for all pairs of vertices
(U, V), there exists a path - - - v, such thas(v,) = U andr (v) = V.

If T is finite, strongly connected and every looplirhas an exit—in other words,
if Ar is anirreducible, non-permutation matrigy is canonically isomorphic to the
Cuntz-Krieger algebr& ,. (see H]). In particular,& is simple and purely infinite,
anddr s, does not depend on the choice of generators.

In this note, we give a simple proof of an analogous theorem for infinite graphs (the
theorem is proved at the end of the paper—see The@rém

THEOREM1.1. LetT" be a countably infinite, strongly connected graph. Th&n
is simple and purely infinite.

We should point out that the above theorem has been proved by Laca and Exel (se
[6, 16.2 and 14.1]). Using the presentation&f as the crossed product algebra for a
partial dynamical system, they extended to the infinite case some of the main results
known to hold in the finite case—including the above criteriondgrto be simple
and purely infinite.

An important special case of Theoreh® is whenI is assumed to be row finite
(in which case it suffices to use only relatiomsdnd (i)—the usual Cuntz-Krieger
relations). This situation has been studied by Kumijian, Pask and Raeburd{see [
Corollary 3.10.]). Using a groupoid approach, they carry out a detailed analysis of
how the distribution of loops affects the structureZf, for any row-finite graph.
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In contrast to that, the method used here is just an adaptation of the original proof
of Cuntz. Namely, in analogy witl¥,,, we use the fact that

ﬁr =|I_m>éDAq,

where we show that eacki, is a universal algebra on generators and relations,
canonically isomorphic to an extension of some Cuntz-Krieger algebra by a direct
sum of a finite number of copies of compact operators. We then modify the proof of
[1, Theorem 3.4] to this slightly more general setup. Finally, it is clear that algebras
O satisfy the UCT, so are within the range of Kirchberg’s classification (&4 ).

Let us also mention that results similar to Theor2@appear in 10, 11], albeit in
a different setting, and thdt. can be realized as a Pimsner algefssa for a suitable
choice of bimoduleX (see [L6]).

2. Preliminaries and results

LetT be a countably infinite, directed graph. Unless stated otherwise, it is always
assumed thaf is strongly connected. Relabel the edged adsv,, vs, ..., write
Ar(i, ) for Ar (v, vj) and denote the partial isometsy by s .. Also, let A, stand for
the upper-left hand corner of the maty, and

My, ={n=5,---S, 1 e{l,...,nfandA.(i;,ij;1) = 1}.

REMARK 2. Itis easy to see that, with as above, there exists an increasing filtration
(Th)ien Of T', where each is a finite, strongly connected graph. Furthermore, we
will assume that the edges bf (hence, the generators 6f.) are labelled in a way
compatible with this filtration.

LEMMA 2.1. Let T be a countably infinite directed graph. Théhis strongly
connected if and only if there exists a strictly increasing sequence of integyggs.
such that eaclh,, is an irreducible, non-permutation matrix.

ProOF. If T is infinite and strongly connected, there exists a vertex with at least
two outgoing edges. Together with the above ordering, that gives the sequgpce
The other direction is obvious. O

REMARK 3. Assume thatl’ is as above and denoi, , = C*{si, ... .S},
p =SS, q =s's andr, = §'s — Z'j‘:lAn(i, j)sjs;. Since the projections;
andg; are either equal or orthogonal, the same holdsfandr;,i, j =1,...,n,



156 P. Goldstein [4]

so denote byny, ... , my distinct projections among, ... , r,, for somek < n. Set
1D = C*{s,m;s*; u, v € 4y}, for everyj, and

Lh=1%® - &lY.

We then havd ) = ¢, for all j, where_#" stands for the compact operators on a
separable Hilbert space (seke Proposition 3.1]). Furthermore, &, is assumed to
be irreducible and non-permutation,

1) Ennis)/In = Op,.
The following result is analogous t8,[Lemma 3.1]:

PrOPOSITION2.2. LetT" be a countably infinite, strongly connected directed graph,
and lets, i € N, be a set of generators 6f ;. Then, for anym € N, the algebra
Enyis) = C*{s1, ... , Sn} does not depend on the choice of generators.

PROOF. Suppose thag € B(H). As above, we sat = s's — ernzl Ad, j)s;s/.
Let my > m be such that for each non-zerg i = 1,...,m, there isj(i) €
{m+1,...,mg} such that

I’SJ(,)S

i) — SJ(l)S

i)’

and letn > m, be such thatA, is irreducible and non-permutation. Note that
Lemma2.1(and Remark) imply that suchmy andn exist. We wantto construct partial
isometried 1, ... ,t, € B(H) such thatC*(s,, ... , Sy, tms1, - - - » ty) IS canonically
isomorphic tod ..

Let | be a subset ofm + 1, ... ,n} defined by: j € | if and only if there is
1 <i <msuchthatA@, j) =1 andA(i,k) =0,fork =j+1,...,n. Forjel,
let p; =i — Y} it Al K)scs;. Note thatp; = s;sf +5's — Yp_; Ali, K)ss;, and
that p; does not depend on the choiceiah the above formula. Foj notin |, set
Pp; = s;s;. Define projectionsj;, for j =m+1,...,n, by

G = > AGKSS + Y AGL KB
k=1

k=m+1

Sincer is strongly connected, evegs® is an infinite-dimensional projection, so the
same holds fop; and@;. For j = m+1,...,n, lett; be any partial isometry such
thattj tJ* = [.N)j andtrtj = qj' Then

SS—ZA(I J)stJ+ Z A, J)tJJ, i=1...,m,

j=m+1
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and
m n
tt =Y AGDSS + Y AG Dyt i=m+1....n,
j=1 j=m+1

hence,” = C*(S;, ... , Sns tmits - - - » th) = @, canonically.

If s € B(H),i = 1,23,..., is another set of generators for-, the above
procedure givet ., ..., t,suchthate’ = C*{s,... s, t; ,,... ,.t}} = 0,4, and
the map

st>s, i=1...,m, ti—>t, j=m+1...,n
extends to an isomorphism fromf into /', mappingéa, ) ONOE, (s)- O

COROLLARY 2.3. LetT" be as in Propositior2.2. Theno. does not depend on the
choice of generators.

REMARK 4. It is clear that Propositio2.2 and Corollary2.3 will remain true as
long as one can construct a canonical embedding,pfinto some Cuntz-Krieger
algebra that does not depend on the choice of generators. This has already bee
argued by Cuntz and Krieger id,[Remark 2.15]. Note also th&k, can be described
as aC*-algebra associated to some inverse semigroup (see, for exafjple, [

The following result, due to Cuntz (se&, [Proposition 1.6]), describes simple
purely infiniteC*-algebras. We use this in the proof of Theor2

PrROPOSITION2.4. Let theC*-algebra.«/ satisfy

(i) & #0,C.
(i) For everye > 0 and every positivea, b € «/, there isc € « such that
b — cact|| < e.

Theng is simple and purely infinite.

LEMMA 2.5. Let A, be irreducible. Then there exists a non-unitary isometry
&a,, Such that

inm (v)*xv* =0, forallx e l,.
—> 00

PrROOF. In the case o7, this has been proved id,[Proposition 3.1, Remark 2].
Since we do not necessarily have an isometry among the genera#s ofe have
to construct one. Lep, andm; be as in Remark. Note that

for all j there isi such thasm; = ss5'sm; # 0,
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and denote thag by f;. Also,

for all j there isi such that p; = ss's p; # 0.
Denote that byt;, and set

n k
v :Zti [ —|—ijmj.
i—1 =1

We immediately gev*v = 1 andvv* < 1, sov is a proper isometry. Led, =
S.S, - S,, and note that*s, # O implies

n k
v's, = (Z ptes, + ) mﬁf‘%) S, S,
i=1 j=1

= (P 4+ P+ Mg+ +MIP,(S,--S,) =5, S,

It remains to be shown thatm;jv =0, j = 1,... ,k. Sincepm; = 0, we get
n k
U*m| = Z piti*(titi*)m| + ijﬁ(ﬂﬁ)m| =0, | = 1,..., k. O
i=1 j=1

DEFINITION 4. Let @ be the action off = {z € C; |z| = 1} on &y, given on
generators by, (s,) =ts,, v € 41, and set

(2) P(x) = /at(x)dt, X € Or
T

(see []).

Now we are ready to prove the result announced in the Introduction. The proof
closely follows the proof of], Theorem 3.4]:

THEOREM2.6. LetT" be a countably infinite, directed, strongly connected graph.
Thend'- is simple and purely infinite.

PROOF. Let positive elementa, b € ¢ and O< ¢ < 1/4 be given. Let = zZ,
for somez € 0, and lety € &5, for somem € N, be a finite linear combination of
words ins, s* such thatf|b — y|| < e. We can assume thP(y)|| = 1 and||z|| = 1.

From Lemma2.1there isn > m such thatA, is irreducible and non-permutation.
With t, ... ,t, as in Propositior2.2, we consideC*-algebrase; = C*{s;, ... , Sn,
tmits - -« » th}, &a,, @Ndets = &4 /1. Denote byr the quotient mag,, — & /1n. It
follows from (1) and Propositior2.2 that the map

S n(g), i=1...,m, ti—>m(s), j=m+1...,n
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extends to an isomorphism from into <. Let Py(x) andP,(x) stand forP (x) (see
(2) above), computed ir7; and.«%, respectively. Sincg is a word ins, s*, with i
onlyin{1,...,m}, Pi(y) = P(y). Together with the above isomorphism, that gives

[P (Y1 = 1P = IIPWI = 1.

From[1, Remark 1.13], there i® € .« suchthafw| < 1+e¢, andwn (y)w* = 1.
Lifting from the quotient gives

wyw' =1+ I,

in &a,, With Jw] < 1+ 2¢. Then, from Lemma&.5, there isv € &4, andk € N, such
that
(v wyw* vk — 1 < e.
Hence, we get
lz(v*)*wbw*vkz* — a|| < 4e,

which completes the proof. 0

ReEMARK 5. If a directed graph is row finite and strongly connected,§, Theo-
rem 4.2.4] gives the K-theory a@f:

Ko(Or) =7%/Im(1 — A)Z* and Ki(0p) = Ker(1 — AL)Z™

(see R, 15]). In case of generdr, see []. Finally, note that the K-theory of- can
be computed in the same way as thatgf (see B]). That has been done i8]}
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