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Abstract

The Bernstein-von Mises theorem, concerning the convergence of suitably normalized and centred pos
terior density to normal density, is proved for a certain class of linearly parametrized parabolic stochastic
partial differential equations (SPDESs) as the number of Fourier coefficients in the expansion of the solu-
tion increases to infinity. As a consequence, the Bayes estimators of the drift parameter, for smooth loss
functions and priors, are shown to be strongly consistent, asymptotically normal and locally asymptoti-
cally minimax (in the Hajek-Le Cam sense), and asymptotically equivalent to the maximum likelihood
estimator as the number of Fourier coefficients become large. Unlike in the classical finite dimensional
SDEs, here the total observation time and the intensity of noise remain fixed.

2000Mathematics subject classificatioprimary 60H15, 62M05, 62F12, 62F15.

Keywords and phrasesstochastic partial differential equations, diffusion field, Bernstein-von Mises
theorem, Bayes estimator, consistency, asymptotic normality, local asymptotic minimaxity, asymptotic
equivalence, spectral theory.

1. Introduction

Recently infinite dimensional stochastic differential equations (SDES), like the sto-
chastic partial differential equations (SPDES) are being paid a lot of attention in view
of their modeling applications in neurophysiology, turbulence, oceanography and
finance, see &tT18], Walsh [34] and Kallianpur and Xiong19, Holdenet al. [12]
and Carmona and Rozovskii()]. In view of this it becomes necessary to estimate the
unknown parameters in SPDEs.

Various methods of estimation in finite dimensional SDEs has been extensively
studied during the last three decades as the obsenitientends to infinity (see,
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Liptser and ShiryayevZb], Basawa and Prakasa Ral,[Prakasa Rao33] and Ku-
toyants P4]) or as the intensity of noise tends to zero (see, Ibragimov and Has'minskii
[17], Kutoyants P2, 23]). On the other hand, this problem for infinite dimensional
SDEs is young. Loge£f] initiated the study of parameter estimation in such models.
When the length of the observation time becomes large, he obtained consistency ant
asymptotic normality of the maximum likelihood estimator (MLE) of a real valued
drift parameter in a Hilbert space valued SDE. Koski and Lo@é} ¢xtended the
work of Loges P6] to minimum contrast estimators. Koski and Log&§][applied

the work to a stochastic heat flow problem.

Huebner, Khasminskii and Rozovskii4] introduced spectral method to study
consistency, asymptotic normality and asymptotic efficiency of MLE of a parameter
in the drift coefficient of an SPDE. This approach allows one to obtain asymptotics of
estimators under conditions which guarantee the singularity of the measures generate
by the corresponding diffusion field for different parameters. Unlike in the finite
dimensional cases, where the total observation time was assumed to GE lengo)
or intensity of the noise was assumed to be smal( 0), here both are kept fixed.
Here the asymptotics are obtained when the number of Fourier coeffiggristhe
solution of SPDE becomes large.

The spectral asymptotics for MLE was extended by Huebner and Rozo%5kii [
to more general SPDEs where the partial differential operators commute and satisfy
some order conditions. Piterberg and Rozovsk] [studied the properties MLE of
a parameter in SPDE which are used to model the upper oceaniligrialphysical
oceanography. Piterbarg and Rozovskii (1996) studied the properties of MLE based or
discrete observations of the corresponding diffusion field. Hueldr#gektended the
problem to the ML estimation of multidimensional parameter. Lototsky and Rozovskii
[27] studied the same problem without the commutativity condition.

The Bernstein-von Mises theorem, concerning the convergence of suitably nor-
malised and centered posterior distribution to normal distribution, plays a fundamental
role in asymptotic Bayesian inference, see Le Cam and Y&ng{ the i.i.d. case, the
theorem was first proved by Le Caid][ Since then the theorem has been extended
to many depended cases. Borwandeal. [6] obtained the theorem for discrete time
Markov processes. For the linear homogeneous diffusion processes, the Bernstein
von Mises theorem was proved by Prakasa Rdj. [Prakasa Rao3?] extended the
theorem to a two parameter diffusion field. Bos§ ¢xtended the theorem to the
homogeneous nonlinear diffusions and Mish2&] [to the nonhomogeneous diffu-
sions. As a further refinement in Bernstein-von Mises theorem, Bist8yabfained
sharp rates of convergence to normality of the posterior distribution and the Bayes
estimators.

All these above works on Bernstein-von Mises theorem are concerned with finite
dimensional SDEs. Recently Bishwdl] [proved the Bernstein-von Mises theorem
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and obtained asymptotic properties of regular Bayes estimator of the drift parameter
in a Hilbert space valued SDE when the corresponding diffusion process is observed
continuously over atime intervgd, T]. The asymptotics are studiedbs— oo under
the condition of absolute continuity of measures generated by the process. Result:
are illustrated for the example of an SPDE. The situation is analogous to the finite
dimensional SDEs, where the measures are absolutely continuous.

Our aim here is to use the spectral approach to study Bernstein-von Mises theoren
and Bayes estimation in parabolic SPDE.

2. Model and preliminaries

Let (22, .#, P) be a complete probability space on which is defined the parabolic
SPDE

(2.1) du’(t,x) = AUt x)dt +dW(t,x), 0<t<T,xeG
with Dirichlet boundary conditions

(2.2) u(0, X) = Uo(x),
(2.3) D u(t, X)|sc = 0 forallindicesy with |y| <m— 1,

whereA” = 0 A; + Ay, A, and A, are partial differential operators of orders and

m, respectivelyA’ has order Bh = max(m;, mg), W(t, X) is a cylindrical Brownian
motion inL2([0, T] x G), whereG is a bounded domain iR andu, € L,(G). Here

6 € ® C Risthe unknown parameter to be estimated on the basis of the observations
of the fieldu?(t, x),t € [0, T],x € G. Let6, be the true value of the unknown
parameter.

Hereu’(t, x) is the observation at timeat pointx. In practice, it is impossible to
observe the field!’ (t, x) at all pointst andx. Hence, it is assumed that only finite
dimensional projections” := u™’ = (uj(t), ... ,u’(t)), t € [0, T] of the solution of
(2.1) are available. In other words, we observe the firetghest nodes in the Fourier
expansion

u’(t,x) =Y ul () (%)
t=1
corresponding to some orthogonal baghs(x)},. We consider observation con-
tinuous in timet € [0, T]. Note thatu/(t),i > 1 are independent one dimensional
Ornstein-Uhlenbeck processes (see Huebner and Rozoi/Sljii ince here the basic
set up is the same as i, for different terminology the reader is referred fico].
The following conditions are assumed:
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(H1) m;>m-—d/2.
(H2) The operatorsy; and A, are formally self-adjoint, that is, far= 0, 1,

/A-wdx:/uAvdx forall u,v € C°(G).
G G

(H3) There is a compact neighbourho®dof 6, so that{A’, 6 € ®} is a family of
uniformly strongly elliptic operators.

(H4) There exists a complete orthonormal sys{én, in L,(G) such thatfor every
i=12...,h e W"*G) NnC>@G) and

Aﬁhi = )‘-i (Q)hl and .,%h, = Wi (9)h| forallo e @,

where.%, is a closed self adjoint extension &f, A, := (k@) — £)Y?™, k(@) is

a constant and the spectrum of the operaipiconsists of eigenvalugg; (9)}2, of
finite multiplicities andu; = —2A?™ + k(6).

(H5) The operatoA; is uniformly strongly elliptic and has the same system of eigen
functions{h;}*, as.%;.

For @ > d/2, define the Hilbert spacel ~ as in Huebner and Rozovskil .
Let P, be the measure generated by the solufigfit, x),t € [0, T], x € G} to the
problem @.1)—(2.3) on the spac&’ ([0, T]; H ) with the associated Borel-algebra
%7 . Note that, under (H1), for differedtthe measureB," are singular.

Consider the projection dfl ~ onto the subspac®". Let P,”" be the measure
generated by™? on%[(0, T]; R") with the associated Borel-algebraZy.

It is a classical fact (see Liptser and Shiryay@®]] that for anyé € ©, the
measuresP,”" and PQI’” are mutually absolutely continuous with Radon-Nikodym
derivative (likelihood ratio) given by

T.n

dP T
(24)  Zyw) = "T,n(un)=e><p{(9—90)/ (AU"(s), du"(s))o
P90 0

1 T
- 5(92 - 95)/ I Asu"(9)]l5 ds
0

.
—(0 — 90)/ (AU"(s), Aoun(S))odS}.
0
Maximizing Z{ (u) with respect t@ provides the MLE given by

o — foT(Alun(s)’ du'(s) — Au"(s)ds),
Jo 1AU(9)|3ds
The Fisher information, related tod P}'/d P is given by

(2.5)

.
Iy := Eﬂ,/ | Au"(s) |15 ds.
0
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Define

- &/48)Tn?#, if m >m—d/2;
" l/2Tlogn, if m=m-d/2

whereg = (m; — m)/d + 1/2,

(Jo- dxdv)zm/d

2my/d °
(fPAl(xm <1 d de)

Note thatl,/y¥, — 0 asn — oco. Letw be a real valued, non-negative loss function
of polynomial majorant defined oR, which is symmetrie»(0) = 0 and monotone
on the positive real line.

Under the conditions (H1)—(H5), Huebner and Rozovskf] [showed that, is
strongly consistent, asymptotically normally distributed with normalizafipfi and
asymptotically efficient with respect to the loss function

Suppose thdi is a priori probability measure of®, &), whereZ is theo -algebra
of Borel subsets o®. Assume thafl has a densityt (-) with respect to the Lebesgue
measure and the density is continuous and positive in an open neighbourhgod of

The posterior density af given inu" is given by

&= (2)2m-m

20w (9)

(2.6) p@u") = T ZiWn©) 6"

Letr = ¥~2(6 — A"). Then the posterior density gfY/2(9 — 6") is given by

p*(_L,'un) = w;l/zp(é\n + w;l/ztlun)‘

Let
dPy .. /dBy  dPL e
2.7) Vo (7) 1= 9“+x/; ; _ 9ﬂ+1/n ,
dP./d PQO dPp

C,:= / v ()T O + v Y2r)dr.

e}

Clearly, p*(z | u") = C; o (0)(@" + v Y?1).

3. The Bernstein-von Mises theorem

Let K () be a non-negative measurable function satisfying the following two con-
ditions:



292 J. P. N. Bishwal 6]

(K1) There exists a number, 0 < n < 1, for which

/m K (1) exp{—7%(1—n)/2}dt < oo.

e}

(K2) For everye > 0ands > 0
e“ﬁn/ K(ty¥?)m@" + 1)dr — 0 a.s.[P,] asn — oc.
|t|>6

We need the following lemma to prove the Bernstein-von Mises theorem.

LeEmmMA 3.1. Under the assumptior($i1)—(H5)and (K1)—(K2):
(i) There exists, > 0 such that

lim / K (z) [vn(0)m @" + ¥, Y%1) — n(60)e /2| dr = 0 as. [Py].
N=0 Jr|<soyn’

(i) Foreverys > 0,
lim / K (2) [v(0) @™ 4 ¥ Y%1) — n(6p)e 2| dr =0 as. [Py].
=0 Jjej=sy0

PrOOF. From (2.4) and @.7), it is easy to check that

1 T
logvy(7) = —Ele/fnlf | AU (9)][5 ds.
0

Now (i) follows by an application of the dominated convergence theorem.
For everys > 0, there existe > 0 depending oid andg such that

/ K(t)
[t|=8yn’?

: / K@u(@m @ + 1) de + / 7 (o)e "2 dr
[t|=syn’?

HEN e

(D)@ + ¥ Y?1) — m(Bp)e " 2| dt

< g€ / K (0)m@" + ¥ Y?r) dt + 7 (6p) e " 2dr
HENGe HENGe

= F, +G,.

By condition (K2), it follows thatF, — 0 a.s.[P,] asn — oo for everys > 0.
Condition (K1) implies thatG,, — 0 asn — oo. This completes the proof of the
lemma. O

Now we are ready to prove the generalized version of the Bernstein-von Mises
theorem for parabolic SPDEs.
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THEOREM 3.1. Under the assumptior#i1)—(H5)and (K1)—(K2), we have

lim / K (1) |p*(z|u") — (1/27)"%e /2| dt = 0 as. [P,].

n

—0o0

ProOE From LemmaB.1, we have

[ee}

(3.1) nIim/ K (1)

—0o0

(D)@ + ¥ Y?0) — (O 2

dr =0 a.s[Py].
PuttingK () = 1 which trivially satisfies (K1) and (K2), we have
(32 G, =/ (D@ + ¥ Py dr — 71(90)/ e 2dr as. [Pyl.

e}

Therefore, by 8.1) and @.2), we have

/OOK(I) p*(z|u™) — (1/27)"2e /2| dt

[ee}

= / K (2) |Cytvn(0)m @ + v ¥20) — Ctm(Bo)e ™ 7| dr

n—oo

+ | K@) |Cilr@)e ™2 — (1/27)Y%e 2| dt =30 a.s.[Py].
n 0

O

THEOREM 3.2. Suppose(H1)-(H5) and [~ |0]'7(#)d® < oo for some non-
negative integer hold. Then

lim / lT]" |p*(|u") — (1/27)2e 72| dr = 0 as. [Py].

PrOOF. Forr = 0, the verification of (K1) and (K2) is easy and the theorem
follows from Theoren8.1 Suppose > 1. LetK () = |t|',§ > 0ande > 0. Using
la+b|" < 27(lal]" + |b|"), we have

e v / Ky )a@" + 1)dr
|t|>6

< yplte? / m(@lr - 6" de

|[T—6"|>8

< 2Lyl 2gmevn [/ - m(lt] dr +/ A m(0)|6"" df]
jr—iri=s jr=0nl=5

< 27y /%eet [/ m()|r| dr + Iénlr] — 0 as[P,] asn — oo

[ee}

from the strong consistency 6f and hypothesis of the theorem. Thus the theorem
follows from Theoren8.1 O
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REMARK 3.1. Forr = 0 in TheorenB.2, we have

lim / p*(r|u") — (1/27)"2%e /2| dr = 0 a.s. [Pyl

This is the classical form of Bernstein-von Mises theorem for parabolic SPDEs in its
simplest form.

As a special case of Theore®i2, we obtainE, [y 20" — 6,)" — E[£'] as
n — oo where¢ ~ _4#7(0, 1).

4. Bayes estimation

As an application of Theoref1, we obtain the asymptotic properties of a regular
Bayes estimator @f. Suppose(8, ¢) isaloss function defined @ x ®. Assume that
10, ®) =16 —¢|) > 0andl(-) is non decreasing. Suppose tldat a non-negative
function onN andK (-) andG(-) are functions orR such that

(B1) J(M)l(zy,Y?) < G(z) forall n;
(B2) J(n)l(zy,Y?) — K(z) asn — oo uniformly on bounded subsets &f
(B3) [ K(r +s)e "/2dr has astrict minimum & = 0;
(B4) G(-) satisfies (K1) and (K2).
Let Bo(¢) = [,1(0,¢)p@|u")db. A regular Bayes estimatat" based oru" is
defined a®" := arginf,co B,(¢). Assume that such an estimator exists.

The following theorem shows that MLE and Bayes estimators are asymptotically

equivalent as — oo.

THEOREM4.1. Assume thafH1)—(H5), (K1)—(K2) and (B1)—(B4)hold. Then we
have

(i) YY" —0") — 0a.s[P,]asn — oo,

1/2 a0
(i) lim J(n)B,@") = nIim J(n)B, (") = (%) / K(t)e " /2dr a.s.[Py].

[ee}

PrOOF. The proof is analogous to Theoretrlin Borwankeret al. [6]. We omit
the detalils. O

COROLLARY 4.2. Under the assumptions of Theordmi, we have
(i) 6" — fya.s.[P,]asn — co.
(i) YY2@" — 60) > 4 (0,1) asn — oo.

ProOF. (i) and (i) follow easily by combining Theorer1and the strong consis-
tency and asymptotic normality results of the MLE in Huebner and Rozovgkii [ O
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The following theorem shows that Bayes estimators are locally asymptotically
minimax in the Hajek-Le Cam sense, that is, equality is achieved in the Hajek-Le Cam
inequality.

THEOREM4.3. Under the assumptions of Theordmi, we have

lim lim sup Ew (lnlfz(é" —90)) — Ew(), L&) =401,

§—00 N—00 |0—60] <5

wherew(-) is a loss function as defined in theorem earlier.

PrOOF. The theorem follows from Theorem 111.2.1 in Ibragimov and Khasminskii
[16] since here conditions (N1)—(N4) of the above mentioned theorem are satisfied
using Lemma 3.1 — Lemma 3.3 and local asymptotic normality (LAN) property
obtained in Huebner and Rozovskli]. O

5. Example

We illustrate the results of the previous sections through the following heat equation

du(t, x) —0Au(t, x) =dW(t,x), te[0,T], xe(0,1)
u(0, x) = ug(x), xe(0,1
ut,0) =u,1) =0, te[0T],

whereu, € L,(0, 1), W(t, x) is a cylindrical Brownian motion ih.»(0, 1) andé > 0.
Herem; = ord(A) = 2, my = 0, m = (1/2)max(im;,my) = 1,d = 1. So

m—d/2=1/2 < m;. Thus (H1) is satisfied. By standard arguments, the operator

—6 A with zero boundary conditions extends to a self adjoint operatdr 46, 1)

which we denote by-6A. The domainZ(—6A) = W?2(0,1) N W, ?(0, 1). ltis

readily checked thatf A is positive, so we can takgd) = 0 and se\ = /—0A. It

is a standard fact that (v—6A) = W,-2(0, 1). Writeh; := +/2 sin(izx). Obviously

the sequench;,i =1, 2, ..., forms a complete orthonormal systemlip(0, 1) and

V=OAh; = A (0)h, wherex;(8) = +/0xi. Itis readily checked that fas € R, the

norm
00 2 1/2
Iy fls= (2295(71025 )
j=1

is equivalent to the norm of the Sobolev spa¢g*(0, 1). Let us choose = 1. Obvi-
ously the system ) := A h; = VOriv/2sin(zix),i = 1,2, ..., is an orthonormal
basis inH . Hence assumptions (H2)—(H5) are satisfied.

1
/ u(s) sin(jrx) dx
0
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Take squared error loss functid@®, ¢) = |6 — ¢[>. Now for this heat equation
example all the results of Sectighand Sectiord on posterior convergence and
asymptotics of Bayes estimators, which are posterior mean for squared error loss,
hold.

REMARK 5.1. (1) General set of conditions of posterior convergence through the
LAN property was given in Ghosat al. [11] extending methods in Ibragimov and
Khasminskii [L6]. For the model here, using the LAN property of the model along with
Lemma 3.1-Lemma 3.3 in Huebner and Rozovskii | one verifies the conditions in
Ghosalet al. [1]] trivially and obtains the in probability version of the Bernstein-von
Mises theorem and asymptotic equivalence in probability of the MLE and the Bayes
estimators. However, we obtained the almost sure versions of these results.

(2) Large deviations and Berry-Esseen inequality for the MLE through the spectral
approach were recently obtained by Bishwalal. [4]. Extension of this problem

to Bayes estimators remains to be investigated. Also to obtain rates of convergenc
of the posterior distributions to normal distribution and bounds on the asymptotic
equivalence of the MLE and the Bayes estimators remains to be investigated.

(3) Sequential estimation in parabolic SPDEs using the spectral approach was stud
ied by Bishwal and Sgrensef| |

(4) Nonparametric estimation of the coefficients of SPDEs is studied in Ibragimov
and Khasminskii 17].
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