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Abstract

It is shown that no finite group containing a non-abelian nilpotent subgroup is dualizable. This is in

contrast to the known result that every finite abelian group is dualizable (as part of the Pontryagin duality
for all abelian groups) and to the result of the authors in a companion article that every finite group with
cyclic Sylow subgroups is dualizable.

2000Mathematics subject classificatioprimary 20D15; secondary 08A05.

1. Introduction

In [3] and [4] a strong natural duality is proved for groups of the fatpx Z,,,, where
(n,m) = 1. In this paper we show that a finite nonabelian nilpotent group cannot
admit a natural duality. In fact, for every finite grobphaving at least one nonabelian
Sylow subgroup (which is then nilpotent of class at least 2), we focus our attention on
a p-subgroupG of H of nilpotence class 2, and u&eto prove that the original group
H is not dualizable.

For the benefit of readers not familiar with the theory of natural dualities, we begin
with a brief review of what is meant bytmitting a(natural) duality and refer to the
text of Clark and Davey]]] for a detailed account.

Let A be afinite algebra and l&X = (A; F, P, R, 7) be a topological structure on
the same underlying sét, where

(@) eachf € F is a homomorphisnf : A" — A for somen € N U {0},
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(b) eachp € Pisahomomorphisnp : dom(p) — A where dondp) is a subalgebra
of A" for somen € N,

(c) eachr € Ris (the universe of) a subalgebraAf for somen € N,

(d) t isthe discrete topology.

Whenever (a), (b) and (c) hold, we say that the operatioRsthe partial operations
in P and the relations irR arealgebraic overA. These compatibility conditions
between the structure ok and the structure oA guarantee that there is a naturally
defined dual adjunction between the quasivariety:= [SPA generated byA and
the topological quasivariet#;, := ISP.«/ generated byA; if there is no chance of
confusion, we will write.2” for 27;,. For allB € ./ the homseD(B) := </ (B, A)
of all homomorphisms fronB to A is a closed substructure of the direct powér
and for allX € 2 the homseE(X) := 2 (2, /) is a subalgebra of the direct
powerAX. It follows easily that the contravariant hom-functerg—, A) : & — .
and 2 (—, &) : % — .%, where.¥ is the category of sets, lift to contravariant
functorsD : & — 2 andE : 2 — .

For eachB € .« there is a natural embeddireg of B into ED(B) given by
evaluation: for each € B and eachkx € D(B) = &/ (B, A) definegs(b)(x) := x(b).
Similarly, for eachX e 2" there is an embedding; of X into DE(X). A simple
calculation shows that: id,, — EDands : id» — DE are natural transformations.
If e is an isomorphism for aB € ./, we say thai yields a patural) duality on </ .

If there is some choice df, P andR such thatA yields a duality one/, then we say
thatA (or &) admits a natural dualityr, briefly, isdualizable

We wish to prove that for no choice &, P andR doesH yield a duality ons#,
the quasivariety generated by the finite grddip For this, it is enough to show that
there is no duality whefr = P = ¢ and R consists of all subgroups of all finite
powers ofH, the so-calledrute force duality see [L]. In order to prove that there
is no brute force duality, we need to find a¢essarily infinite) group € # such
thatey is not ontoE D(D). We will use what is known as thghost elemenmnethod.
We will chooseD to be a proper subgroup &? and choose a particular element
w = (w)iz € G’ — D. We will then construct an elemefit of E D(D) which will
not be an evaluation map for any elementobecause it will act as if it were an
evaluation map at the ghost element; that is, for everyZ, @ (1;) = w; = m; (w).

More precisely, we will find a sequenge,} of elementsirD such that the sequence
converges tow. Here convergence is pointwise (that is, componentwise) and in
each component a sequence is convergent if and only if it is eventually constant
and converges to its eventual constant. Theryfor D(D) we define® (1) to be
lim,_ . n(v,). We need to prove four things abo@it (1) @ is well defined; (2)®
‘acts like’ evaluation atv; (3) @ is structure preserving, and (#)is continuous.

The first and second will be easy. The third will also be easy since being structure
preserving is a local property. That is, if on every finite sulbsef D (D) there is an
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element ofE D(D) which agrees withb on F, then® is structure preserving. But
this will follow from the fact thatd is a limit of evaluation functions (sequentially, at
thewv,).

The last, continuity, will be difficult. We recall that the topology @(D) is
boolean (in the vernacular, a zero-dimensional compact Hausdorff space). That is,
D(D) has a basis of clopen sets consisting of sets of the form

{¢ | ¢d) =hyforalld € F},

whereF is a finite subset oD, andhy € H. Thus for everyx € D(D), we must

find a finite subseF, of D such that if3 € D(D) with a(d) = B(d) foralld € F,,
then®(x) = ®(B). But compactness tells us that finitely many of these clopen sets
cover D(D); taking F to be the union of the finitely manly, we see thatb will be
continuous if and only if there is a finite subgetof D such that ifu, v € D(D) and

u(d) =v(d) foralld € F, then®(u) = ®(v).

2. The group D

LEmMMA 2.1. For each finite nonabeliap-group P there is a nonabelian subgroup
G < Panda, b € G such that
() G=(ab)
(i) all proper subgroups o6 are abelian
(i) in G, commutators are in the cent@nG), that is,G is of nilpotence clasg;
(iv) the commutator is an alternating bilinear form
(v) Z(G) = (aP,bP, [a,b]), and sog® € Z(G) for everyg € G;
(vi) in G, the centralizer o), Cs(Q), is (g, Z(G)), providedg ¢ Z(G).

PrOOF. LetG be a minimal nonabelian subgroupRifthus, every pair of noncom-
muting elements generat€s Hence, (i) and (ii) hold. Let = [a, b]; if ¢ ¢ Z(G),
then we can replace one afandb with c in condition (i). AsG is nilpotent, iterating
this procedure eventually leads us[tn b] € Z(G). This implies that for every
andj, bla = a'bl[a, b]71. Hence, every commutator @ is a power of(a, b] and
S0 is inZ(G). Thus, (iii) follows. From (iii), the bilinearity of the commutator is a
standard exercise; thus, (iv) holds. df ¢ Z(G), then replace with aP; iteration
yieldsaP € Z(G), so that(aP, b®, [a, b]) < Z(G). If this inequality were strict, then
for some 0< i, ] < pwithi + j > 1 we would havea'b! € Z(G). But then this
element and one @& andb would generat&, makingG abelian. In turn this implies
that (v) holds. ThusiG/Z(G)| = p?, and (vi) follows. O

We prove that a finite groug having a subgrou@ with the properties in Lemma 1
is not dualizable. Of course, every finite group having at least one nonabelian Sylow
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subgroup contains such a groGp Item (iii) implies that[x', y/] = [x, y], a fact
the reader should keep in mind when verifying the computations in this section.

Choose a positive integet, whose value will be fixed later in this paper. For
ieZletd e G'be(...,1,1,a,b™1,1,...,1,b,at1,1,...) with (d;); = b™?
and(d;);; = b; thus, there arét — 1) 1's betweerb~! andb. The identity element
of G? is denoted 1

DEFINITION2.2.D :=(d; | i € Z).

DEFINITION 2.3. Our ghost vector igv := (...,1,1,¢7%1,1,...) wherec :=
[a, b] and whergw), = ¢~

For integers < |, lety; ; be defined by
cl ifm=i;
@i jm=1C¢, ifm=j;
1, otherwise.

LetV = ({v; |i < j}), and note thaty = lim,_, 5, Vo n.

We want to show that € G% —D. For this we need to describ®, the commutator
subgroup ofD. Because of theilinearity of the commutatorD’ is generated by
the set of commutators of any generating seDof It is clear that[d;,di] = 1
for li — j| ¢ {1,t + 1}. Recalling that the commutator is an alternating form,
we have only two computations to perform. They yi¢td, d; ;] = v _1; and
[di, ditt+1] = Vijivira. Sincefori < j < kwe havey; jvj x = vik, thenD' = V.

LEMMA 2.4. w € G —D.

PrOOF. We need to show that ¢ D. Suppose thatw € D. Then we can write
w = gﬁ';---gﬂ:g/ whered’ € D’ andi; < --- < ix. We will prove thatp | |, for
1<m<k Asw,_; € (c), we must haval € (c) < Z(G); hence,p | j;. Suppose
thatp | joforn < m. Thenas; < --- < iyandw;__; € (c), ourinductive assumption
ensuresthal ™ € Z(G), so thatp| j,,. By induction,p | j, forl < m < k. Thus,w
and eac@ﬂg lie in (Z(G))?, an abelian group. Notice that eaﬂj and each generator
of D’ has the property that the product of their components is 1. Hence, saunast
contradiction; hencey ¢ D. O

3. Homomorphisms from D to H

Let u € Hom(D, H). Recall that our ghost elemetis the limit of thevg ,:

w = lim vg,.
n—oo™



[5] Nilpotent groups are not dualizable 177

Thus, for everyu we will prove that there is an such thatu(ve;) = w(vo,41) for
i > n. We will then defined (1) to be thiseventual valuef (v ,):

Q(u) = nllj; n(von)-

LeEmmMA 3.1. Letu € Hom(D, H). Then there is an such thafu(ve;) = 1 (voit1)
fori > n.

PROOF. Let nu(d;,), ..., u(d;,) generateu(D) < H, wherei; < i;,,; of course,
we may assumk < |H|. Recalling thafd;, d;] = 1 save forli — j| € {1,t + 1}, let
Ji=Ulij —t—1i;—1i;+1i;+t+1} and note that)| < 4/H|. Suppose
i ¢ J;then[d;,d;,] = 1forall j, and sou(d;) € Z(1+(D)). Using the computations
[di, di 1] = vi 14 @nd[d;, dist4a] = Viyeisee, We See that

Von = l_[ﬂi—l,i = l_[[gi—t—l’ dil.
i=1 i=1

This implies that ifn is sufficiently large, them(vg;) = u(vgiq) foralli > n. O

Thus,® (u) is well defined, proving the first of the four properties we need to prove
about®. Notice that for every € Z, ®(w;) = w;, so thatd acts like evaluation at
w, proving the second property. It is easy to see thas structure preserving: for
any finite subseF of Hom(D, H), we can find a large enoughsuch thatd agrees
with the evaluation map at,,, at each member of; since all evaluation maps are
structure preserving, so . This proves the third property. Thus, we are left with
the hard part, showing th&t is continuous.

Necessarily, then from Lemma3.1 depends o (consider the case whet¢
contains a copy of5? and for allk > 1, u(d) = (dy, dy)). Potentially, this can
disrupt the continuity ofb. We counter this threat by showing that we can choose
a large enougN (depending orH but not onu) and choose large enough (again,
depending o but not onu) so that we can determine the eventual valug @fy )
by looking only atu(v,;) for1 <i < N.

DEeFINITION 3.2. We define an interval of Z to be agapif |I| > 6t + 6 and
u(i_1;) =1foralli € I. We permit gaps to be infinite.

Note that we have not yet decided how bighould be. Recall from the proof
of Lemma3.1that asu(d;) € Z(u(D)) wheni ¢ J, then we haveu(v; 1) = 1
except for at mostH | indicesi. Thus, by choosingN > 30/H |(t + 1), the interval
1 <i < N contains a gap. Obviously, there are at mgst 4+ 1 maximal gaps. We
will then prove that ifi < j and eachis in a gap, then(v; ;) = 1. We will do this by
choosing to be sufficiently large.
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Next, we make what seems to be a strange definition. It sets the stage for proving
a key lemma using a Ramsey-like argument.

DerINITION 3.3. Define the positive integevl by
M := max|{(g;, h)}I,

whereg, h; € H, [g, hi] # 1,[g;, 9;]1 = [gi, h;] = [h;,h;] =1 fori # j. As|H]|
is finite and the conditions preclude repetitions amonggth# is finite.

For instance, ilH = G, then it is easy to find Relements satisfying the above
conditions.

LEMMA 3.4. Let |, and I; be two gaps such thdt is to the left ofl;, with I, the
non-empty interval between them. et I, andj € I;. Thenu(v; ;) = 1.

PrROOF. Suppose the hypotheses of the lemma hold but tiat;) = e # 1.
Notice thate is independent of the choicesiok |, andj € I3 due to the defining
property of a gap and that for< j < k we havey jv;« = vix.

For a positive integes, defineg; := [Tr_od;+kes2 and note that

a, ifm=j—1;

bt ifm=j+kit+2forO<k<s;
@)m=1b, ifm=j-2+kt+2forl<k<s+1;
al, ifm=j—-1+G6+D{t+2);

1, otherwise.

This means that ifg;, g;] # 1, theni — j = +£1 (modt + 2). Thus,[g;, gj_1] =
Vj_1joresnisn SO thatif j —1 € I and j — 24 (54 1)(t + 2) € Is, then
[1(g;), n(gj-1)]1 = e. Of course, we can choogeands so thatj —1 € I, and
j — 2+ (S+ 1t +2) € l;. We can do much better. Chooséo be a multiple
of 8; because each of and |5 has size at leastt6+ 6, we can findt /8 + 1 values
of j (4o, 4(jo+ 1),...,4(jo + t/8)) and a value ok such thatj — 1 € |; and
=2+ @+t +2)els.

We are now ready to defirgg andh;. Setg, := (Qajo+i)) andh; := w(Qacjo+ir-1)
for0 <i < t/8. We have[g;, h;] = efor alli. Also, [9,9i] =1, since 4jo +
i) —4(jo + J) is even moduld + 2. Similarly, [h;, h;] = 1. Finally,[gi,h;] =1
fori # jsincedjo+i)—4(jo+j)+1=4(—j)+1;as0<|i — || <t/8, we
cannot havé — j = £1 (modt + 2). If we now taket = 8(M + 1), we contradict
the definition ofM, and so have proved the lemma. Notice that our choiceisf
independent ofe. O
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COROLLARY 3.5. Let © € Hom(D,H). There is a uniques, € H such that
w(vo ;) = e, for all but finitely manyj > 1. Moreover,u(vo;) = €, holds forj in
any gap, and foN > 30|H|(t + 1), the intervall < j < N contains a gap. Thusg,
can be determined by examinipguv, j) on1 < j < N.

4. The theorem

THEOREMA4.1. LetH be a finite group having at least one nonabelian Sylow sub-
group; thenH is not dualizable.

PROOF. ChooséG to be a minimal non-abeliap-subgroup oH. TakeN ande, as
given in Corollary3.5. Let® : D(D) — H be defined byd (1) := lim,_, 1t (von).
Notice that® () = e, and that if (D) is abelian, there, = 1. By the results
of the last section, we need only prove thatis continuous. We choosE to be
{vo; | L <i < N}, and suppose that|r = v|¢. If v(D) is abelian, then agl, N]
contains a large interval fqr andu(vg;) = v(vg;) = 1 for 1 <i < N, we must
have® (1) = ®(v) = 1; similarly if «(D) is abelian. If neither image is abelian, then
1(ei) = v(vg;) forl <i < N implies that an interval ifl, N] is large forv if and
only if it is large for i, and so agai (u) = ®(v). Thus,® is continuous and the
theorem is proved. O
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