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Abstract

This paper studies the concept of strongly omnipresent operators that was recently introduced by the firs
two authors. An operatdf on the spacéd (G) of holomorphic functions on a complex domamis

called strongly omnipresent whenever the set ehonsters is residual il (G), and aT-monster is a
function f such thafl f exhibits an extremely ‘wild’ behaviour near the boundary. We obtain sufficient
conditions under which an operator is strongly omnipresent, in particular, we show that every onto linear
operator is strongly omnipresent. Using these criteria we completely characterize strongly omnipresent
composition and multiplication operators.
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Keywords and phrasesolomorphic functionT -monster, residual set, strongly omnipresent operator,
dense range, locally dense range, locally stable operator, composition operator, left-composition operator
multiplication operator.

1. Introduction

Inspired by the notion of holomorphic monsters as introduced and developed by Luh
[8] and the third author?, Kapitel 3] (see also9, 10, 14]), the first two authors
have recently introduced the concepfleinonsters 3], which is associated to a (not
necessarily linear) operatdr on the spaceH (G) of holomorphic functions on a
domainG in €. Roughly speaking, & -monster is a holomorphic function whose
image undefl has an extremely ‘wild’ behaviour near the boundary.

The work of the first two authors has been partially supported by DGES grant PB96-1348 and the Junta
de Andaluga.
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In [3] the concept was defined f@ # C in order that the finite boundary be
non-empty, but the interested reader can easily check, using chordal distances, the
all proofs can be adapted to the case where the boundary point under consideratio
is the point of infinity. Consequently, we redefine the conceft-ofionsters and its
associated notion of strongly omnipresent operatyrS¢ction 2] (see als@] for the
weaker concept of omnipresent operators) in the following way.

Throughout this pape will be a domain inC anddG will denote its boundary
taken in the extended complex plaig = C U {oo}. By D we denote the open unit
disk. Anoperatoralways refers to a continuous (not necessarily linear) mapping.

DeriNniTioN 1.1 ([3]). (@) A function f € H(G) is aholomorphic monsteif it
satisfies the following universality property:

(U) foreachg € H(D)andeach € oG there exists a sequengs) of affine linear
transformations with,(z) — t (n — oo) uniformly on D andz,(D) C G
(n € N) such thatf (z,(2)) — g(2) asn — oo locally uniformly in D.

(b) LetT : H(G) - H(G) be an operator. Then a functidne H(G) isaT-
monstelif T f is a holomorphic monster. The setbfmonsters is denoted by (T).

Itis not difficult to see that in the case when the point of infinity is an isolated point
in G this notion, in general, is strictly stronger than the one giverBinthis is so,
for example, ifT is the identity operator.

See below for a comparison with Luh’s holomorphic monsté}s |

For the closely related notion of strongly omnipresent operators we need some
more notation. We denote 9(0G) = {V c C,, : Visopenand/ N dG # @} the
set of all open subsets 6f, that meet the boundary &. If A c C thenArepresents
the closure ofA, || f|a := sup., | f(2)], wheref is a complex function defined on
A, andLT(A) is the set of all affine linear transformationst(z) = az+ b, such
thatt(D) C A.

DerINITION 1.2 ([3]). An operatofT : H(G) — H(G) is strongly omnipreserit
forallge H(D),e > 0,r € (0,1) andV € O(3G) theselU (T, g,¢,r,V) :={f €
H(G) : there exists some € LT(V N G) such thal|(Tf) ot — g|,5 < ¢} is dense
in H(G).

Again, in contrast toJ] we have here allowed the point of infinity as a boundary
point. Asin [3, Theorem 2.2] it is easy to prove thatis strongly omnipresent if and
only if the set# (T) of T-monsters is residuathat is, its complement ifl (G) is of
first category.

As a consequence, every new strongly omnipresent opefayalds a wealth of
new universal functions: there is then a residual set of holomorphic functisaghat
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each functior f is a holomorphic monster, that is, eatH satisfies the universality
property(U) stated in DefinitiorL. 1

Examples of strongly omnipresent operators are provided,irSgctions 3—4].
Specifically, if ®(z) = Zj’io a;Z is a non-zero entire function of subexponential
type then the associated linear differential opera@ob) = Zj’io a;D! on H(G)
is strongly omnipresent. Fa& = C this result even holds for all entire functions
® of exponential type. Her® is the differentiation operatddf = f’, D° = | is
the identity operator an®** = D o D!. Furthermore, ifG is a simply connected
domain,a € G, A € C andh is a non-zero entire function of exponential type then
the integral operatof on H (G) defined by

Tf(z)=Af(z)+/zh(z—t)f(t)dt (ze G)

is strongly omnipresent. In particular, #(z) = Zj’io a;z is any non-zero func-
tion that is holomorphic at O then the corresponding linear antidifferential operator
w(D;Y = Y [2,a D, on H(G) is strongly omnipresent. Herg] = | and, for
eachj e N, D' f (f € H(G)) denotes the unique antiderivatiteof f of order |
suchthatF®@) =0(k e {0,1,...,j —1}).

We note that the holomorphic monsters in the sense of Blilare holomorphic
functions that are simultaneously’- and D !-monsters for allj € No. Since the
intersection of countably many residual sets is again residual, the existence of Luh-
monsters is thus a direct consequence of the strong omnipresence of each of thi
operatorD! andD_!, j € N,.

Our aim in this paper is twofold. In Sectiéhwe derive conditions that guarantee
that an operator is strongly omnipresent. This will be done in various ways. First we
show how to construct new strongly omnipresent operators from known ones. As an
application we will see that every onto linear operator is strongly omnipresent. Next
we study the problem under which conditions the existence of a sihgtenster
suffices to makd strongly omnipresent. Finally we derive some workable conditions
under which a general operator is strongly omnipresent.

In Section3 we apply these results to furnish new examples of strongly omnipresent
operators that are substantially different from differential and antidifferential opera-
tors; specifically, we characterize the strongly omnipresent (left- and right-) composi-
tion operators and the strongly omnipresent multiplication operators.

2. Looking for monsters

We begin our investigation into the existence of monsters by constructing new
strongly omnipresent operators from known ones. Before we do this we note the
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following two facts. LefT be an operator ol (G), ¢ > 0,g € H(D),r € (0, 1) and
V € O(3G). Then we have:

(L) U(T,g,e,r1,V)={f € H(G) :thereexists somaon-constant € LT (VNG)
such that)|(Tf) ot — g,z < ¢} = {f € H(G) : there exists some non-constant
T € LT(VNG) suchthal| T f —got |5, < ¢}. The first equality imccomplished
by a simple continuity argument.

2 A (T) = ﬂgmv U(,g,esr,V), where, in fact, it suffices to only consider
countable dense subsetsgfe, r and a suitable collection of countably many séts
that coverd G; in addition, each st (T, g, ¢, r, V) is open. Hence# (T) is always

a G;-subset. Consequently it is residual if and only if it is dense, and if and oilly if
is strongly omnipresent. For details see the proof of Theorem 23.in |

To start with, we state without proof the following result, which follows trivially from
the definition ofT -monster.

ProPOSITION2.1. Let T, S : H(G) — H(G) be operators. Then we have
S (T)) =.(TS). In particular,
(@ if.#Z(T)#£ ¥ andSis onto thenZ (TS) # ¢;
(b) if #Z(TS #@then.#(T) £ 0.

THEOREM2.2. Let T, S: H(G) — H(G) be operators such thaf is strongly
omnipresent anis linear and onto. Thef Sis strongly omnipresent.

PrROOF. We have to prove thatZ (T S) is residual, hence, by the preceding propo-
sition, thatS™1(.# (T)) is residual. But# (T) is always aG;-subset, s& (.7 (T))
is also aG;-subset becaus@ is continuous. It remains to see th&t!(.# (T)) is
dense. Since# (T) is dense, given a non-empty open sub&ét H(G), we obtain
that.# (T) N SA# ¥ becausé Ais open due to the Open Mapping Theorem (recall
thatSis linear and onto and that (G) is an F-space). Hen&®&(.Z (T)) N A # .
Thus,S1(.#(T)) is dense, as required. O

COROLLARY 2.3. Every onto linear operator ol (G) is strongly omnipresent.

ProOOF. Apply Theorem2.2to T = I, the identity operator, which is strongly
omnipresent: také(z) = zin the example given in the introduction. O

For example, we know that for eadh € N the antidifferentiation operatdp; ™
of orderN is strongly omnipresent oH (G) (takeW¥(z) = Z" in the example given
in the Introduction), wher& is a simply connected domain amds a fixed point
in G. Since the differentiation operatBr (and soDV) is onto onH (G) due to simple
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connectedness we can conclude that the opeRytgron H (G) given by

N-1

Rvaf(@:=f@-)_

j=0

f(i)(a)

j!

(z—a),

thatis, the value atof Taylor's remainder of ordeX of f ata, is strongly omnipresent.
Indeed, takdl = D;N andS= D" in Theoren?.2. Note that neitheD_™ nor Ry ,
is onto; they do not even have dense range.

In particular we obtain the following application in the ca3e= C.

COROLLARY 2.4. There is an entire functiofi(z) = Y~ a;z! such thateach of its
Taylor series remainderBy f (z) := Zj"’:,\, 3;Z' (N € Np) is a holomorphic monster.

It is evident that the suril + S of two strongly omnipresent operators need not
be strongly omnipresent: take, for instande= |1, S= —I. On the other hand,
a non-zero multiple,T, » # 0, of a strongly omnipresent operatdris trivially
strongly omnipresent. The next result shows that i strongly omnipresent ard
is an operator that behaves well near the boundary then theiifs¢in$ generates a
strongly omnipresent operator, and a similar result is true for the prddutgiven
by (T-Sf=Tf-Sf.

THEOREM2.5. Let T, S be two operators orH (G). Assume that there exists a
dense subsét in 3G such that, for every € T and for everyf € H(G), there exists
lim,_.(Sf)(2) € C (respectivelyC \ {0}). Then.#(T) c . (T + S) (respectively
A (T - 9). In particular, T + S (respectivelyl - S) is strongly omnipresent if is.

PrOOF. Using [3, Lemma 2.1], the fact thatZ (T) c .# (T + S) (respectively
A(T) C (T - 9)) is straightforward from the definition of monster. The details
are left to the reader. O

As an example of an application of Theor@bwe may consider again the Taylor
remainder operatoRy , (given after Corollary2.3) acting onH (G), whereG is any
domain such that the point of infinity is not an isolated poind&f. Indeed, we can
write Ry, = T 4+ Swith T = |, the identity operator, and

N-1 ¢j)
Sf(z) = —Z f ]jfa) (z—a)l.

j=0

Itis evident thatSis ‘well-behaved’ ol := (0G) \ {o0}.

The next result provides us with a condition that guarantees the existence of a
residual set of monsters by assuming the existence of at least one monster. For futur
reference, we isolate this condition and introduce the notion of (local) stability of an
operator.
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DEFINITION 2.1. Let T : H(G) — H(G) be an operator.

(@) LetK be acompact subset &f andB a closed ball contained i@. ThenT is
K-stable inB if for eachf € H(G) ande > 0 there exist a closed bl ¢ G\ K
ands > 0 such that for aly € H(G)

If —0llege <& impliesthat |[Tf—Tglg < e.

(b) We say thaf islocally stable nead G if for each compact subsét of G there
exists a compact subs&t of G such that for each closed bdl ¢ G\ M, T is

K -stable inB.

(c) We say thafl is somewhere locally stable neaft if for each compact subset
K of G and eachvV € O(dG) there exists a closed ball ¢ V N G such thafT is

K -stable inB.

For the sake of brevity we will usually take the qualification ‘né&r for granted.
Itis clear that every locally stable operator is somewhere locally stable. In fact, every
locally stable operatof has the property that for each compact subiseif G and
eacht € 9G there is an open neighbourhoddof t such that for each closed ball
BcVNG,TisK-stable inB.

By using Cauchy’s integral formula for derivatives, it is straightforward to verify
that each differential operatdr(D), where® is an entire function of subexponential
type, is locally stable; in fact we can always take concentric closed Balg with
radiugB) < radiugB’). Another example of a locally stable operator is the rotation
operatorR, (« € [0, 27)) on H(D) defined byR, f (z2) = f (z€%). Further examples
will be given in SectiorB.

THEOREM2.6. Let T be an operator orH (G) that is locally stable neabG. If
A (T) # @ thenT is strongly omnipresent.

PrOOF. Fixg e H(D),e > 0,r € (0,1) andV € O(3G). We are going to show
thatU (T, g, e,1, V) is dense inH (G). To see this, fix a basic open subset

D(h,K,e) ={f e HG) : | f —h|x < &1}

of H(G), whereK is a compact subset @& such that each connected component
of C,, \ K contains at least one connected componenf of\ G, h € H(G) and

g1 > 0. Now letf be a fixedT -monster. Then there exists a non-constant affine linear
transformatiorr € LT (G NV) such that

) ITf—gotlls <&/2,
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whereB := t(rD). We can assume th& c G \ M, whereM is the compact
subset ofG given by the definition of local stability. Hence there exist a closed ball
B’ ¢ G\ K ands > 0 such that, foralp € H(G),

(2) lop — fllg <8 impliesthat [|[To —Tflg <¢&/2

Consider the compact sét := K U B’. Then each connected component of the
complement ol contains at least one component of the compleme6t bécaus&

has this property anl N B’ = @. Pick open subses,, G, Cc Gwith G; NG, =0
andK c Gy, B’ ¢ G,. DenoteG, = G; U G,. HenceGg is openand. ¢ G, C G.
Define the functiorF : Go — C by

{h(z), if ze Gy
F(2 = .
f(z), if ze G,.

ThenF € H(Gp) and an application of Runge’s theoreh3] Chapter 13] yields the
existence of a rational functiofy with poles outsidés such that

” fl — F”L < min{S, 81}.
Thus, f; € H(G) with
(3) I fi—hlk <&

and| f; — f|lg < 8. From @) we obtain

Then () and @) lead us to
(5) ITH—got s <e.

Summarizing, §) and 6) tell us thatf, € U(T,g,e,r,V) N D(h, K, ¢;). Conse-
quently,U(T, g, ¢, 1, V) is dense, as required. O

We state another condition under which the existence of a single monster guarantee
the existence of a large supply of monsters: We assume that, on a dense set of function
T is well-behaved near the boundary. This time linearityf a needed.

THEOREM2.7. Let T be a linear operator orH (G) with .#(T) # @. If there
exists a dense subsgt in H(G) with the property that for each € ¥ there is a
dense subsdt, in dG such that, for allt € I',, there existéim,_,; (T h)(2) € C, then
T is strongly omnipresent.

PrOOF. Pick aT-monsterf. Thenf + & is dense inH(G). Fixh € £ and
consider its corresponding sEt ¢ dG. Givent € 'y andg € H(D), define the
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functiong;(2) := g(2) — L(t), whereL(t) := lim,_;(Th)(2) € C. Theng; € H(D)
and there exist two sequences of complex numisars (b,) with a,z+ b, — t
(n — o0) uniformly onD anda,z+ b, € G for alln € N and allz € D such that

(THEz+by) — w@ (- o0)

locally uniformly in D. But we also have thafT h)(a,z+ b,) — L) (n — o0)
locally uniformly in D (in fact, uniformly on the wholéd). Therefore, by linearity,
(T(f+h))(a,z+b,) — g(2) (n — oo) inthe same manner. Inview df,[Lemma 2.1]
this implies thatf + 2 c .# (T), so that# (T) is dense. O

Forinstance, the condition in the above theorem is satisfied by a differential operator
®(D) and by a finite order antidifferential operats¥D~') whenevelG is a simply
connected domain wits # C: just let% be the set of all polynomials and I[E} be
the finite boundary o6 forallh € .

Although the last two theorems give mild conditions under whi¢liT) # @ im-
plies thatT is strongly omnipresent the following example shows that this implication
does not hold in general. Recall tHatdenotes the identity operator.

ExamMPLE 2.8. Consider the operatdr : H(D) — H (D) given by

Tf(z)=yf< (ze D),

i)
1+ 1O

wherey is a fixed holomorphic monster id. Then f is aT-monster if and only if
f(0) = 0. HenceT -monsters exist, but they only form a set of first category.

This example gives a partial solution to a problem pose@jinnfortunately the
problem remains open fdinear operators:

If .#(T) #@,isT always strongly omnipresent?

Next, we want to derive practicable conditions on an operator that guarantee its
strong omnipresence. Here the range, or rather the local rang&swif play an
important role. This leads us to the following definition.

DEFINITION 2.2. Let T : H(G) — H(G) be an operator.
(@) LetU c G be anopen ball. Theh hasdense range itJ if the operator

To:HG) - HWU), - Tyf=(Tf),

has dense range.
(b) We say thall haslocally dense range ned®G if there exists a compact subset
M of G such that for each open b&ll ¢ G \ M, T has dense range .
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(c) We say thafl hassomewhere locally dense range neg® if for eachV e
0O(0G) there exists an open ball ¢ V N G such thafl has dense range .

As before, we will usually take the qualification ‘nei®’ for granted.

It is clear that every operator with dense range has locally dense range and tha
every operator with locally dense range has somewhere locally dense range.

Up to now, all the known examples of strongly omnipresent operators satisfy one of
the previous properties. For instance, recall that every non-zero differential operator
@ (D) has dense range whenearis simply connected: indeed(D) is onto on
the space of entire functiorts (C) (see B, 11]) and H (©) is dense irH (G). In fact,
in any domainG, ®(D) always has locally dense range. Also the antidifferential
operatorD_ M has locally dense range near the boundary.

One could believe that there exists some characterization of strongly omnipresent
operators in terms of the size of the range. That is not true, however, as we are goinc
to see in the next example. We can construct strongly omnipresent operators with
‘very small’ range.

ExaMPLE 2.9. Let G ¢ C be a domain with Oc G and consider the operator
T : H(G) - H(G) defined byTf = f(0)y, wherey is a fixed holomorphic
monster inG. Then f is aT-monster if and only iff (0) # 0. HenceT is strongly
omnipresent, bul has 1-dimensional range.

On the other hand, having ‘large’ range need not imply strong omnipresence. As
the following example shows, there exist operators with dense range but without any
monster.

ExaMPLE 2.10.LetG = D, r € (0, 1) fixed andT : H(D) — H (D) the operator
given by Tf(z2) = f(rz) (z € D). Itis obvious that all the polynomials lie in the
range ofT, soT has dense range. Bu¥ (T) = ¢ becausd f is continuous up to
the boundary for alf € H(D).

In spite of the fact that these examples preclude any direct relationship between the
range of an operator and its behaviour near the boundary our next result furnishes ¢
sufficient condition for an operator with locally dense range to have many monsters:
we will meet the notion of local stability again.

In the following, letA° denote the interior of the sét

THEOREM2.11. LetT : H(G) — H(G) be anoperator such that for each compact
subseK c G andeachseV € O(0G) there is some closed bdll ¢ VNG with

(@ T has dense range iB°,
(b) T is K-stable inB.

ThenT is strongly omnipresent.
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PrOOF. Asinthe beginning of the proof of Theoretrband with the same meaning,
fixg,e,r,V,h,Kande;. LetB c VNG be the closed ball given by the hypothesis and
consider an affine linear transformatiosuch that (D) = B°. Thent € LT(VNG)
andgo ! € H(B?). Therefore, by (a), there exists a functibre H(G) such that

(6) (ITf _gofil”r(rﬁ) <eg/2.
By (b), there exist a closed b ¢ G \ K ands > 0 such that for alp € H(G)
@) lop — fllge <8 impliesthat [|[To —Tflg <¢&/2

Now, an application of Runge’s theorem (as in the proof of Thedzédnleads us to
the existence of a functiof, € H(G) with

(8) [fi—hlk <e
and” fl — f”B/ < 4. SO, by (7),

Now, (6), (9) and the factthat (r D) c B give us
(10) ITfh—go T71||r(r5) <[THi=Tfllg+Tf-go Tﬁl”r(rﬁ) <eé.

Hence, by 8) and (L0O) we havef, € U(T, g,¢,r, V) N D(h, K, ¢,), and the proof is
finished. O

From the above theorem we obtain immediately the following.

COROLLARY 2.12. LetT be an operator orH (G) that has, neabG, either

e somewhere locally dense range and local stahility
e locally dense range and somewhere local stability.

ThenT is strongly omnipresent.
Note that, in particular, ifT is an onto somewhere locally stable operator (not
necessarily linear) then it is strongly omnipresent, compare with Cordl|&ry

In turn, we obtain again, independently, that the identity operator is strongly om-
nipresent.

3. Composition and multiplication operators

So far, the only concrete examples of strongly omnipresent operators are differ-
ential, antidifferential and integral operators, ség [In this section we will apply



[11] Strongly omnipresent operators 345

the results of the previous section to enlarge this supply by characterizing completely
when a left- or right-composition operator or a multiplication operator is strongly
omnipresent.

Let HG,G) = {¢ € H(G) : ¢(G) C G}. Recall that forp € H(G, G) the
associated (right-)composition operator is the map@pg H(G) — H(G) defined
by C,(f) = f o ¢, which is in fact a linear operator od (G). Assume first that
¢ € Aut(G) is an automorphism ofg, that is, a one-to-one and onto function in
H(G, G). Then it is evident thaC, is an isomorphism fronH (G) onto itself and
therefore strongly omnipresent by Corolla2y3. But there are also plenty of self-
mappingsy ¢ Aut(G) that generate strongly omnipresent composition operators. It
turns out that the corresponding characterization is purely topological. The key is that
¢ must not ‘forget’ the boundary d&. Before establishing the result we isolate the
appropriate topological condition.

(C) Foreveryv € O(0G) the setp(V N G) is not relatively compact iG.
We state a number of equivalent versions of (C).

(Cy) ForeveryV € O(0G) the sethtG N ap(V N G) is non-empty.

(C,) For everyV € O(dG) and every compact sé¢ C G there is an open ball
UcVnGwitheU)NK =4.

(Cs) For everyt € G we have thaS(g, t) NG # @, whereS(p, t) is the cluster
set ofp at the boundary poirt (for definition and properties of cluster sets, see for
instance p] and [12]).

THEOREM3.1. Let C, be the composition operator oH (G) defined byy <
H (G, G). Then the following assertions are equivatent
(@ C, is strongly omnipresent
(b) .#(C,) is non-empty
(c) ¢ satisfiegC).

PrOOF. It is trivial that (a) implies (b). Now assume thatdoes not satisfy (C).
Thenthere is a compact d€tc G and an open sét € O(0G) with o(VNG) C K.
Hence, for every functiori € H(G) we have that ¢ U(C,, g, ¢,r, V) if we choose
r € (0,1) arbitrary,e = 1 andg(z) := 1+ || f|lx (z € D). It follows from Note2
before Propositior2.1 that f cannot be &,-monster. This shows tha# (C,) = ¢
and hence that (b) implies (c).

For the proof that (c) implies (a) we apply Theorgril LetK c G be a compact
subset and/ € O(3G). Then by property (g there is an openball c VNG
with ¢(U) N K = @. Sincey is clearly non-constant we see th@ts not identically
zero onU so that we can assume thats one-to-one otJ. We now choose closed
balls B C ¢(U) andB C U with ¢(B) C B. SinceC,f = f o ¢ we see that
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C, is K-stable inB. Also, C, has dense range iB° because : B — ¢(B is a
holomorphic bijection andi (G) is dense irH (¢(B°)) by Runge’s theorem; note that
@(B?) is a simply connected domain contained3n Theoren®.11now implies the
result. O

COROLLARY 3.2. Let ¢ be an entire function an€, the associated composition
operator onH (€). Then the following assertions are equivatent

(@ C, is strongly omnipresent
(b) .#(C,) is non-empty
(c) ¢ is non-constant.

ProOOF. Here our domain i&s = C. Property (C) reads in this case as follows: For
everyR > 0 the setp(|z| > R) is not bounded. This holds if and only ¢f is not
bounded, hence, by Liouville’s theorem, if and onlyiis non-constant. It remains
to apply Theoren3.1 O

ExampLE 3.3. By Corollary 3.2 there is an entire functiorf so that the entire
function f o exp is a holomorphic monster. More generally, given any sequenge
of non-constant entire functions there is an entire functiosuch that each of the
functionsf o ¢, (n € N) is a holomorphic monster.

We now consider left-composition operators. For this we need to assumg that
is an entire function. Then thieft-composition operatot., : H(G) — H(G) is
defined byL,(f) = ¢ o f, which is only a linear operator i is linear.

In this case the characterizing condition for strong omnipresence turns out to be in
terms of the size of the range bf,.

(L) The operatot, : H(D) — H(D) has dense range.

The following are useful equivalent variants of (L). We leave the proof of the equiv-
alence to the reader; suffice it to say that Runge’s theorem is crucial, by \WHi€h
is dense irtH (O) for every simply connected doma.

(L) There exists a simply connected dom@irin € such that, : H(O) — H(O)
has dense range.

(L) For any domairG and any simply connected domahc G, L, : H(G) —
H (O) has dense range.

(Ls) The functiong has anapproximate right inversén H(C), that is, there is a
sequencé f,) of entire functions such that( f,(z)) — zlocally uniformly in C.

THEOREM 3.4. Let L, be the left-composition operator dr(G) defined byy €
H (©). Then the following assertions are equivatent

(@ L, is strongly omnipresent



[13] Strongly omnipresent operators 347

(b)y .#(L,) is non-empty
(c) ¢ satisfieqL).

PROOF. Itistrivial that (a) implies (b). Iff isanL ,-monsterthenforang € H(D)
there is a sequende,) in LT(G) such thatp o (f o 1,)(2) = (L, f) o 1,(2) — 9(2)
locally uniformly in D. This shows that (L) holds, hence that (b) implies (c).

Now assume that (c) holds. Thér has locally dense range because, by) (for
any open balU in G the operatot, : H(G) — H(U) has dense range. Moreover,
L, is locally stable since the operatoy : H(U) — H(U) is always continuous. By
Corollary2.12 L, is strongly omnipresent, so that (a) holds. O

It follows from this theorem that many left-composition operatoysare strongly
omnipresent. For example, wheneyds universal in the sense of Birkhoff], that s,
if the set{p(- +a) : a € C} isdense irH (), theng clearly satisfies (}), and the set
of these functions is known to be residuaHr(C). The same is true, more generally,
for any holomorphic monster ift. As a consequence of this and Coroll&y we
have the following.

ExamMPLE 3.5. Let ¢ € H(C) be a holomorphic monster. Then there is a residual
set of entire functions such that bothf o ¢ andg o f are holomorphic monsters.
Clearly, f (z) = zis one such function.

On the other hand, it follows from Hurwitz's theorer [page 178] that only
surjective functiong can satisfy (L), hence (L). Moreover, surjectivity alone is not
sufficient; for instance, the functiop(z) := z* does not satisfy (4. This follows
from Roucte’s theorem [, page 153], because ff2(z) — z locally uniformly in C
then, for largen, f?would have exactly one zero in the unit disk, counting multiplicity,
which is clearly absurd.

In contrast to these observations it should be noted that the opératealways
omnipresent whep is a non-constant entire function, see Theorem 1(cPpf As
a consequence there are omnipresent operators that are not strongly omnipreser
We show by an example that there are even linear operators with this property, thus
answering a question posed i3].[

ExamMPLE 3.6. LetG be adomain containing the originandTet H(G) — H(G)
be the linear operator defined Ayf = f(0)e”, wherey is a fixed holomorphic
monster. Therm is omnipresent but not strongly omnipresent. Fof (@) # 0 then
T f has maximal cluster sets at every boundary poit@ becauser has this property
and because the exponential function has dense range.TTisusmnipresent by,
Theorem 1 (a)]. On the other hand, no functibrcan be ar-monster. This follows
from Hurwitz's theorem becaus® omits the value 0 and hence cannot be used to
approximate functions that have a zero but are not identically zero.
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We finally study multiplication operators. Faf € H(G) the operatorM,, :
H(G) — H(G) is defined byM, f(2) = v(2)f(2) (z € G). By Theoren2.5,
taking T = I, the identity operator, an8 the constant operator with valug, we
know thatM,, is strongly omnipresent ify extends to a continuous function on the
boundary without zeros there. In fact, we can drop this extra condition.

THEOREM3.7. If ¢ is non-zero then the multiplication operatdf, is strongly
omnipresent.

PrROOF. For anyy, M, is obviously locally stable. Now lef € O(3G). If y #£ 0
there is an open ball c V N G such thaty has no zeros i. Then it is clear that
M, has dense range th by Runge’s theorem. Hendé, also has somewhere locally
dense range, which implies the result by Corollary2. O
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