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Abstract

This paper studies the concept of strongly omnipresent operators that was recently introduced by the first
two authors. An operatorT on the spaceH .G/ of holomorphic functions on a complex domainG is
called strongly omnipresent whenever the set ofT -monsters is residual inH .G/, and aT -monster is a
function f such thatT f exhibits an extremely ‘wild’ behaviour near the boundary. We obtain sufficient
conditions under which an operator is strongly omnipresent, in particular, we show that every onto linear
operator is strongly omnipresent. Using these criteria we completely characterize strongly omnipresent
composition and multiplication operators.
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1. Introduction

Inspired by the notion of holomorphic monsters as introduced and developed by Luh
[8] and the third author [7, Kapitel 3] (see also [9, 10, 14]), the first two authors
have recently introduced the concept ofT-monsters [3], which is associated to a (not
necessarily linear) operatorT on the spaceH .G/ of holomorphic functions on a
domainG in C. Roughly speaking, aT-monster is a holomorphic function whose
image underT has an extremely ‘wild’ behaviour near the boundary.

The work of the first two authors has been partially supported by DGES grant PB96–1348 and the Junta
de Andalućıa.
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In [3] the concept was defined forG 6= C in order that the finite boundary be
non-empty, but the interested reader can easily check, using chordal distances, that
all proofs can be adapted to the case where the boundary point under consideration
is the point of infinity. Consequently, we redefine the concept ofT-monsters and its
associated notion of strongly omnipresent operators [3, Section 2] (see also [2] for the
weaker concept of omnipresent operators) in the following way.

Throughout this paper,G will be a domain inC and@G will denote its boundary
taken in the extended complex planeC∞ = C ∪ {∞}. By D we denote the open unit
disk. Anoperatoralways refers to a continuous (not necessarily linear) mapping.

DEFINITION 1.1 ([3]). .a/ A function f ∈ H .G/ is aholomorphic monsterif it
satisfies the following universality property:

.U / for eachg ∈ H .D/and eacht ∈ @G there exists a sequence.−n/of affine linear
transformations with−n.z/ → t .n → ∞/ uniformly onD and−n.D/ ⊂ G
.n ∈ N/ such thatf .−n.z// → g.z/ asn → ∞ locally uniformly inD.

.b/ Let T : H .G/ → H .G/ be an operator. Then a functionf ∈ H .G/ is a T-
monsterif T f is a holomorphic monster. The set ofT-monsters is denoted byM .T/.

It is not difficult to see that in the case when the point of infinity is an isolated point
in @G this notion, in general, is strictly stronger than the one given in [3]; this is so,
for example, ifT is the identity operator.

See below for a comparison with Luh’s holomorphic monsters [8].
For the closely related notion of strongly omnipresent operators we need some

more notation. We denote byO.@G/ = {V ⊂ C∞ : V is open andV ∩ @G 6= ∅} the
set of all open subsets ofC∞ that meet the boundary ofG. If A ⊂ C thenA represents
the closure ofA, ‖ f ‖A := supz∈A | f .z/|, where f is a complex function defined on
A, andLT.A/ is the set of all affine linear transformations− , −.z/ = az+ b, such
that−.D/ ⊂ A.

DEFINITION 1.2 ([3]). An operatorT : H .G/ → H .G/ is strongly omnipresentif
for all g ∈ H .D/, " > 0, r ∈ .0;1/ andV ∈ O.@G/ the setU .T; g; "; r;V/ := { f ∈
H .G/ : there exists some− ∈ LT.V ∩ G/ such that‖.T f / ◦ − − g‖rD < "} is dense
in H .G/.

Again, in contrast to [3] we have here allowed the point of infinity as a boundary
point. As in [3, Theorem 2.2] it is easy to prove thatT is strongly omnipresent if and
only if the setM .T/ of T-monsters is residual, that is, its complement inH .G/ is of
first category.

As a consequence, every new strongly omnipresent operatorT yields a wealth of
new universal functions: there is then a residual set of holomorphic functionsf so that



[3] Strongly omnipresent operators 337

each functionT f is a holomorphic monster, that is, eachT f satisfies the universality
property.U / stated in Definition1.1.

Examples of strongly omnipresent operators are provided in [3, Sections 3–4].
Specifically, if8.z/ = ∑∞

j =0 aj zj is a non-zero entire function of subexponential
type then the associated linear differential operator8.D/ = ∑∞

j =0 aj D j on H .G/
is strongly omnipresent. ForG = C this result even holds for all entire functions
8 of exponential type. HereD is the differentiation operatorD f = f ′, D0 = I is
the identity operator andD j +1 = D ◦ D j . Furthermore, ifG is a simply connected
domain,a ∈ G, ½ ∈ C andh is a non-zero entire function of exponential type then
the integral operatorT on H .G/ defined by

T f .z/ = ½ f .z/ +
∫ z

a

h.z − t/ f .t/dt .z ∈ G/

is strongly omnipresent. In particular, if9.z/ = ∑∞
j =0 aj zj is any non-zero func-

tion that is holomorphic at 0 then the corresponding linear antidifferential operator
9.D−1

a / = ∑∞
j =0 aj D− j

a on H .G/ is strongly omnipresent. HereD0
a = I and, for

each j ∈ N, D− j
a f ( f ∈ H .G/) denotes the unique antiderivativeF of f of order j

such thatF .k/.a/ = 0 (k ∈ {0;1; : : : ; j − 1}).
We note that the holomorphic monsters in the sense of Luh [8] are holomorphic

functions that are simultaneouslyD j - and D− j
a -monsters for allj ∈ N0. Since the

intersection of countably many residual sets is again residual, the existence of Luh-
monsters is thus a direct consequence of the strong omnipresence of each of the
operatorsD j andD− j

a , j ∈ N0.
Our aim in this paper is twofold. In Section2 we derive conditions that guarantee

that an operator is strongly omnipresent. This will be done in various ways. First we
show how to construct new strongly omnipresent operators from known ones. As an
application we will see that every onto linear operator is strongly omnipresent. Next
we study the problem under which conditions the existence of a singleT-monster
suffices to makeT strongly omnipresent. Finally we derive some workable conditions
under which a general operator is strongly omnipresent.

In Section3we apply these results to furnish new examples of strongly omnipresent
operators that are substantially different from differential and antidifferential opera-
tors; specifically, we characterize the strongly omnipresent (left- and right-) composi-
tion operators and the strongly omnipresent multiplication operators.

2. Looking for monsters

We begin our investigation into the existence of monsters by constructing new
strongly omnipresent operators from known ones. Before we do this we note the
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following two facts. LetT be an operator onH .G/, " > 0, g ∈ H .D/, r ∈ .0;1/ and
V ∈ O.@G/. Then we have:

.1/ U .T; g; "; r;V/ = { f ∈ H .G/ : there exists somenon-constant− ∈ LT.V∩G/
such that‖.T f / ◦ − − g‖rD < "} = { f ∈ H .G/ : there exists some non-constant
− ∈ LT.V ∩G/ such that‖T f −g◦−−1‖−.rD/ < "}. The first equality isaccomplished
by a simple continuity argument.
.2/ M .T/ = ⋂

g;";r;V U .T; g; "; r;V/, where, in fact, it suffices to only consider
countable dense subsets ofg; "; r and a suitable collection of countably many setsV
that cover@G; in addition, each setU .T; g; "; r;V/ is open. HenceM .T/ is always
a GŽ-subset. Consequently it is residual if and only if it is dense, and if and only ifT
is strongly omnipresent. For details see the proof of Theorem 2.2 in [3].

To start with, we state without proof the following result, which follows trivially from
the definition ofT -monster.

PROPOSITION2.1. Let T; S : H .G/ → H .G/ be operators. Then we have
S−1.M .T// =M .T S/. In particular,

.a/ if M .T/ 6= ∅ and Sis onto thenM .T S/ 6= ∅;

.b/ if M .T S/ 6= ∅ thenM .T/ 6= ∅.

THEOREM 2.2. Let T; S : H .G/ → H .G/ be operators such thatT is strongly
omnipresent andSis linear and onto. ThenT Sis strongly omnipresent.

PROOF. We have to prove thatM .T S/ is residual, hence, by the preceding propo-
sition, thatS−1.M .T// is residual. ButM .T/ is always aGŽ-subset, soS−1.M .T//
is also aGŽ-subset becauseS is continuous. It remains to see thatS−1.M .T// is
dense. SinceM .T/ is dense, given a non-empty open subsetA in H .G/, we obtain
thatM .T/ ∩ S A 6= ∅ becauseS Ais open due to the Open Mapping Theorem (recall
that S is linear and onto and thatH .G/ is an F-space). HenceS−1.M .T// ∩ A 6= ∅.
Thus,S−1.M .T// is dense, as required.

COROLLARY 2.3. Every onto linear operator onH .G/ is strongly omnipresent.

PROOF. Apply Theorem2.2 to T = I , the identity operator, which is strongly
omnipresent: take8.z/ ≡ z in the example given in the introduction.

For example, we know that for eachN ∈ N the antidifferentiation operatorD−N
a

of orderN is strongly omnipresent onH .G/ (take9.z/ ≡ zN in the example given
in the Introduction), whereG is a simply connected domain anda is a fixed point
in G. Since the differentiation operatorD (and soDN) is onto onH .G/ due to simple
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connectedness we can conclude that the operatorRN;a on H .G/ given by

RN;a f .z/ := f .z/−
N−1∑
j =0

f . j /.a/

j ! .z − a/ j ;

that is, the value atzof Taylor’s remainder of orderN of f ata, is strongly omnipresent.
Indeed, takeT = D−N

a andS= DN in Theorem2.2. Note that neitherD−N
a nor RN;a

is onto; they do not even have dense range.
In particular we obtain the following application in the caseG = C.

COROLLARY 2.4. There is an entire functionf .z/ = ∑∞
n=0 aj zj such that each of its

Taylor series remaindersRN f .z/ := ∑∞
j =N aj zj .N ∈ N0/ is a holomorphic monster.

It is evident that the sumT + S of two strongly omnipresent operators need not
be strongly omnipresent: take, for instance,T = I , S = −I . On the other hand,
a non-zero multiple½T , ½ 6= 0, of a strongly omnipresent operatorT is trivially
strongly omnipresent. The next result shows that ifT is strongly omnipresent andS
is an operator that behaves well near the boundary then their sumT + S generates a
strongly omnipresent operator, and a similar result is true for the productT · S given
by .T · S/ f = T f · S f.

THEOREM 2.5. Let T; S be two operators onH .G/. Assume that there exists a
dense subset0 in @G such that, for everyt ∈ 0 and for everyf ∈ H .G/, there exists
limz→t .S f/.z/ ∈ C (respectivelyC \ {0}). ThenM .T/ ⊂ M .T + S/ (respectively
M .T · S/). In particular, T + S (respectivelyT · S) is strongly omnipresent ifT is.

PROOF. Using [3, Lemma 2.1], the fact thatM .T/ ⊂ M .T + S/ (respectively
M .T/ ⊂ M .T · S/) is straightforward from the definition of monster. The details
are left to the reader.

As an example of an application of Theorem2.5we may consider again the Taylor
remainder operatorRN;a (given after Corollary2.3) acting onH .G/, whereG is any
domain such that the point of infinity is not an isolated point of@G. Indeed, we can
write RN;a = T + Swith T = I , the identity operator, and

S f.z/ = −
N−1∑
j =0

f . j /.a/

j ! .z − a/ j :

It is evident thatS is ‘well-behaved’ on0 := .@G/ \ {∞}.
The next result provides us with a condition that guarantees the existence of a

residual set of monsters by assuming the existence of at least one monster. For future
reference, we isolate this condition and introduce the notion of (local) stability of an
operator.



340 L. Bernal-Gonźalez, M. C. Caldeŕon-Moreno and K.-G. Grosse-Erdmann [6]

DEFINITION 2.1. Let T : H .G/ → H .G/ be an operator.

.a/ Let K be a compact subset ofG andB a closed ball contained inG. ThenT is
K -stable inB if for each f ∈ H .G/ and" > 0 there exist a closed ballB′ ⊂ G \ K
andŽ > 0 such that for allg ∈ H .G/

‖ f − g‖B′ < Ž implies that ‖T f − T g‖B < ":

.b/ We say thatT is locally stable near@G if for each compact subsetK of G there
exists a compact subsetM of G such that for each closed ballB ⊂ G \ M , T is
K -stable inB.
.c/ We say thatT is somewhere locally stable near@G if for each compact subset

K of G and eachV ∈ O.@G/ there exists a closed ballB ⊂ V ∩ G such thatT is
K -stable inB.

For the sake of brevity we will usually take the qualification ‘near@G’ for granted.
It is clear that every locally stable operator is somewhere locally stable. In fact, every
locally stable operatorT has the property that for each compact subsetK of G and
eacht ∈ @G there is an open neighbourhoodV of t such that for each closed ball
B ⊂ V ∩ G, T is K -stable inB.

By using Cauchy’s integral formula for derivatives, it is straightforward to verify
that each differential operator8.D/, where8 is an entire function of subexponential
type, is locally stable; in fact we can always take concentric closed ballsB, B′ with
radius.B/ < radius.B′/. Another example of a locally stable operator is the rotation
operatorRÞ .Þ ∈ [0;2³// on H .D/ defined byRÞ f .z/ = f .zeiÞ/. Further examples
will be given in Section3.

THEOREM 2.6. Let T be an operator onH .G/ that is locally stable near@G. If
M .T/ 6= ∅ thenT is strongly omnipresent.

PROOF. Fix g ∈ H .D/, " > 0, r ∈ .0;1/ andV ∈ O.@G/. We are going to show
thatU .T; g; "; r;V/ is dense inH .G/. To see this, fix a basic open subset

D.h; K ; "1/ = { f ∈ H .G/ : ‖ f − h‖K < "1}

of H .G/, whereK is a compact subset ofG such that each connected component
of C∞ \ K contains at least one connected component ofC∞ \ G, h ∈ H .G/ and
"1 > 0. Now let f be a fixedT-monster. Then there exists a non-constant affine linear
transformation− ∈ LT.G ∩ V/ such that

‖T f − g ◦ −−1‖B < "=2;(1)
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where B := −.rD/. We can assume thatB ⊂ G \ M , whereM is the compact
subset ofG given by the definition of local stability. Hence there exist a closed ball
B′ ⊂ G \ K andŽ > 0 such that, for all' ∈ H .G/,

‖' − f ‖B′ < Ž implies that ‖T' − T f‖B < "=2:(2)

Consider the compact setL := K ∪ B′. Then each connected component of the
complement ofL contains at least one component of the complement ofG becauseK
has this property andK ∩ B′ = ∅. Pick open subsetsG1;G2 ⊂ G with G1 ∩ G2 = ∅
andK ⊂ G1, B′ ⊂ G2. DenoteG0 = G1 ∪ G2. HenceG0 is open andL ⊂ G0 ⊂ G.
Define the functionF : G0 → C by

F.z/ =
{

h.z/; if z ∈ G1;

f .z/; if z ∈ G2:

ThenF ∈ H .G0/ and an application of Runge’s theorem [13, Chapter 13] yields the
existence of a rational functionf1 with poles outsideG such that

‖ f1 − F‖L < min{Ž; "1}:
Thus, f1 ∈ H .G/ with

‖ f1 − h‖K < "1(3)

and‖ f1 − f ‖B′ < Ž. From (2) we obtain

‖T f1 − T f‖B < "=2:(4)

Then (1) and (4) lead us to

‖T f1 − g ◦ −−1‖B < ":(5)

Summarizing, (3) and (5) tell us that f1 ∈ U .T; g; "; r;V/ ∩ D.h; K ; "1/. Conse-
quently,U .T; g; "; r;V/ is dense, as required.

We state another condition under which the existence of a single monster guarantees
the existence of a large supply of monsters: We assume that, on a dense set of functions,
T is well-behaved near the boundary. This time linearity ofT is needed.

THEOREM 2.7. Let T be a linear operator onH .G/ with M .T/ 6= ∅. If there
exists a dense subsetD in H .G/ with the property that for eachh ∈ D there is a
dense subset0h in @G such that, for allt ∈ 0h, there existslimz→t .T h/.z/ ∈ C, then
T is strongly omnipresent.

PROOF. Pick a T -monster f . Then f + D is dense inH .G/. Fix h ∈ D and
consider its corresponding set0h ⊂ @G. Given t ∈ 0h andg ∈ H .D/, define the
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functiong1.z/ := g.z/− L.t/, whereL.t/ := limz→t .T h/.z/ ∈ C. Theng1 ∈ H .D/
and there exist two sequences of complex numbers.an/; .bn/ with anz + bn → t
(n → ∞) uniformly onD andanz+ bn ∈ G for all n ∈ N and allz ∈ D such that

.T f /.anz + bn/ → g1.z/ .n → ∞/

locally uniformly inD. But we also have that.T h/.anz + bn/ → L.t/ (n → ∞)
locally uniformly inD (in fact, uniformly on the wholeD). Therefore, by linearity,
.T. f +h//.anz+bn/ → g.z/ (n → ∞) in the same manner. In view of [3, Lemma 2.1]
this implies thatf +D ⊂M .T/, so thatM .T/ is dense.

For instance, the condition in the above theorem is satisfied by a differential operator
8.D/ and by a finite order antidifferential operator9.D−1/ wheneverG is a simply
connected domain withG 6= C: just letD be the set of all polynomials and let0h be
the finite boundary ofG for all h ∈ D .

Although the last two theorems give mild conditions under whichM .T/ 6= ∅ im-
plies thatT is strongly omnipresent the following example shows that this implication
does not hold in general. Recall thatI denotes the identity operator.

EXAMPLE 2.8. Consider the operatorT : H .D/ → H .D/ given by

T f .z/ =  

(
z

1 + | f .0/|
)

.z ∈ D/;

where is a fixed holomorphic monster inD. Then f is a T-monster if and only if
f .0/ = 0. HenceT-monsters exist, but they only form a set of first category.

This example gives a partial solution to a problem posed in [3]. Unfortunately the
problem remains open forlinear operators:

If M .T/ 6= ∅, is T always strongly omnipresent?

Next, we want to derive practicable conditions on an operator that guarantee its
strong omnipresence. Here the range, or rather the local ranges, ofT will play an
important role. This leads us to the following definition.

DEFINITION 2.2. Let T : H .G/ → H .G/ be an operator.

(a) LetU ⊂ G be an open ball. ThenT hasdense range inU if the operator

TU : H .G/ → H .U /; f 7→ TU f = .T f /|U

has dense range.
(b) We say thatT haslocally dense range near@G if there exists a compact subset

M of G such that for each open ballU ⊂ G \ M , T has dense range inU .
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(c) We say thatT hassomewhere locally dense range near@G if for each V ∈
O.@G/ there exists an open ballU ⊂ V ∩ G such thatT has dense range inU .

As before, we will usually take the qualification ‘near@G’ for granted.
It is clear that every operator with dense range has locally dense range and that

every operator with locally dense range has somewhere locally dense range.
Up to now, all the known examples of strongly omnipresent operators satisfy one of

the previous properties. For instance, recall that every non-zero differential operator
8.D/ has dense range wheneverG is simply connected: indeed,8.D/ is onto on
the space of entire functionsH .C/ (see [6, 11]) and H .C/ is dense inH .G/. In fact,
in any domainG, 8.D/ always has locally dense range. Also the antidifferential
operatorD−N

a has locally dense range near the boundary.
One could believe that there exists some characterization of strongly omnipresent

operators in terms of the size of the range. That is not true, however, as we are going
to see in the next example. We can construct strongly omnipresent operators with
‘very small’ range.

EXAMPLE 2.9. Let G ⊂ C be a domain with 0∈ G and consider the operator
T : H .G/ → H .G/ defined byT f = f .0/ , where is a fixed holomorphic
monster inG. Then f is a T-monster if and only iff .0/ 6= 0. HenceT is strongly
omnipresent, butT has 1-dimensional range.

On the other hand, having ‘large’ range need not imply strong omnipresence. As
the following example shows, there exist operators with dense range but without any
monster.

EXAMPLE 2.10. Let G = D, r ∈ .0;1/ fixed andT : H .D/ → H .D/ the operator
given by T f .z/ = f .r z/ (z ∈ D). It is obvious that all the polynomials lie in the
range ofT , soT has dense range. ButM .T/ = ∅ becauseT f is continuous up to
the boundary for allf ∈ H .D/.

In spite of the fact that these examples preclude any direct relationship between the
range of an operator and its behaviour near the boundary our next result furnishes a
sufficient condition for an operator with locally dense range to have many monsters:
we will meet the notion of local stability again.

In the following, letA0 denote the interior of the setA.

THEOREM 2.11. LetT : H .G/ → H .G/ be an operator such that for each compact
subsetK ⊂ G and each setV ∈ O.@G/ there is some closed ballB ⊂ V ∩G with

.a/ T has dense range inB0,

.b/ T is K -stable inB.

ThenT is strongly omnipresent.
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PROOF. As in the beginning of the proof of Theorem2.6and with the same meaning,
fix g, ", r , V , h, K and"1. Let B ⊂ V∩G be the closed ball given by the hypothesis and
consider an affine linear transformation− such that−.D/ = B0. Then− ∈ LT.V ∩G/
andg ◦ −−1 ∈ H .B0/. Therefore, by (a), there exists a functionf ∈ H .G/ such that

‖T f − g ◦ −−1‖−.r D/ < "=2:(6)

By (b), there exist a closed ballB′ ⊂ G \ K andŽ > 0 such that for all' ∈ H .G/

‖' − f ‖B′ < Ž implies that ‖T' − T f‖B < "=2:(7)

Now, an application of Runge’s theorem (as in the proof of Theorem2.6) leads us to
the existence of a functionf1 ∈ H .G/ with

‖ f1 − h‖K < "1(8)

and‖ f1 − f ‖B′ < Ž. So, by (7),

‖T f1 − T f‖B < "=2:(9)

Now, (6), (9) and the fact that−.rD/ ⊂ B give us

‖T f1 − g ◦ −−1‖−.r D/ ≤ ‖T f1 − T f‖B + ‖T f − g ◦ −−1‖−.r D/ < ":(10)

Hence, by (8) and (10) we havef1 ∈ U .T; g; "; r;V/ ∩ D.h; K ; "1/, and the proof is
finished.

From the above theorem we obtain immediately the following.

COROLLARY 2.12. Let T be an operator onH .G/ that has, near@G, either

• somewhere locally dense range and local stability; or
• locally dense range and somewhere local stability.

ThenT is strongly omnipresent.

Note that, in particular, ifT is an onto somewhere locally stable operator (not
necessarily linear) then it is strongly omnipresent, compare with Corollary2.3.

In turn, we obtain again, independently, that the identity operator is strongly om-
nipresent.

3. Composition and multiplication operators

So far, the only concrete examples of strongly omnipresent operators are differ-
ential, antidifferential and integral operators, see [3]. In this section we will apply
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the results of the previous section to enlarge this supply by characterizing completely
when a left- or right-composition operator or a multiplication operator is strongly
omnipresent.

Let H .G;G/ = {' ∈ H .G/ : '.G/ ⊂ G}. Recall that for' ∈ H .G;G/ the
associated (right-)composition operator is the mappingC' : H .G/ → H .G/ defined
by C'. f / = f ◦ ', which is in fact a linear operator onH .G/. Assume first that
' ∈ Aut.G/ is an automorphism onG, that is, a one-to-one and onto function in
H .G;G/. Then it is evident thatC' is an isomorphism fromH .G/ onto itself and
therefore strongly omnipresent by Corollary2.3. But there are also plenty of self-
mappings' =∈ Aut.G/ that generate strongly omnipresent composition operators. It
turns out that the corresponding characterization is purely topological. The key is that
' must not ‘forget’ the boundary ofG. Before establishing the result we isolate the
appropriate topological condition.

(C) For everyV ∈ O.@G/ the set'.V ∩ G/ is not relatively compact inG.

We state a number of equivalent versions of (C).

(C1) For everyV ∈ O.@G/ the set@G ∩ @'.V ∩ G/ is non-empty.
(C2) For everyV ∈ O.@G/ and every compact setK ⊂ G there is an open ball
U ⊂ V ∩ G with '.U / ∩ K = ∅.
(C3) For everyt ∈ @G we have thatS.'; t/ ∩ @G 6= ∅, whereS.'; t/ is the cluster
set of' at the boundary pointt (for definition and properties of cluster sets, see for
instance [5] and [12]).

THEOREM 3.1. Let C' be the composition operator onH .G/ defined by' ∈
H .G;G/. Then the following assertions are equivalent:

.a/ C' is strongly omnipresent;

.b/ M .C'/ is non-empty;

.c/ ' satisfies(C).

PROOF. It is trivial that (a) implies (b). Now assume that' does not satisfy (C).
Then there is a compact setK ⊂ G and an open setV ∈ O.@G/ with '.V ∩ G/ ⊂ K .
Hence, for every functionf ∈ H .G/ we have thatf =∈ U .C'; g; "; r;V/ if we choose
r ∈ .0;1/ arbitrary," = 1 andg.z/ := 1 + ‖ f ‖K .z ∈ D/. It follows from Note2
before Proposition2.1 that f cannot be aC'-monster. This shows thatM .C'/ = ∅
and hence that (b) implies (c).

For the proof that (c) implies (a) we apply Theorem2.11. Let K ⊂ G be a compact
subset andV ∈ O.@G/. Then by property (C2) there is an open ballU ⊂ V ∩ G
with '.U / ∩ K = ∅. Since' is clearly non-constant we see that' ′ is not identically
zero onU so that we can assume that' is one-to-one onU . We now choose closed
balls B′ ⊂ '.U / and B ⊂ U with '.B/ ⊂ B′. SinceC' f = f ◦ ' we see that
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C' is K -stable inB. Also, C' has dense range inB0 because' : B0 → '.B0/ is a
holomorphic bijection andH .G/ is dense inH .'.B0// by Runge’s theorem; note that
'.B0/ is a simply connected domain contained inG. Theorem2.11now implies the
result.

COROLLARY 3.2. Let ' be an entire function andC' the associated composition
operator onH .C/. Then the following assertions are equivalent:

.a/ C' is strongly omnipresent;

.b/ M .C'/ is non-empty;

.c/ ' is non-constant.

PROOF. Here our domain isG = C. Property (C) reads in this case as follows: For
every R > 0 the set'.|z| > R/ is not bounded. This holds if and only if' is not
bounded, hence, by Liouville’s theorem, if and only if' is non-constant. It remains
to apply Theorem3.1.

EXAMPLE 3.3. By Corollary 3.2 there is an entire functionf so that the entire
function f ◦ exp is a holomorphic monster. More generally, given any sequence.'n/

of non-constant entire functions there is an entire functionf such that each of the
functions f ◦ 'n (n ∈ N) is a holomorphic monster.

We now consider left-composition operators. For this we need to assume that'

is an entire function. Then theleft-composition operatorL' : H .G/ → H .G/ is
defined byL'. f / = ' ◦ f , which is only a linear operator if' is linear.

In this case the characterizing condition for strong omnipresence turns out to be in
terms of the size of the range ofL'.

(L) The operatorL' : H .D/ → H .D/ has dense range.

The following are useful equivalent variants of (L). We leave the proof of the equiv-
alence to the reader; suffice it to say that Runge’s theorem is crucial, by whichH .C/
is dense inH .O/ for every simply connected domainO.

(L1) There exists a simply connected domainO in C such thatL' : H .O/ → H .O/
has dense range.
(L2) For any domainG and any simply connected domainO ⊂ G, L' : H .G/ →
H .O/ has dense range.
(L3) The function' has anapproximate right inversein H .C/, that is, there is a
sequence. fn/ of entire functions such that'. fn.z// → z locally uniformly inC.

THEOREM 3.4. Let L' be the left-composition operator onH .G/ defined by' ∈
H .C/. Then the following assertions are equivalent:

.a/ L' is strongly omnipresent;
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.b/ M .L'/ is non-empty;

.c/ ' satisfies(L).

PROOF. It is trivial that (a) implies (b). Iff is anL'-monster then for anyg ∈ H .D/
there is a sequence.−n/ in LT.G/ such that' ◦ . f ◦ −n/.z/ = .L' f / ◦ −n.z/ → g.z/
locally uniformly inD. This shows that (L) holds, hence that (b) implies (c).

Now assume that (c) holds. ThenL' has locally dense range because, by (L2), for
any open ballU in G the operatorL' : H .G/ → H .U / has dense range. Moreover,
L' is locally stable since the operatorL' : H .U / → H .U / is always continuous. By
Corollary2.12, L' is strongly omnipresent, so that (a) holds.

It follows from this theorem that many left-composition operatorsL' are strongly
omnipresent. For example, whenever' is universal in the sense of Birkhoff [4], that is,
if the set{'.· + a/ : a ∈ C} is dense inH .C/, then' clearly satisfies (L3), and the set
of these functions is known to be residual inH .C/. The same is true, more generally,
for any holomorphic monster inC. As a consequence of this and Corollary3.2 we
have the following.

EXAMPLE 3.5. Let ' ∈ H .C/ be a holomorphic monster. Then there is a residual
set of entire functionsf such that bothf ◦ ' and' ◦ f are holomorphic monsters.
Clearly, f .z/ = z is one such function.

On the other hand, it follows from Hurwitz’s theorem [1, page 178] that only
surjective functions' can satisfy (L3), hence (L). Moreover, surjectivity alone is not
sufficient; for instance, the function'.z/ := z2 does not satisfy (L3). This follows
from Rouché’s theorem [1, page 153], because iff 2

n .z/ → z locally uniformly inC
then, for largen, f 2

n would have exactly one zero in the unit disk, counting multiplicity,
which is clearly absurd.

In contrast to these observations it should be noted that the operatorL' is always
omnipresent when' is a non-constant entire function, see Theorem 1(c) of [2]. As
a consequence there are omnipresent operators that are not strongly omnipresent.
We show by an example that there are even linear operators with this property, thus
answering a question posed in [3].

EXAMPLE 3.6. Let G be a domain containing the origin and letT : H .G/ → H .G/
be the linear operator defined byT f = f .0/e , where is a fixed holomorphic
monster. ThenT is omnipresent but not strongly omnipresent. For iff .0/ 6= 0 then
T f has maximal cluster sets at every boundary point ofG because has this property
and because the exponential function has dense range. ThusT is omnipresent by [2,
Theorem 1 (a)]. On the other hand, no functionf can be aT -monster. This follows
from Hurwitz’s theorem becausee omits the value 0 and hence cannot be used to
approximate functions that have a zero but are not identically zero.
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We finally study multiplication operators. For ∈ H .G/ the operatorM :
H .G/ → H .G/ is defined byM f .z/ =  .z/ f .z/ .z ∈ G/. By Theorem2.5,
taking T = I , the identity operator, andS the constant operator with value , we
know thatM is strongly omnipresent if extends to a continuous function on the
boundary without zeros there. In fact, we can drop this extra condition.

THEOREM 3.7. If  is non-zero then the multiplication operatorM is strongly
omnipresent.

PROOF. For any , M is obviously locally stable. Now letV ∈ O.@G/. If  6= 0
there is an open ballU ⊂ V ∩ G such that has no zeros inU . Then it is clear that
M has dense range inU by Runge’s theorem. HenceM also has somewhere locally
dense range, which implies the result by Corollary2.12.
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