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Abstract

In this paper we prove a generalization of the well known theorem of Krasnoselskii on the superposition
operator in which the domain of Nemytskii’s operator is a product space. We also give an application of
this result.
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1. Introduction

Let f : @ x R' — R™, Q C RS be a Carataoddory function (that is, measurable
with respect to the first variable and continuous with respect to the group of others).
In nonlinear analysis, the operator of superposition (often referred to as Nemytskii's
operator) of the fornF : LP(Q;R") 3 x(-) = (-, x(-) € LYQ;R™), p > 1 (see
[5,6,7,8]), plays an essential role. The well-known theorem of Krasnoselskii says that
an operatoF is continuous if it is bounded, that isf (t, x)| < a|x|P+ b(t) for some

a > 0andb € L*(RQ). For nonlinear operators, this is quite remarkable. The original
proof of this theorem and its known modifications are long and not elementary (see for
example b, 6, 9]). A very simple and short proof of the theorem of Krasnoselskii can
be found in [LO]. In this paper we prove a generalization of Krasnoselskii's theorem
in which the domain of Nemytskii's operator is a product space. There exists an
extensive list of differentkinds of generalizations of the theorem of Krasnoselskii (see
[2, 1] and the references therein) but the authors have not found the results proved in
this paper anywhere. The result we obtained is used to prove some differentiability
properties of integral functionals.
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2. Some generalization of the Krasnoselskii theorem

Recall the classical theorem of Krasnosels§ji [

LetQ C R®be a (Lebesgue) measurable setand lef2 x R' — R™, s, I, m e N,
be a Caratbodory function. It is well known that for any measurable function
X : Q2 — R, the function2 > t — f(t, x(t)) € R™is measurable.

THEOREM 1 (Krasnoselskii)Let py, p, € [1, +00). Ifthere exist a constart > 0
and afunctiorb € L™ (), suchthat f (t, x)| < a|x|P/P+b(t)fort € Qa.e.x € R,
then the Nemytskii operatde : LP(Q;R') 3 x(:) — f(-,X(:)) € LP(Q;R™) is
continuous.

Let S, i = 1,...,k, be given sets of measurable functions @nwith values
in R'". AssumelL; Cc S,i = 1,...,k, are topological Hausdorff spaces such that
any convergent sequencelin contains a subsequence convergent (to the same limit)
pointwise a.e.iif2. PutL C L;x---xL, withthe topology induced frora;x- - - x L.
Assume thatf : @ x R" x ... x R — R™is a Caratkodory function.

THEOREM 2. If, for any convergent sequencgl, ..., x¥)cy in L there exist a
subsequencext, ..., x¥)icy and a functiorh € LP(2; Ry), 1 < p < oo, such that

(2.1) [Ft, X (), ....x )] <ht) forall i eN andt e Q ae,
then the Nemytskii operator

F:Laoh ... x e fGxE0), ..., x%()) € LP(Q2; R™)

is well defined and sequentially continuoud.irthat is, if (x?, . . ., x¥) —— (X3,
xg) in L, thenF (X}, ..., x%) —— F(Xg, ..., x§) in LP(Q; R™).

PrOOF. The assumption of the theorem, applied to a constant sequence, implies
that F is well defined. Suppose now that?, ..., x5) —— (x3,...,x{) in L and

n—oo

there exist a number > 0 and a subsequence still denoted®y, .. . , X*)nen, SUCh
that

(2.2) / |t XA, .. XED) — F (X3, ..., xE)]" dt > e forne N.
Q

On the other hand, we can choose a subseqL(e«;ﬁice. ., x,'ji) of (x}, ..., x¥) satis-
fying (2.1). We calculate

ECE X (), ... xS (1) — F(t X, ... x§(@®)P
< 2°(1F (b, X (0, .. XEO)IP (X5, ..., X5 (1)[P)
< 2°((h@®)P + | F(t, x3(1), ..., X5 (1))
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foralli € N andt € @ a.e. Since the topologies inj, j = 1,...,k, imply

a pointwise convergence a.e. of a subsequence, the €adatty condition onf
implies that, up to a subsequendét, x,}i ®, ..., x,'ji (t)) is pointwise convergent a.e.
inQto f(t,x3(),...,xKt)). Using the Lebesgue dominated convergence theorem,
we get lim_ [, [t x2(®), ..., xE®) — f(t, X3, ..., x5t)[Pdt = 0, which
contradicts 2.2) and the proof is completed. O

REMARK. In the above theorem any subsetsLdf(Q; R") or C(Q, R") with Q
compact can be considered as topological spagéwith the induced topologies).

3. Application
Let us consider a second order system

d
— (U (1) + a1 (1)) = —au(t) + (1) + AU (D),
(3.1) dt

d
a(|uz(t)|zuz(t) + ap(1)) = —b|uy(1)Pua(t) + Ba(t) + AT (D)uy (t)

fort € | =[0, 7] a.e., with Dirichlet boundary conditiong0) = u(wr) = 0.
It is easy to notice that the functional of action for systedri)((which becomes
the Euler-Lagrange equation for this functional) is of the form

1, 1. .
(3.2)  #(ug, uy) =/<§Iu1(t)| +Z|U2(t)| + (a(t), Uy (1))
|
b
+ (ap(t), Up (1)) — glul(t)lz - ZIUz(t)I4 + (B1(1), uy(t))
+ (Ba(1), Ux(1)) + (uy (1), A(t)Uz(t))>dt,

wherea,b € R, a; € LI, R"") \ L*(I, R"Y), a, € LY3(1, R"?), B € Li(I;R"),

B, € LE(1;R?), A e LY(I;R" "), I;,1, € N. (Recall thatWy"(I, R'), where

p € [1, oo[,| € N is the standard Sobolev space, that is, the space of all absolutely
continuous functionsi : | — R' such thati € LP(I, R") andu(0) = u(xr) = 0,
equipped with the norrul| = (f; [u(t)|Pdt+ /, [act)[P dt)l/p). At the first glance it
seems that the spaé*(1, R'* x R'2) is a natural space for investigating systesri)

as well as functional3.2). However, from the fact that; € L2(1, R'») \ L*(I, R")

it follows that there is no solution of systerd.{) in W,"*(I, R"* x R'2). On the other
hand, we easily check thatis a Gateaux-differentiable, weakly lower semicontinuous
and coercive functional ow; (I, R*) x W,*(I, R'2). By applying a direct method
of the calculus of variations it is easy to prove the existence of a solutio. 9f (
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in W21, R') x Wy*(1, R'2). In many variational and optimal control problems, an
essential role is played by the theorem on the existence and continuity ofettieeffr”
derivative of integral functionals (see for example4]). Using Theoren®, we can
prove

THEOREM3. Letl be afinite interval irR, and letg : | x R"* x Rz x R'* xRz — R
be a Caratleodory function continuously differentiable with respect to the last four
variables fort € | a.e. If there exist functiona;, a, € C(I, RY), b € L(I, R{),
ce Lu(l,Rf),de L%, RY), wherep;* + g, =1, p,* + g, = 1, such that

lg(t, Uy, Uz, Uy, Up)| < (aa(lue]) + @x(luz))(b(t) + [0 + [U]™),
IV, 9(t, U, Uy, U, Up)| < (@ (JUi]) + @(Ju2D) (b(t) + [Ge[™ + [Ua] ™),
IV, 9(t, U, Uy, U, Up)| < (@ (JUs]) + @(Ju2D)) (b(t) + [Ge[™ + [Ua] ),
|V, 9(t, Ug, U, Uy, Up)| < (@ (Jus]) + @o(lUa])) (C(t) + [0y * 7 + || /%),
Vi, 9(t, Us, U, Us, Up)| < (@ (Jus]) + @a(lUa) (d() + [0 7 + |0y »/%),

then the functionap : W, ™ (I, R"*) x Wy"™(1, R?) — R defined by the formula
¢ (U, Up) = /g(t, u(t), Up(t), Uy (t), U (1)) dt
|
is continuously Fechet-differentiable i, ™ (1, R') x W,"™(l, R'"2), and

@' (U1, Up)(hy, hy) = /(Vulg(t, uz(t), ux(t), Uy (t), Uz(t))he(t)

I
+ Vi, g(t, ug(t), ux(t), ug(t), Ux(t))hy(1)
+ Vi, O(t, Us (1), Up(t), Uy (1), Up(t))hy (1)
+ Vi, g(t, ug(t), up(t), Ug(t), ta(t)ho (D)) dt

for (hy, hy) € Wy (1, R') x Wy (1, R").

REMARK. This theorem is a generalization of,[Theorem 1.4] in the case of
product of spacewol’pl(l, R'1) x Wol’pz(l, R'2). In a natural way it may be extended
to the case of product of any finite number of spa\lklglsQ (I, R").

In the proof of Theoren® we shall use this very interesting lemma ofBis (3,
Theorem IV.9]).

LEMMA 1 (Brézis). From any sequenceéx,)..n of elements oLP(Q;R"), p €
[1, +00), converging inLP(2; R") to somex, € LP(Q; R"), one can choose a subse-
quenceX,, Jkeny CONVerging tag a.e. ing2, such thaix, (t)| < g(t) fort € Q a.e. and
k e N with some functiog € LP(Q; R").
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PrOOF OFTHEOREM 3. It suffices to prove that there exist partiaht@aux deriva-
tives ¢, (U, Up), @', (U, Uy) of the functionalg, continuous inwol’pl(l, R'Y) x
Wol’pz(l, R'z). It is easy to show (see for examplg [proof of Theorem 1.4]) that
these derivatives exist and are given by the formulae

¢, (U1, Up)(hy) = / (Va, 9(t, ug(t), ua(t), Uy (1), Up(t)hy(t)

I
+ Vi, g(t, up(t), up(t), Uy (t), Up(t)hy (1)) dt
for h; € W' (I, R"") and

¢, (U, Up)(hy) = / (Vi 0(t, ug(t), uz(t), Uy (1), Ua(t))ha(t)
|
+ Vi, g(t, ug(t), up(t), Ug(t), Ua(t)h(t))dt
for h, € W,"™(I, R"2). To end the proof, we must show that the operators

Wy (1, R x Wy (1, R)
> (Uz, Up) > Vi 9, Ua(), U2 (), Ua (), Uz() € L1 RY)

and
Wy P(1L R x Wy P (1, R")
> (ul’ UZ) = Vl]i g(s ul(')v UZ(')v ul(')v UZ()) € Ll(l ) [Rli)
for i = 1,2 are continuous. Since/, ™ (I, R'), Wy ™ (1, R"?) are metric spaces,

it is enough to show that the above operators are sequentially continuous. Since the

convergence of a sequence of functiongjh” (I, R") implies the convergence of this

sequence irC(l, R") together with the convergence of the sequence of derivatives

in LP (I, R"), therefore, by Theorer, puttingL, = C(l,R"), L, = C(l, R'"?),

Ly = LP(l, R"), Ly = LP(l, R?) andL = L, x L, x L3 x L4, we get the assertion.
Indeed, let(z, Z, z3, Z;) —— (zf 2, 20,2)) in L. Applying Lemmal, one can

choose subsequenc@s )in and(zy )iy such that(zg (t))| < gs(t) and|(z (t))| <

() (t € 1 a.e.,i € N) for some functiong; € L™ (1, Ry) andgs € LP(I, RY).

Moreover, sincd.; = C(I, R"), L, = C(l, R"), there existdM > 0 such that

(Z@) <M and [(Z M) <M, tel,ieN.
Hence the assumptions of the theorem yield,jfet 1, 2, the estimates
V9t Z'. 2. 25,2)) <hjt), telae.,eN,

with h;(t) = (@,(M) + ax(M))(b(t) 4 |g(t)[™ + |ga(t)|”) belonging toL (1, RY).
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In the same way, fof = 1, 2, one can check that
Ve, 9t. 2. 20, 3, Z))| <hjt), telaejeN,

with hy € L% (1, RY), hy € L%(1, R).

Consequently, each of the functio¥ig g, Vy, 9, j = 1, 2, satisfies the assumptions
of Theoren?. Therefore we conclude that(@?, u3) —— (9, ud) in Wy ™ (1, R") x
Wy (1, R"2), then

Vi, 9C, UT (), U3 (), UT (), U3 () ——— Vi, 9C, UY(), ud(), U2(), U3 ()

n—o0

in LY(I, R") for j = 1,2, and

Vi, 9C, UT (), U3 (), UT (), U3 () ——— Vi, 9C, Ud(), u3(), U2(), U3 ()

n—o0

in L% (I, RY) for j = 1, 2. This ends the proof. O
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