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Abstract

In this paper we prove a generalization of the well known theorem of Krasnoselskii on the superposition
operator in which the domain of Nemytskii’s operator is a product space. We also give an application of
this result.
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1. Introduction

Let f : � × R
l → R

m, � ⊂ R
s be a Carath´eodory function (that is, measurable

with respect to the first variable and continuous with respect to the group of others).
In nonlinear analysis, the operator of superposition (often referred to as Nemytskii’s
operator) of the formF : L p.�;Rl / 3 x.·/ 7→ f .·; x.·// ∈ L1.�;Rm/, p ≥ 1 (see
[5,6, 7, 8]), plays an essential role. The well-known theorem of Krasnoselskii says that
an operatorF is continuous if it is bounded, that is,| f .t; x/| ≤ a|x|p + b.t/ for some
a > 0 andb ∈ L1.�/. For nonlinear operators, this is quite remarkable. The original
proof of this theorem and its known modifications are long and not elementary (see for
example [5, 6, 9]). A very simple and short proof of the theorem of Krasnoselskii can
be found in [10]. In this paper we prove a generalization of Krasnoselskii’s theorem
in which the domain of Nemytskii’s operator is a product space. There exists an
extensive list of different kinds of generalizations of the theorem of Krasnoselskii (see
[2, 1] and the references therein) but the authors have not found the results proved in
this paper anywhere. The result we obtained is used to prove some differentiability
properties of integral functionals.
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2. Some generalization of the Krasnoselskii theorem

Recall the classical theorem of Krasnoselskii [5].
Let� ⊂ R

s be a (Lebesgue) measurable set and letf : �×Rl → R
m, s; l ;m ∈ N,

be a Carath´eodory function. It is well known that for any measurable function
x : � → R

l ; the function� 3 t 7→ f .t; x.t// ∈ Rm is measurable.

THEOREM 1 (Krasnoselskii).Let p1; p2 ∈ [1;+∞/. If there exist a constanta > 0
and a functionb ∈ L p2.�/, such that| f .t; x/| ≤ a|x|p1=p2+b.t/ for t ∈ �a.e.,x ∈ Rl ,
then the Nemytskii operatorF : L p1.�;Rl / 3 x.·/ 7→ f .·; x.·// ∈ Lp2.�;Rm/ is
continuous.

Let Si , i = 1; : : : ; k, be given sets of measurable functions on� with values
in Rl i . AssumeLi ⊂ Si , i = 1; : : : ; k, are topological Hausdorff spaces such that
any convergent sequence inLi contains a subsequence convergent (to the same limit)
pointwise a.e. in�. PutL ⊂ L1×· · ·×Lk with the topology induced fromL1×· · ·×Lk .
Assume thatf : �×Rl1 × · · · ×Rl k → R

m is a Carath´eodory function.

THEOREM 2. If, for any convergent sequence.x1
n; : : : ; xk

n/n∈N in L there exist a
subsequence.x1

ni
; : : : ; xk

ni
/i ∈N and a functionh ∈ L p.�;R+

0 /, 1 ≤ p < ∞, such that

| f .t; x1
ni
.t/; : : : ; xk

ni
.t//| ≤ h.t/ for all i ∈ N and t ∈ � a.e.,(2.1)

then the Nemytskii operator

F : L 3 .x1; : : : ; xk/ 7→ f .·; x1.·/; : : : ; xk.·// ∈ L p.�;Rm/

is well defined and sequentially continuous inL, that is, if.x1
n; : : : ; xk

n/ n→∞ .x1
0; : : : ;

xk
0/ in L, thenF.x1

n; : : : ; xk
n/ n→∞ F.x1

0; : : : ; xk
0/ in L p.�;Rm/.

PROOF. The assumption of the theorem, applied to a constant sequence, implies
that F is well defined. Suppose now that.x1

n; : : : ; xk
n/ n→∞ .x1

0; : : : ; xk
0/ in L and

there exist a number" > 0 and a subsequence still denoted by.x1
n; : : : ; xk

n/n∈N, such
that ∫

�

∣∣ f .t; x1
n.t/; : : : ; xk

n.t// − f .t; x1
0.t/; : : : ; xk

0.t//
∣∣ p

dt > " for n ∈ N:(2.2)

On the other hand, we can choose a subsequence.x1
ni
; : : : ; xk

ni
/ of .x1

n; : : : ; xk
n/ satis-

fying (2.1). We calculate

| f .t; x1
ni
.t/; : : : ; xk

ni
.t// − f .t; x1

0.t/; : : : ; xk
0.t//|p

≤ 2p.| f .t; x1
ni
.t/; : : : ; xk

ni
.t//|p + | f .t; x1

0.t/; : : : ; xk
0.t//|p/

≤ 2p..h.t//p + | f .t; x1
0.t/; : : : ; xk

0.t//|p/
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for all i ∈ N and t ∈ � a.e. Since the topologies inL j , j = 1; : : : ; k, imply
a pointwise convergence a.e. of a subsequence, the Carath´eodory condition onf
implies that, up to a subsequence,f .t; x1

ni
.t/; : : : ; xk

ni
.t// is pointwise convergent a.e.

in � to f .t; x1
0.t/; : : : ; xk

0.t//. Using the Lebesgue dominated convergence theorem,
we get limi →∞

∫
�

| f .t; x1
ni
.t/; : : : ; xk

ni
.t// − f .t; x1

0.t/; : : : ; xk
0.t//|p dt = 0, which

contradicts (2.2) and the proof is completed.

REMARK. In the above theorem any subsets ofL pi .�;Rl i / or C.�;Rl i / with �
compact can be considered as topological spacesLi (with the induced topologies).

3. Application

Let us consider a second order system




d

dt
.u̇1.t/ + Þ1.t// = −au1.t/ + þ1.t/ + A.t/u2.t/;

d

dt
.|u̇2.t/|2u̇2.t/ + Þ2.t// = −b|u2.t/|2u2.t/ + þ2.t/ + AT .t/u1.t/

(3.1)

for t ∈ I = [0; ³] a.e., with Dirichlet boundary conditionsu.0/ = u.³/ = 0.
It is easy to notice that the functional of action for system (3.1) (which becomes

the Euler-Lagrange equation for this functional) is of the form

�.u1;u2/ =
∫

I

(
1

2
|u̇1.t/|2 + 1

4
|u̇2.t/|4 + 〈Þ1.t/; u̇1.t/〉(3.2)

+ 〈Þ2.t/; u̇2.t/〉 − a

2
|u1.t/|2 − b

4
|u2.t/|4 + 〈þ1.t/;u1.t/〉

+ 〈þ2.t/;u2.t/〉 + 〈u1.t/; A.t/u2.t/〉
)

dt;

wherea;b ∈ R, Þ1 ∈ L2.I ;Rl1/ \ L4.I ;Rl1/, Þ2 ∈ L4=3.I ;Rl2/, þ1 ∈ L1.I ;Rl1/,
þ2 ∈ L1.I ;Rl2/, A ∈ L1.I ;Rl1×l2/, l1; l2 ∈ N.

(
Recall thatW1;p

0 .I ;Rl /, where
p ∈ [1;∞[, l ∈ N is the standard Sobolev space, that is, the space of all absolutely
continuous functionsu : I 7→ R

l such thatu̇ ∈ L p.I ;Rl / andu.0/ = u.³/ = 0,
equipped with the norm‖u‖ = ( ∫

I |u.t/|p dt +∫
I |u̇.t/|p dt

)1=p)
. At the first glance it

seems that the spaceW1;4
0 .I ;Rl1 ×Rl2/ is a natural space for investigating system (3.1)

as well as functional (3.2). However, from the fact thatÞ1 ∈ L2.I ;Rl1/ \ L4.I ;Rl1/

it follows that there is no solution of system (3.1) in W1;4
0 .I ;Rl1 ×Rl2/. On the other

hand, we easily check that� is a Gâteaux-differentiable,weakly lower semicontinuous
and coercive functional onW1;2

0 .I ;Rl1/ × W1;4
0 .I ;Rl2/. By applying a direct method

of the calculus of variations it is easy to prove the existence of a solution of (3.1)
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in W1;2
0 .I ;Rl1/× W1;4

0 .I ;Rl2/. In many variational and optimal control problems, an
essential role is played by the theorem on the existence and continuity of the Fr´echet
derivative of integral functionals (see for example [7, 4]). Using Theorem2, we can
prove

THEOREM 3. Let I be a finite interval inR, and letg : I ×Rl1 ×Rl2 ×Rl1 ×Rl2 → R

be a Carath́eodory function continuously differentiable with respect to the last four
variables fort ∈ I a.e. If there exist functionsa1;a2 ∈ C.I ;R+

0 /, b ∈ L1.I ;R+
0 /,

c ∈ Lq1.I ;R+
0 /, d ∈ Lq2.I ;R+

0 /, wherep−1
1 + q−1

1 = 1, p−1
2 + q−1

2 = 1, such that

|g.t;u1;u2; u̇1; u̇2/| ≤ .a1.|u1|/+ a2.|u2|//.b.t/ + |u̇1|p1 + |u̇2|p2/;

|∇u1g.t;u1;u2; u̇1; u̇2/| ≤ .a1.|u1|/+ a2.|u2|//.b.t/ + |u̇1|p1 + |u̇2|p2/;

|∇u2g.t;u1;u2; u̇1; u̇2/| ≤ .a1.|u1|/+ a2.|u2|//.b.t/ + |u̇1|p1 + |u̇2|p2/;

|∇u̇1g.t;u1;u2; u̇1; u̇2/| ≤ .a1.|u1|/+ a2.|u2|//.c.t/ + |u̇1|p1−1 + |u̇2|p2=q1/;

|∇u̇2g.t;u1;u2; u̇1; u̇2/| ≤ .a1.|u1|/+ a2.|u2|//.d.t/ + |u̇2|p2−1 + |u̇1|p1=q2/;

then the functional� : W1;p1

0 .I ;Rl1/× W1;p2

0 .I ;Rl2/ → R defined by the formula

�.u1;u2/ =
∫

I

g.t;u1.t/;u2.t/; u̇1.t/; u̇2.t//dt

is continuously Fŕechet-differentiable inW1;p1

0 .I ;Rl1/× W1;p2

0 .I ;Rl2/, and

�′.u1;u2/.h1;h2/ =
∫

I

(∇u1g.t;u1.t/;u2.t/; u̇1.t/; u̇2.t//h1.t/

+ ∇u2g.t;u1.t/;u2.t/; u̇1.t/; u̇2.t//h2.t/

+ ∇u̇1g.t;u1.t/;u2.t/; u̇1.t/; u̇2.t//ḣ1.t/

+ ∇u̇2g.t;u1.t/;u2.t/; u̇1.t/; u̇2.t//ḣ2.t/
)
dt

for .h1;h2/ ∈ W1;p1

0 .I ;Rl1/× W1;p2

0 .I ;Rl2/.

REMARK. This theorem is a generalization of [7, Theorem 1.4] in the case of
product of spacesW1;p1

0 .I ;Rl1/× W1;p2

0 .I ;Rl2/. In a natural way it may be extended
to the case of product of any finite number of spacesW1;pi

0 .I ;Rl i /.

In the proof of Theorem3 we shall use this very interesting lemma of Br´ezis ([3,
Theorem IV.9]).

LEMMA 1 (Brézis).From any sequence.xn/n∈N of elements ofL p.�;Rl /, p ∈
[1;+∞/, converging inL p.�;Rl / to somex0 ∈ L p.�;Rl /, one can choose a subse-
quence.xnk

/k∈N converging tox0 a.e. in�, such that|xnk
.t/| ≤ g.t/ for t ∈ � a.e. and

k ∈ N with some functiong ∈ L p.�;Rl /.



[5] On Krasnoselskii’s theorem 393

PROOF OFTHEOREM 3. It suffices to prove that there exist partial Gˆateaux deriva-
tives �′

u1
.u1;u2/, �′

u2
.u1;u2/ of the functional�, continuous inW1;p1

0 .I ;Rl1/ ×
W1;p2

0 .I ;Rl2/. It is easy to show (see for example [7, proof of Theorem 1.4]) that
these derivatives exist and are given by the formulae

�′
u1
.u1;u2/.h1/ =

∫
I

(∇u1g.t;u1.t/;u2.t/; u̇1.t/; u̇2.t//h1.t/

+ ∇u̇1g.t;u1.t/;u2.t/; u̇1.t/; u̇2.t//ḣ1.t/
)
dt

for h1 ∈ W1;p1

0 .I ;Rl1/ and

�′
u2
.u1;u2/.h2/ =

∫
I

(∇u2g.t;u1.t/;u2.t/; u̇1.t/; u̇2.t//h2.t/

+ ∇u̇2g.t;u1.t/;u2.t/; u̇1.t/; u̇2.t//ḣ2.t/
)
dt

for h2 ∈ W1;p2

0 .I ;Rl2/. To end the proof, we must show that the operators

W1;p1

0 .I ;Rl1/× W1;p2

0 .I ;Rl2/

3 .u1;u2/ 7→ ∇ui
g.·;u1.·/;u2.·/; u̇1.·/; u̇2.·// ∈ L1.I ;Rl i /

and

W1;p1

0 .I ;Rl1/× W1;p2

0 .I ;Rl2/

3 .u1;u2/ 7→ ∇u̇i
g.·;u1.·/;u2.·/; u̇1.·/; u̇2.·// ∈ L1.I ;Rl i /

for i = 1;2 are continuous. SinceW1;p1

0 .I ;Rl1/, W1;p2

0 .I ;Rl2/ are metric spaces,
it is enough to show that the above operators are sequentially continuous. Since the
convergence of a sequence of functions inW1;pi

0 .I ;Rl i / implies the convergence of this
sequence inC.I ;Rl i / together with the convergence of the sequence of derivatives
in L pi .I ;Rl i /, therefore, by Theorem2, putting L1 = C.I ;Rl1/, L2 = C.I ;Rl2/,
L3 = L p1.I ;Rl1/, L4 = L p2.I ;Rl2/ andL = L1 × L2 × L3 × L4, we get the assertion.

Indeed, let.zn
1 ; zn

2; zn
3 ; zn

4/ n→∞ .z0
1; z0

2; z0
3; z0

4/ in L. Applying Lemma1, one can
choose subsequences.zni

3 /i ∈N and.zni
4 /i ∈N such that|.zni

3 .t//| ≤ g3.t/ and|.zni
4 .t//| ≤

g4.t/ (t ∈ I a.e.,i ∈ N) for some functionsg3 ∈ L p1.I ;R+
0 / andg4 ∈ L p2.I ;R+

0 /.
Moreover, sinceL1 = C.I ;Rl1/, L2 = C.I ;Rl2/, there existsM ≥ 0 such that

|.zni
1 .t//| ≤ M and |.zni

2 .t//| ≤ M; t ∈ I ; i ∈ N:

Hence the assumptions of the theorem yield, forj = 1;2, the estimates

|∇uj
g.t; zni

1 ; zni
2 ; zni

3 ; zni
4 /| ≤ hj .t/; t ∈ I a.e.,i ∈ N;

with h j .t/ = .a1.M/+ a2.M//.b.t/ + |g3.t/|p1 + |g4.t/|p2/ belonging toL1.I ;R
+
0 /.
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In the same way, forj = 1;2; one can check that

|∇u̇ j
g.t; zni

1 ; zni

2 ; zni

3 ; zni

4 /| ≤ h̄ j .t/; t ∈ I a.e.,i ∈ N;

with h̄1 ∈ Lq1.I ;R+
0 /, h̄2 ∈ Lq2.I ;R+

0 /.
Consequently, each of the functions∇uj

g, ∇u̇ j
g, j = 1;2, satisfies the assumptions

of Theorem2. Therefore we conclude that if.un
1;u

n
2/ n→∞ .u0

1;u
0
2/ in W1;p1

0 .I ;Rl1/×
W1;p2

0 .I ;Rl2/, then

∇uj
g.·;un

1.·/;un
2.·/; u̇n

1.·/; u̇n
2.·// n→∞ ∇uj

g.·;u0
1.·/;u0

2.·/; u̇0
1.·/; u̇0

2.·//

in L1.I ;Rl j / for j = 1;2, and

∇u̇ j
g.·;un

1.·/;un
2.·/; u̇n

1.·/; u̇n
2.·// n→∞ ∇u̇ j

g.·;u0
1.·/;u0

2.·/; u̇0
1.·/; u̇0

2.·//

in Lqj .I ;Rl j / for j = 1;2. This ends the proof.
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