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Abstract

We give some higher dimensional analogues of the Durfee square formula and point out their relation to
dissections of multipartitions. We apply the results to write certain affine Lie algebra characters in terms
of Universal Chiral Partition Functions.
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1. Introduction and background

In this paper we will consider certain generalizations of an identity, due to Euler,
known as the Durfee square identity (see [3] for an excellent introduction and historical
account)

1

.q/∞
=
∑
m≥0

qm2

.q/m.q/m
;(1.1)

where

.z; q/M =
M∏

k=1

.1 − zqk−1/ ; .q/M ≡ .q; q/M :(1.2)

There are various ways to prove this identity. For instance, it follows as a limiting
case of theq-analogue of Gauss’ formula for the basic hypergeometric series2�1 (see,

The author was supported by a QEII research fellowship from the Australian Research Council.
c© 2002 Australian Mathematical Society 1446-8107/2000$A2:00+ 0:00

395

http://www.austms.org.au/Publ/JAustMS/V72P3/k73.html


396 Peter Bouwknegt [2]

FIGURE 1.1. The partitionλ = .6; 4; 4; 2/ and its 3× 3 Durfee square

for example, [2]). The most lucid proof, however, employs the connection of (1.1) to
partitions [10] (see also [8, 2]). Henceforth we identify partitionsλ = .½1; ½2; : : : /,
½1 ≥ ½2 ≥ · · · ≥ 1, and their graphical presentation in terms of Young diagrams [2]
(see, for example, Figure1.1for the partitionλ = .6;4;4;2/).

Now, recall that

.zq/−1
M =

∑
m;n≥0

pM.m;n/ zmqn ;(1.3)

wherepM.m;n/ denotes the number of partitions ofn into m parts in which no part
exceedsM . In terms of Young diagrams,pM.m;n/ is the number of diagrams withn
boxes such that there arem rows and no more thanM columns.

Thus, the left-hand side of (1.1) is clearly the generating function for all partitions,
while each summand on the right-hand side correspond to all partitions which fit at
most anm × m ‘Durfee square’ in the upper left-hand corner of the Young diagram.
(The 3× 3 Durfee square for the partitionλ = .6;4;4;2/ is indicated in Figure1.1.)
Summing over allm clearly generates the total set of partitions as well. This proves
(1.1). In fact, by keeping track of the number of columns and rows in the above
argument we have the following generalization of (1.1) due to Cauchy

1

.zq/M
=
∑
m≥0

qm2
zm

.zq/m

[
M

m

]
;(1.4)

where [
m

n

]
= .q/m
.q/n.q/m−n

;(1.5)

for 0 ≤ n ≤ m (and zero otherwise), denotes theq-binomial (Gaussian polynomial).
Instead of dissecting partitionsaccording to their maximal Durfee square, Andrews

considered dissections by (maximal) rectangles whose base to height ratio isr : s and
obtained the following generalization of (1.4) [1]

1

.zq/M
=
∑

i; j

∑
m≥0

q.rm+i /.sm+ j /zrm+i

.zq/sm+ j −1+Ži;0+Ži;r

[
M + rm + i Ž j ;s − sm− j

rm + i Ž j ;s

]
;(1.6)
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where the sum over.i; j / is over all pairs

.i; j / ∈ {.i; j / = .0;0/ or 1 ≤ i ≤ r; 1 ≤ j ≤ s; .i; j / 6= .r; s/}:(1.7)

In fact, the identity (1.6) is valid even if r and s are not relatively prime, as is
obvious from Andrews’ proof. For.r; s/ = .1;1/, (1.6) reduces to (1.4), while
for .r; s/ = .2;1/ it gives an identity which appears explicitly in Ramanujan’s lost
notebook (see [3]). The proof of (1.6) was also sketched by Berkovich and McCoy in
[6], and theM → ∞ limit of (1.6) was discussed by van Elburg and Schoutens in [7].

In this paper we will consider further generalizations of (1.6) by considering simul-
taneous dissections of multipartitions. The resulting formulas are useful in deriving
expressions for the chiral characters of 2D conformal field theories (in particular the
characters of modules of affine Lie algebras) in terms of so-called universal chiral
partition functions (UCPF’s).

2. Durfee systems

We will be concerned with identities of the form

1∏
i .zi q/Mi

=
∑

k

∑′

m∈Zn+
n−K ·m=Q.k/

(∏
i

z
mi +a.k/i
i

)
q.m+a.k//·.n+b.k// 1∏

i .zi q/ni

(2.1)

×
∏

i

[
Mi + mi − .ni + b.k/i /

mi

]
;

whereK ∈ GL.n;Q/ is a symmetric matrix and the sum overk is over a (finite) set of
sectors. In each sectork, the sum overm is over thosem ∈ .Z+/n (hereZ+ denotes the
set of non-negative integers) such thatK · m+ Q.k/ ∈ .Z+/n, while n = K · m+ Q.k/ .

DEFINITION 2.1. A Durfee systemfor K ∈ GL.n;Q/, of lengthL, is a collection of
n-dimensional vectors,.Q.k/; a.k/; b.k//, k = 0; : : : ; L − 1, such that (2.1) is satisfied
for all Mi ∈ Z+ andzi (i = 1; : : : ;n).

Andrews’ .r; s/-generalization of the classical Durfee formula, discussed in Sec-
tion 1, can now be formulated as

THEOREM 2.2. Letr; s ∈ N. A Durfee system of lengthL = rs, for the1×1 matrix
K = s=r , is given by

Q.i; j / = j − 1 + Ži;0 + Ži;r − s

r
i Ž j ;s;

a.i; j / = i .1− Ž j ;s/; b.i; j / = 1− Ži;0 − Ži;r ;

(2.2)

wherek = .i; j / runs over thers sectors as in(1.7).



398 Peter Bouwknegt [4]

In the remainder of this paper we restrict ourselves to non-negative integer-valued,
symmetric matricesK , that is,K ∈ GL.n;Z+/, and Durfee systems.Q.k/; a.k/; b.k//
of n-vectors with entries inZ+. In this case the sum in (2.1) is over allmi ≥ 0 and
ni ∈ Z+ is determined byn = K · m + Q.k/.

Before giving examples, let us first explore some consequences of (2.1). By
replacingzi → zi qpi in (2.1), for somep ∈ Zn, using the expansion (Note that (2.3)
itself can be interpreted as a length-1 Durfee system for the trivial matrixK = 0 with
.Q; a; b/ = .0;0;1/.)

1

.zq/M
=
∑
m≥0

.zq/m
[

M + m − 1

m

]
;(2.3)

and shifting the summation variables, we find

∏
i

[
Mi + Ni

Mi

]
=
∑

k

∑
m∈Zn+

n−K ·m=Q.k/+p

q.m+a.k//·.n+b.k//
∏

i

[
Mi + mi − .ni + b.k/i /

mi

]
(2.4)

×
[

Ni + ni − .mi + a.k/i /

ni

]
;

for arbitraryp ∈ Zn. Note that in this formula the summation variables.m; n/ appear
on a more symmetrical footing.

By taking the limitMi → ∞ in (2.1) we find

1∏
i .zi q/∞

=
∑

k

∑
m∈Zn+

n−K ·m=Q.k/

(∏
i

z
mi +a.k/i
i

)
q.m+a.k//·.n+b.k//∏

i .q/mi
.zi q/ni

;(2.5)

while by specializing (2.5) to zi = qpi , we find a generalization of the classical Durfee
formula (1.1)

1

.q/n∞
=
∑

k

∑
n−K ·m=Q.k/+p

q.m+a.k//·.n+b.k//∏
.q/mi

.q/ni

;(2.6)

for any constant vectorp ∈ Zn. Of course, this equation can also be obtained from
(2.4) by letting all Mi → ∞. Other interesting formulas are obtained by taking
different specializations of (2.4).

The search for identities of the type (2.1) in dimensionn is greatly facilitated by
using results in lower dimensions. Indeed, by puttingzi = 0 for somei = i 0 in
(2.1), the right-hand side only receives contributions from the sectorsk for which
a.k/i0

= 0. For those sectors only the termmi0 = 0 contributes in the summation, and
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FIGURE2.1. Set of partitions with generating function (2.7)

(2.1) reduces to a similar identity in dimensionn − 1. Summarizing, if we know
identities for a.n −1/× .n −1/ sub-block ofK , then we learn about the components
.Q.k/

i ;a
.k/
i ;b.k/i /, i 6= i0, for all sectorsk for whicha.k/i0

= 0.
We now discuss the correspondence of Durfee systems with multipartitions. Sup-

pose we have a Durfee system.Q.k/; a.k/; b.k// for K ∈ GL.n;Z+/. Consider
(2.6) for p = 0. The left-hand side is the generating series for all multipartitions
.λ.1/;λ.2/; : : : ;λ.n//. Each term in the summand on the right-hand side of (2.6) is a
product (overi ) of terms of the form

q.m+a/.n+b/

.q/m.q/n
:(2.7)

By associating to (2.7) a set of partitions of the form indicated in Figure2.1, each
term in the summand on the right-hand side of (2.6) is in 1–1 correspondence with a
set of multipartitions.

One possible strategy for proving the existence of a Durfee system is therefore to
show that the set ofn-dimensional multipartitions corresponding to the right-hand
side of (2.6) is non-overlapping and exhaustive. By keeping track of the number of
rows and columns in each partition λ.i /, the generalization (2.1) then easily follows.

After discussing some examples of Durfee systems in the following sections we
will explore some further consequences in the context of affine Lie algebra characters.

3. Examples

In this section we will consider some examples of Durfee systems.
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FIGURE 3.1. Thek = 0 sector
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FIGURE 3.2. Some missing bipartitions

THEOREM 3.1. Consider the matrixK ∈ GL.2;Z+/ given by

K =
(

1 1
1 2

)
:(3.1)

We have a Durfee system.Q.k/; a.k/; b.k// for K given by

Q.0/ =
(

0

0

)
; a.0/ =

(
0

0

)
; b.0/ =

(
0

0

)
;

Q.1/ =
(

0

1

)
; a.1/ =

(
0

1

)
; b.1/ =

(
1

0

)
:

Let us illustrate, in some detail, how one might arrive at this result. Thek = 0 term
in (2.6) (for p = 0) is explicitly given by

∑
n1−.m1+m2/=0

n2−.m1+2m2/=0

qn1m1+n2m2

.q/n1.q/n2.q/m1.q/m2

:(3.2)

The set of bipartitions.λ.1/;λ.2// associated to (3.2), according to the prescription of
Section2, is depicted in Figure3.1for low values ofm = .m1;m2/.
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FIGURE 3.3. Thek = 1 sector
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FIGURE 3.4. Thek = 0 sector
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FIGURE 3.6. Thek = 2 sector

Clearly these do not exhaust the set of all bipartitions. For instance, ifλ.1/ = ∅
(indicated by a• in Figure3.1) andλ.2/ 6= ∅, thenλ.2/ necessarily has two or more
rows. Thus, the set of bipartitions depicted in Figure3.2 is missing in (3.2).

If this set of bipartitions is to be included as them = .0;0/ term of another sector,
sayk = 1, then this immediately fixes all components of.Q.1/; a.1/; b.1// with the
exception ofb.1/1 . (Note that this component is also unconstrained by consideration
of the two 1× 1 sub-blocks ofK , as discussed in Section2.) Consideration of the
m = .1;0/ term in thek = 1 sector, however, uniquely fixesb.1/1 as well and we arrive
at the conclusion that (3.2) needs to be supplemented by∑

n1−.m1+m2/=0
n2−.m1+2m2/=1

q.n1+1/m1+n2.m2+1/

.q/n1.q/n2.q/m1.q/m2

:(3.3)

The set of bipartitions in thek = 1 sector, arising from (3.3) for low values ofm, is
depicted in Figure3.3.

Together, the sets of bipartitions of Figures3.1 and 3.3 are seen to be non-
overlapping and to exhaust the set of all bipartitions, at least to low order, so it
seems that no other sectors are required. The proof that this works to all orders
requires a bit more work and will be omitted.

A slightly more complicated Durfee system is given in

THEOREM 3.2. Let

K =
(

2 1
1 2

)
:(3.4)

The following constitutes a Durfee system forK

Q.0/ =
(

0

0

)
; a.0/ =

(
0

0

)
; b.0/ =

(
0

0

)
;

Q.1/ =
(

0

1

)
; a.1/ =

(
0

1

)
; b.1/ =

(
0

0

)
;(3.5)

Q.2/ =
(

1

1

)
; a.2/ =

(
1

0

)
; b.2/ =

(
0

0

)
:
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The reasoning parallels that of Theorem3.1. The first few sets of contributing
bipartitions, for the sectorsk = 0;1;2, are depicted in Figures3.4–3.6, respectively.

Theorem3.2has the following higher dimensional generalization

THEOREM 3.3. Let K ∈ GL.n;Z+/ be defined by

K =


2 1 · · · 1
1 2 · · · 1
:::

:::
: : :

:::

1 1 · · · 2

 :(3.6)

We have a Durfee system of lengthL = n + 1, given by then-vectors

Q.k/ = .0;0; : : : ;0︸ ︷︷ ︸
n−k

;1; : : : ;1︸ ︷︷ ︸
k

/;

a.k/ = .0; : : : ;0︸ ︷︷ ︸
n−k

;1;0; : : : ;0︸ ︷︷ ︸
k−1

/; b.k/ = .0;0; : : : ;0︸ ︷︷ ︸
n

/;
(3.7)

for k = 0; : : : ;n.

REMARK. Note that the length of the Durfee system in Theorem3.3 is given by
L = n + 1 = detK . We believe this is a general feature of Durfee systems for which
b.k/ = 0 for all k = 0; : : : ; L − 1 (see also the discussion in Section6).

4. Shift operation

It turns out that, once a Durfee system for someK ∈ GL.n;Z+/ has been estab-
lished, it is rather straightforward to obtain a Durfee system for a class of deformations
of K . These deformations are given in terms of a ‘charge vector’t = .t1; : : : ; tn/,
ti ∈ Z+, and a positive integerM ∈ Z+ as (These deformations were motivated by the
‘shift operation’ onK -matrices describing fractional quantum Hall systems (see [5]
and references therein).)

KM;t = K + M t tT:(4.1)

For instance, consider the deformationKM;t of the two-dimensional identity matrix

KM;t =
(

t2
1 M + 1 t1t2M
t1t2M t2

2 M + 1

)
;(4.2)

where we can assume thatt1 ≤ t2. Note that the matrixK of (3.4) is of this form with
M = 1, t = .1;1/.
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THEOREM 4.1. The matrixKM;t of (4.2) admits a lengthL = .t2
1 +t2

2 /M +1Durfee
system. There aret2

2 M sectors given by

Q =
(

t2
1 M + 1

t2
2 M

)
;

(
t2
1 M + 1

t2
2 M − 1

)
; : : : ;

(
t2
1 M + 1

t2
1 M + 2

)
︸ ︷︷ ︸

.t2
2 −t 2

1/M

;(4.3)

(
t2
1 M

t2
1 M + 1

)
;

(
t2
1 M − 1

t2
1 M

)
; : : : ;

(
0

1

)
︸ ︷︷ ︸

t 2
1 M

;

with a = (
0
0

)
, b = (

0
0

)
, t2

1 M sectors given by

Q =
(

t2
1 M

t2
1 M

)
;

(
t2
1 M − 1

t2
1 M − 1

)
; : : : ;

(
1

1

)
;(4.4)

with a = (
1
0

)
, b = (

0
0

)
, and and the ‘vacuum sector’Q = (

0
0

)
, a = (

0
0

)
, b = (

0
0

)
.

For deformations (4.1), with K = 1, we have

detKM;t = .tT · t/M + 1;(4.5)

which can be written as

detKM;t = Tr.KM;t − 111/+ 1:(4.6)

In fact, if n = 2, the matrixKM;t = 1111 + M t tT is the most general symmetric, non-
negative integer-valued matrix satisfying (4.6). Note that the length of the Durfee
system in Theorem4.1 is again given by detKM;t .

5. The UCPF and character identities

Consider the ‘Universal Chiral Partition Function’ (UCPF) (see [6] and references
therein)

Z.K ; Q; u|z; q/ =
∑
m∈Zn+

(∏
i

zmi

i

)
q

1
2 m·K ·m+Q·m∏

i

[
..111111 − K / · m + u/i

mi

]
;(5.1)

whereK ∈ GL.n;Z+/, Qi ∈ Z+ andui ∈ Z+ ∪ {∞}, i = 1; : : : ;n. (The consider-
ations in this section can easily be generalized to triples.K ; Q; u/ with entries inQ,
provided appropriate restrictions on the summation variablesmi in (5.1) are made.)

The following theorem is derived by elementary algebra
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THEOREM 5.1. Assume that.Q.k/; a.k/; b.k// forms a Durfee system for a symmetric
K ∈ GL.n;Z+/. Define

Q′.k/ = −K −1 · Q.k/; z′
i =

∏
j

z−Ki j

j :(5.2)

Then we have the following identity

∑
k

(∏
i

z
−Q.k/

i
i

)
q

1
2 Q.k/·K−1·Q.k/+a.k/·b.k/Z.K ; Q.k/+b.k/;M −.Q.k/+b.k//|z′; q/(5.3)

× Z.K −1; Q′.k/ + a.k/; N − .Q′.k/ + a.k//|z; q/

=
∑
p∈Zn

(∏
i

zpi

i

)
q

1
2 p·K−1·p∏

i

[
Mi + Ni + ..11111111 − K −1/ · p/i

Mi + pi

]
:

for all M ; N ∈ Zn
+.

REMARK. Note that the polynomialsP.k/
M .z; q/ ≡ Z.K ; Q.k/ + b.k/;M − .Q.k/ +

b.k//|z′; q/ and Q.k/
N .z; q/ ≡ Z.K−1; Q

′.k/ + a.k/; N − .Q
′.k/ + a.k//|z; q/, entering

(5.3), all arise as a solution to the same (that is,k-independent) set of recursion
relations (i = 1; : : : ;n) [5]

PM .z
′; q/ = PM−ei

.z′; q/ + z′
i q

− 1
2 Kii +Mi PM−K ·ei

.z′; q/;

QN.z; q/ = QN−ei
.z; q/ + zi q

− 1
2 K −1

i i +Ni QN−K−1·ei
.z; q/;

(5.4)

whereei denotes the unit vector in thei -direction and where we have used[
M

m

]
=
[

M − 1

m

]
+ qM−m

[
M − 1

m − 1

]
:

For the application of Theorem5.1 to affine Lie algebra characters let us consider
the limiting form of (5.1) asu → ∞, that is,

Z∞.K ; Q|z;q/ = lim
u→∞

Z.K ; Q; u|z;q/ =
∑

m

(∏
i

zmi

i

)
q

1
2 m·K ·m+Q·m∏

i .q/mi

:(5.5)

REMARK. The limiting UCPF’s are not all independent. For instance, by using the
simple relation.1 − qm/=.q/m = 1=.q/m−1 we find

Z∞.K ; Q/ = Z∞.K ; Q + ei /+ zi q
1
2 ei ·K ·ei +Q·ei Z∞.K ; Q + K · ei / :(5.6)

By takingM → ∞ in (5.3) we obtain
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COROLLARY 5.2. Let .Q.k/; a.k/; b.k// be a Durfee system forK ∈ GL.n;Z+/ of
lengthL. DefineQ

′.k/ andz′
i by (5.2). We then have

L−1∑
k=0

(∏
i

z
−Q.k/

i
i

)
q

1
2 Q.k/·K−1·Q.k/+a.k/·b.k/Z∞.K ; Q.k/ + b.k/|z′; q/(5.7)

× Z∞.K−1; Q′.k/ + a.k/|z; q/ = 1

.q/n∞

∑
p∈Zn

(∏
i

zpi

i

)
q

1
2 p·K−1·p:

Now suppose that the bilinear formp · K −1 · p is chosen in such a way that it
equals the standard bilinear form on the weight lattice3w of a simple Lie algebrag of
rankn and that the sum overp ∈ Zn corresponds to the sum over the weight lattice.
Then, providedg is simply-laced, the right-hand side of (5.7) can be recognized as
the Frenkel-Kac character of the sum of the level-1 integrable highest weight modules
of the affine Lie algebrâg (see, for example, [9]). (The irreducible characters can be
recovered by suitably restricting the sum overp.) Thus, in such cases, Corollary5.2
provides an expression for the level-1 characters ofĝ in terms of UCPF’s based on
the bilinear form constructed out ofK ⊕ K −1. This has important applications in
the study of quasiparticles in the conformal field theory descriptions of certain non-
Abelian fractional quantum Hall states [4, 5]. In fact, these applications were the main
motivation for the present study.

As an example, considerg = sln+1. The weights{ε1; : : : ; εn+1}, of the fundamental
.n + 1/-dimensional representationL.31/ of sln+1 satisfyεi · ε j = Ži j − 1=.n + 1/. A
suitable basis of the weight lattice3w is given by theεi , i = 1; : : : ;n (see Figure5.1
for sl3). Now note that

(∑
i pi εi

) · (∑ j pj ε j

) = p · K −1 · p, whereK −1 is given by

K −1 = 1

n + 1


n −1 · · · −1

−1 n · · · −1
:::

:::
: : :

:::

−1 −1 · · · n

 ;(5.8)

which has an inverseK given by (3.6). The ‘dual sector’, defined byK , corresponds
to a particular basis of the root lattice ofsln+1 (see Figure5.1for sl3). The weights of
this basis are determined by (5.2).

Thus, the sum overp ∈ Zn is precisely over the weight lattice ofsln+1 and combining
Theorem3.3 and Corollary5.2 gives us an expression for the character of the (sum
over all) level-1 integrable highest weight modules ofŝln+1. As a consistency check,
note that

1

2
Q.k/ · K −1 · Q.k/ = k.n + 1 − k/

2.n + 1/
; k = 0; : : : ;n;
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FIGURE 5.1. sl3 weights and roots

is indeed precisely the conformal dimension of the level-1 integrable highest weight
moduleL.3k/ of ŝln+1.

6. Discussion and conclusions

In this paper we have introduced higher dimensional analogues of the classical
Durfee square formula (1.1) in the form of ‘Durfee systems’, we explained their
correspondence to multipartitions, and gave a few examples. We have also remarked
on the application of Durfee systems, in particular with regards to writing (chiral)
characters of two-dimensional conformal field theories in UCPF form.

A number of obvious questions come to mind. Firstly, for which symmetric
K ∈ GL.n;Z+/ is it possible to find a Durfee system? It seems that this class
of matrices is quite big. In fact, examples suggest that, provided detK ≥ 0, a
Durfee system always exists (see (2.3) for an example with detK = 0). Secondly,
how unique are Durfee systems for a given matrixK? Clearly they are not unique.
For instance, in the case ofK = s=r (see Theorem2.2) we can construct Durfee
systems of lengthL = m2rs for all m ∈ N by taking.r; s/ → .mr;ms/ in (1.6) and
(1.7). Similar constructions exist for the higher dimensional cases. Another source of
non-uniqueness originates from possible symmetries of the matrixK . For example,
interchanging the components of all vectors.Q.k/; a.k/; b.k// in Theorem3.2, provides
another Durfee system due to theZ2 permutation symmetry of the matrixK in (3.4).
Thirdly, for a givenK , what is the minimal lengthLmin of a Durfee system? It seems
that a special role is played by matrices for whichLmin = detK , which seem to be
closely related to matrices for which it is possible to choose a Durfee system for which
b.k/ = 0 for all k. A large class of such matrices is provided by the shift deformations
KM;t of the identity (see (4.1)) and, at least in two dimensions, it appears that such
deformations exhaust all matricesK for which Lmin = detK . Finally, is it possible
to give a more ‘geometric’ construction of the vectors.Q.k/; a.k/; b.k//? Again, in the
case of matricesK for which Lmin = detK it seems that the set ofQ.k/ is given by
a set of coset representatives (with minimal non-negative components) ofZn modulo
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the equivalencesm ∼ m + K · ei (i = 1; : : : ;n). Note that in the case of (3.6) the
equivalence preserves theZn+1 chargeq = ∑

imi .mod n + 1/ of m (‘n-ality’) and
that we find one coset representative for eachq ∈ Zn+1.
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