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Abstract

We give some higher dimensional analogues of the Durfee square formula and point out their relation to
dissections of multipartitions. We apply the results to write certain affine Lie algebra characters in terms
of Universal Chiral Partition Functions.
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1. Introduction and background

In this paper we will consider certain generalizations of an identity, due to Euler,
known as the Durfee square identity (s8r an excellentintroduction and historical
account)

1 q™
1.1 S . E—
- (@ §,<q>m<q)m
where
M
(1.2) Zow=[]@-2zd". (@w=@Du-
k=1

There are various ways to prove this identity. For instance, it follows as a limiting
case of thej-analogue of Gauss’ formula for the basic hypergeometric sgfigsee,
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FIGURE 1.1. The partitioh = (6, 4, 4, 2) and its 3x 3 Durfee square

for example, B]). The most lucid proof, however, employs the connectionlof)(to
partitions [LO] (see also §, 2]). Henceforth we identify partitions = (A1, Ao, ...),
A1 > Ao > --- > 1, and their graphical presentation in terms of Young diagrafns [
(see, for example, Figurk1for the partitionh = (6, 4, 4, 2)).

Now, recall that

(1.3) (zo)y' = Z pw(m, n) Z"q",

m,n>0

wherepy (m, n) denotes the number of partitions minto m parts in which no part
exceeddM. In terms of Young diagramsy (m, n) is the number of diagrams with
boxes such that there amerows and no more thakl columns.

Thus, the left-hand side ofL(1) is clearly the generating function for all partitions,
while each summand on the right-hand side correspond to ditipas which fit at
most anm x m ‘Durfee square’ in the upper left-hand corner of the Young diagram.
(The 3x 3 Durfee square for the partition= (6, 4, 4, 2) is indicated in Figurel..1.)
Summing over alm clearly generates the total set of partitions as well. This proves
(1.7). In fact, by keeping track of the number of columns and rows in the above
argument we have the following generalization dflj due to Cauchy

qmz™
(1.4) (zq>M §<zmm[ ]
where
(15) [ﬂ:ﬁ,
n) = @@

for 0 < n < m (and zero otherwise), denotes tpdinomial (Gaussian polynomial).

Instead of dissecting partitiomgcording to their maximal Durfee square, Andrews
considered dissections by (maximal) rectangles whose base to height ratioasd
obtained the following generalization cof .¢@) [1]

(1 6) _Z q(rm+i)(smj)zrm+i |:|\/| +rm+i8j,s—sm— Ji|
. (Zq) i,j m=0 (ZQ)sm+j—l+6i‘g+5i‘, rm-+ I 8],3 ’
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where the sum ovai, j) is over all pairs
L7 G, el hD=00o0rl<i<r, 1<j<s (,j)#(rs9)

In fact, the identity {.6) is valid even ifr ands are not relatively prime, as is
obvious from Andrews’ proof. Forr,s) = (1,1), (1.6 reduces to 1.4), while

for (r,s) = (2, 1) it gives an identity which appears explicitly in Ramanujan’s lost
notebook (seed]). The proof of (L.6) was also sketched by Berkovich and McCoy in
[6], and theM — oo limit of (1.6) was discussed by van Elburg and Schouteng]in [

In this paper we will consider further generalizationsfj by considering simul-
taneous dissections of multipartitions. The resulting formulas are useful in deriving
expressions for the chiral characters of 2D conformal field theories (in particular the
characters of modules of affine Lie algebras) in terms of so-called universal chiral
partition functions (UCPF's).

2. Durfee systems

We will be concerned with identities of the form
1

mi+a’ | mea®)neb) L
2. H(zq)m. Z 3 (]_[z )q [Tz,

meZ",
n—K-m= Q“‘)

Mi +m — (n +b*)
) l_[ [ m; }

whereK € GL(n, Q) is a symmetric matrix and the sum oveis over a (finite) set of
sectors. In each sectiorthe sum ovem s over thosen € (Z,)" (hereZ, denotes the
set of non-negative integers) such thatm+ Q® e (zZ,)", whilen = K -m+ Q®,

DerINITION 2.1. A Durfee systerfor K € GL(n, Q), of lengthL, is a collection of
n-dimensional vectorg,Q®, a®, b®), k =0, ... , L — 1, such thatZ.1) is satisfied
forall M; e Z, andz (i =1, ... ,n).

Andrews’ (r, s)-generalization of the classical Durfee formula, discussed in Sec-
tion 1, can now be formulated as

THEOREM2.2. Letr, s € N. A Durfee system of length= rs, for thel x 1 matrix
K =s/r, is given by

S.
Q(IJ)_]_1+8|O+8|r_r 813’
aV =i(1-8;9, bV =1-5,-26,,

(2.2)

wherek = (i, ) runs over the's sectors as if{1.7).



398 Peter Bouwknegt [4]

In the remainder of this paper we restrict ourselves to non-negative integer-valued,
symmetric matrice¥, that is,K € GL(n, Z, ), and Durfee systemaQ®, a®, b®)
of n-vectors with entries irZ . In this case the sum ir2(1) is over allm, > 0 and
n; € Z, is determined by = K - m + QW®,

Before giving examples, let us first explore some consequence8.Hf (By
replacingz — zqP in (2.1), for somep € Z", using the expansion (Note th&t )
itself can be interpreted as a length-1 Durfee system for the trivial midtex0 with
(Q,a,b)=(0,0,1).)

M+m-1
& RN |

m=>0

and shifting the summation variables, we find

(2.4) l_[ [MiJ Nii| Z Z q(m+a(k))A(n+b(k)) l_[ |:Mi +m; :nl(ni + bi(k))i|

meZ'}
n—K-m= Q“‘)+p

Ni+n —(m +a")
X 9
N
for arbitraryp € Z". Note that in this formula the summation variables n) appear

on a more symmetrical footing.
By taking the limitM; — oo in (2.1) we find

(2.5) R Z Z l—[ Zimi +a® M
. 1_[ (Z q)oo Hi (q)mi (Z q)ni )

meZ", i
n—K-m= Q“‘)

while by specializingZ.5 to z = g, we find a generalization of the classical Durfee
formula (1.7

q(m+a“‘))~(n+b“‘))

(q)n =2 X [T @m (D,

kK n—K-m= Q(k)+p

(2.6)

for any constant vectop € Z". Of course, this equation can also be obtained from
(2.4) by letting all M; — oo. Other interesting formulas are obtained by taking
different specializations of2(4).

The search for identities of the typ2.{) in dimensionn is greatly facilitated by
using results in lower dimensions. Indeed, by puttihg= O for somei = i, in
(2.1), the right-hand side only receives contributions from the sedtdrs which

ay(:) = 0. For those sectors only the temy, = 0 contributes in the summation, and
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m+a

jisss

-— 35 —»

FIGURE2.1. Set of partitions with generating functidx?)

(2.1) reduces to a similar identity in dimension— 1. Summarizing, if we know
identities for ain — 1) x (n — 1) sub-block ofK, then we learn about the components
(QY, 8", b ), i # io, for all sectorsk for whicha¥ = 0.

We now discuss the correspondence of Durfee systems with multipartitions. Sup-
pose we have a Durfee systen@®, a®, b®) for K € GL(n,Z,). Consider
(2.6) for p = 0. The left-hand side is the generating series for all multipartitions
AP, 1@, .., A™), Each term in the summand on the right-hand side2af) (is a
product (ovei) of terms of the form

m+a)(n+b
q( )( )

(Dm(@Dn

By associating toZ.7) a set of partitions of the form indicated in Figu?el, each
term in the summand on the right-hand side 28] is in 1-1 correspondence with a
set of multipartitions.

One possible strategy for proving the existence of a Durfee system is therefore to
show that the set ofi-dimensional multipartitions corresponding to the right-hand
side of @.6) is non-overlapping and exhaustive. By keeping track of the number of
rows and columns in each gigion A", the generalizatior(1) then easily follows.

After discussing some examples of Durfee systems in the following sections we
will explore some further consequences in the context of affine Lie algebra characters.

(2.7)

3. Examples

In this section we will consider some examples of Durfee systems.
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D [~ N i =V

m=(0,0) (1,0) 0,1)

8 |

(1,1) (2,0)

FIGURE 3.1. Thek = 0 sector
FIGURE 3.2. Some missing bipartitions

THEOREM 3.1. Consider the matriX € GL(2, Z_) given by

(3.1) K = (1 ;)

We have a Durfee syste®®, a®, b®) for K given by

O __ O) O __ <O> 0) __ <O>
Q _<o’ & =\o) b7 =1{p)
y (O y (O y (1
Q<>_<1>, a()_<1>’ bU_(o)'

Let us illustrate, in some detail, how one might arrive at this result.KTfe0 term
in (2.6 (for p = 0) is explicitly given by

qn1m1+nzmz

3.2 '
( ) Z (q)n1 (Q)nz (q)m1 (q)mz

n1—(My+mp)=0
n2—(my+2my)=0

The set of bipartitiongA®, L) associated to3(2), according to the prescription of
Section2, is depicted in Figur&.1for low values ofm = (my, m,).
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o f o) f

(0,0) (1,0 0,1)

:

(1,1)

FIGURE 3.3. Thek = 1 sector

o Py

(0,0) (1,0) 0,1)

. *

(1,1) (2,0)

FIGURE 3.4. Thek = 0 sector

o 7 ) f

(0,0) (1,0 (0,1)

FIGURE 3.5. Thek = 1 sector
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o o 7B

(0,0) (1,0) 0,1)

FIGURE 3.6. Thek = 2 sector

Clearly these do not exhaust the set of all bipartitions. For instanag? it= ¢
(indicated by a in Figure3.1) andA® # @, thenA® necessarily has two or more
rows. Thus, the set of bipartitions depicted in Fig8r2is missing in 8.2).

If this set of bipartitions is to be included as tire= (0, 0) term of another sector,
sayk = 1, then this immediately fixes all components(@?, a®, b®) with the
exception ofb(”. (Note that this component is also unconstrained by consideration
of the two 1x 1 sub-blocks ofK, as discussed in Sectidh) Consideration of the
m = (1, 0) term in thek = 1 sector, however, uniquely fix&$’ as well and we arrive
at the conclusion thaB(2) needs to be supplemented by

q(n1+1)m1+nz(mz+l)

3.3 '
( ) Z (q)n1 (Q)nz (q)m1 (q)mz

n1—(My+mp)=0
np—(my+2mp)=1

The set of bipartitions in the = 1 sector, arising from3.3) for low values ofm, is
depicted in Figure.3.

Together, the sets of bipartitions of Figur8sl and 3.3 are seen to be non-
overlapping and to exhaust the set of all bipartitions, at least to low order, so it
seems that no other sectors are required. The proof that this works to all orders
requires a bit more work and will be omitted.

A slightly more complicated Durfee system is given in

THEOREM 3.2. Let

(3.4) K = (i ;)

The following constitutes a Durfee system Kor

St
0 0 0

o =) e ()
2) __ 1 2 _ 1 2 0

Q()_(]-)’ a()_<o>’ b()_<o>'
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The reasoning parallels that of Theor@&x. The first few sets of contributing
bipartitions, for the sectols= 0, 1, 2, are depicted in Figures4-3.6, respectively.
Theorem3.2 has the following higher dimensional generalization

THEOREM3.3. LetK € GL(n, Z,) be defined by

2 1 . 1

1 2 . 1
(3.6) K = ,

1 1. 2

We have a Durfee system of lengith= n + 1, given by then-vectors

Q(k):(o,o,... ,0,17--' 91)9
—_—
3.7 " ‘
(3.7) a®=(,...,0,1,0,...,0, b%®=(0,0,...,0),
e —— —
n—k k-1 n
fork=0,...,n.

ReEMARK. Note that the length of the Durfee system in Theoi&is given by
L =n+ 1= detK. We believe this is a general feature of Durfee systems for which
b® =0forallk=0,...,L — 1 (see also the discussion in Sect&)n

4. Shift operation

It turns out that, once a Durfee system for sokhes GL(n, Z,) has been estab-
lished, it is rather straightforward to obtain a Durfee system for a class of deformations
of K. These deformations are given in terms of a ‘charge vedtef’ (1, ... ,t,),
ti € Z,, and a positive integevl € Z,, as (These deformations were motivated by the
‘shift operation’ onK -matrices describing fractional quantum Hall systems (5ke [
and references therein).)

(4.1) Kyi= K+ Mtt'.

For instance, consider the deformatikg, ; of the two-dimensional identity matrix

t?M+1 t,t,M
. Kuve=["*
(4.2) Mt (mm t2M +1)°

where we can assume that< t,. Note that the matriX of (3.4) is of this form with
M=11t=(11).
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THEOREM4.1. The matrixK . of (4.2 admits alength. = (t?+t2)M +1 Durfee
system. There argM sectors given by

t?M + 1 t?M + 1 t?M + 1
0 o= () G o) (o)
(tZ—tHM
t2M 2M — 1 0
(ewsa) Coow ) ()
tZM

witha= (3), b= (), t#M sectors given by

2M t?M — 1 1
o (@)
witha= (%), b= (J), and and the ‘vacuum secto® = (§),a= (3), b= ().
For deformations4.1), with K = 1, we have
(4.5) detKy = (t7 - t)M + 1,
which can be written as
(4.6) detKy = Tr(Ky; — 1) + 1.

In fact, if n = 2, the matrixKy, ; = 1+ M ttT is the most general symmetric, non-
negative integer-valued matrix satisfying.§). Note that the length of the Durfee
system in Theorem.lis again given by defy ;.

5. The UCPF and character identities

Consider the ‘Universal Chiral Partition Function’ (UCPF) (s€leand references
therein)

AP 1-K)- i
(5.1) Z(K;Q.ujza) =) (l_la’“')qf”“’“*‘?"“l_[[(( :nm”)},

meZ'} i

whereK € GL(n,Z,), Q € Z, andu; € Z, U {cco},i = 1,...,n. (The consider-

ations in this section can easily be generalized to tripkesQ, u) with entries inQ,

provided appropriate restrictions on the summation variabjes (5.1) are made.)
The following theorem is derived by elementary algebra
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THEOREM5.1. Assume thatQ®, a®, b®) forms a Durfee system for a symmetric
K € GL(n, Z,). Define

(52) Q/(k) = —Kil . Q(k)’ Zi/ _ l_[ Z;Kij )
j
Then we have the following identity

(5.3) Z (l—[ ZiQf“) qE QU KUY 7 (i 0 4 K M QW bR Z: q)

k i

x Z(K™5 QW +a% N —(Q¥ +a%)|zq)
1K1 Mi + N + (L — K™ - p),

= zip‘) qzPK pl_[ |: .

pglzn (ll_[ i Mi + pi
forall M, N e 7.

REMARK. Note that the polynomial® ¥ (z.q) = Z(K; Q® + b®, M — (Q® +
b*)|z;q) and QV'(z ) = Z(K™; Q¥ +a%, N — (Q™ + a®)|z ), entering
(5.3), all arise as a solution to the same (thatksndependent) set of recursion
relatons{=1,...,n)[5]

(5.4) Pu(Z;q) = Pu_o(Z;0) +Zq 2 ™M Py o (Z;0),
Qu(ZA) = Qu-e(z2Q) + 207 ™M Qu_r14(Z ),

whereg denotes the unit vector in thedirection and where we have used

M M—-11 . [M-1
)= Troaa)
For the application of Theorem1to affine Lie algebra characters let us consider
the limiting form of 6.1) asu — oo, that is,

imK-m+Qm
(55)  Zu(KiQlzg) = lim Z(K;Q.uza) = ) (Ham) ql'[-T'

ReEMARK. The limiting UCPF'’s are not all independent. For instance, by using the
simple relation1 — 9™ /(@)m = 1/(q)m_1 We find

(5.6) Zo(K; Q) = Z(K; Q+e)+2zqi*Ketez (K;Q+K-e).

By takingM — oo in (5.3) we obtain
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COROLLARY 5.2. Let (Q®, a®, b®) be a Durfee system fak € GL(n, Z,) of
lengthL. DefineQ® andz by (5.2). We then have

L-1
CRHINEDY (l_[ 4@&) qEQUKeE 7 (K5 QY 4 b Z; )
k=0 i

x Zo(K™5 QW +a¥zq) = (q) <l_[z )qu’( )
e ¢} pez"

Now suppose that the bilinear form- K=! . p is chosen in such a way that it
equals the standard bilinear form on the weight lattigeof a simple Lie algebrg of
rankn and that the sum ovep € Z" corresponds to the sum over the weight lattice.
Then, providedy is simply-laced, the right-hand side d.{) can be recognized as
the Frenkel-Kac character of the sum of the level-1 integrable highest weight modules
of the affine Lie algebr@ (see, for example9]). (The irreducible characters can be
recovered by suitably restricting the sum oyg) Thus, in such cases, Corollaby2
provides an expression for the level-1 characterg of terms of UCPF’s based on
the bilinear form constructed out ¢ & K~1. This has important applications in
the study of quasiparticles in the conformal field theory descriptions of certain non-
Abelian fractional quantum Hall state§ p]. In fact, these applications were the main
motivation for the present study.

As an example, considgr= sl,.;. The weightge;, ... , €,,1}, of the fundamental
(n+ 1)-dimensional representatidn(A;) of s, satisfye - €; = §; —1/(n+1). A
suitable basis of the weight lattice, is given by thes;, i = 1, ..., n(see Figure.1
for sl5). Now note tha(}", pie) - (3, pjej) = p- K- p, whereK ' is given by

n -1 ... -1

(5.8) e b

-1 -1 ... n

which has an invers& given by @3.6). The ‘dual sector’, defined bi{, corresponds
to a particular basis of the root latticedf,, ; (see Figuré.1for sl;). The weights of
this basis are determined b¥.p).

Thus, the sum ovep € 7" is precisely over the weight lattice gif,, ; and combining
Theorem3.3 and Corollary5.2 gives us an expression for the character of the (sum
over all) level-1 integrable highest weight moduleghtl. As a consistency check,
note that

k(n+1-k)

, k=0,...,n,
2(n+1)

1ow. k1. o0 —
2Q K™-Q
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€2 €1

—U3 —0

FIGURE5.1. sl3 weights and roots

is indeed precisely the conformal dimension of the level-1 integrable highest weight
moduleL (Ay) of sl 1.

6. Discussion and conclusions

In this paper we have introduced higher dimensional analogues of the classical
Durfee square formulal(l) in the form of ‘Durfee systems’, we explained their
correspondence to multipartitions, and gave a few examples. We have also remarke
on the application of Durfee systems, in particular with regards to writing (chiral)
characters of two-dimensional conformal field theories in UCPF form.

A number of obvious questions come to mind. Firstly, for which symmetric
K € GL(n,Z,) is it possible to find a Durfee system? It seems that this class
of matrices is quite big. In fact, examples suggest that, provideddet 0, a
Durfee system always exists (se2d) for an example with de = 0). Secondly,
how unique are Durfee systems for a given mat€i® Clearly they are not unique.

For instance, in the case &f = s/r (see Theoren2.2) we can construct Durfee
systems of length = m?rs for all m € N by taking(r, s) — (mr, ms) in (1.6) and

(1.7). Similar constructions exist for the higher dimensional cases. Another source of
non-unigueness originates from possible symmetries of the midtrikor example,
interchanging the components of all vecto@®, a®, b®) in Theorens.2, provides
another Durfee system due to thg permutation symmetry of the matri in (3.4).
Thirdly, for a givenK, what is the minimal length ., of a Durfee system? It seems
that a special role is played by matrices for which, = detK, which seem to be
closely related to matrices for which it is possible to choose a Durfee system for which
b® = 0 for allk. A large class of such matrices is provided by the shift deformations
Kw.. of the identity (see4.1)) and, at least in two dimensions, it appears that such
deformations exhaust all matric&sfor which L, = detK. Finally, is it possible

to give a more ‘geometric’ construction of the vecto@®, a®, b®)? Again, in the
case of matrice& for which L, = detK it seems that the set ¥ is given by

a set of coset representatives (with minimal non-negative componer8abdulo
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the equivalencesn ~ m+ K - ¢ (i = 1,...,n). Note that in the case of3(f) the
equivalence preserves tig,; chargeq = > im; (modn + 1) of m (‘n-ality’) and
that we find one coset representative for eqeh7,,, ;.
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