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Abstract

Let G be a locally compact Hausdorff abelian group 2fdbe a complex Banach space. &G, X)
denote the space of all continuous functiohs G — X, with the topology of uniform convergence
on compact sets. LeX’ denote the dual oK with the weak topology. LetM.(G, X') denote the
space of allX’-valued compactly supported regular measures of finite variatioB.offor a function

f € C(G, X) andu € M¢(G, X’), we define the notion of convolutioh . A function f € C(G, X)

is called mean-periodic if there exists a non-trivial meagure M.(G, X) such thatf x u = 0. For
1€ Mc(G, X), let MP(p) = {f € C(G,X) : f»u = 0} and letMP(G, X) = |J, MP(p). In
this paper we analyse the following questions:M$ (G, X) # #? IsMP(G, X) # C(G, X)? Is
MP(G, X) dense irC(G, X)? IsM P(ux) generated by ‘exponential monomials’ in it? We answer these
guestions for the grougs = R, the real line, an& = T, the circle group. Problems of spectral analysis
and spectral synthesis fax(R, X) andC(T, X) are also analysed.

2000Mathematics subject classificatioprimary 43A45; secondary 42A75.
Keywords and phrase£onvolution of vector valued functions, spectrum, vector valued mean-periodic
functions, spectral synthesis.

1. Introduction

The notion of mean-periodic functions was introduced in 1935 by Delsaftel{

is well known that every solution of a constant coefficient homogeneous ordinary
differential equation is a finite linear combination of solutions of the typé', where

A € C, andk € Z,. Delsarte was interested in knowing whether this result is still true
for convolution equation of the following type

1) /f(s—t)k(t)dt:O, VseR,
R
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wherek is a continuous function which is zero out side some interval. &=or 0,
periodic continuous functions of periadare solutions of the convolution equation

1 s+1/2

(2) —/ f(t)dt=0, VseR.
T s—t/2

For this reason Delsarte called the continuous functions which are solutions of equatior

(1) asmean-periodic In [35], Schwartz observed that the mean-periodicity of a

continuous function does not depend upon the fundtiaand he extended Delsarte’s

definition as follows:

DerINITION 1.1. A continuous functionf : R — C is said to benean-periodidf
there exists a non-trivial regular measyreof compact support and finite variation
such that( f = u)(s) = [, f(s—t)du(t) =0,VseR.

Schwartz also gave an intrinsic characterization of mean-periodic functions. Let
C(R) denote the vector space of complex valued continuous functioftswith the
topology of uniform convergence on compact sets (u.c.c.)M¢€R) denote the space
of all regular measures of compact support and finite variatioR.oRor f € C(R),
let (f) denote the closed translation invariant subspac€ @) generated byf.
Schwartz in B9 showed thatf € C(R) is mean-periodic if and only if (f) # C(R).
Further, if f x ©« = 0 for some non-zerp € M¢(R), then f is a limit of finite linear
combination of exponential monomiate’* which satisfyte*! « 4 = 0. More
generally, convolution equation of the type

®3) fru=g

whereu € Mc(R) andg € C(R) are given, can be analysed as in the case of ordinary
differential equations. Ip is a particular solution of the equatioB)(then every other
solution is of the formh + p, whereh is a solution of the homogeneous equation
f x u = 0. In general, equation3) need not have any solution i@(R). For
instance, lefx be such thadiju(t) = ¢ (t) dt, wherep € C*(R), space of all infinitely
differentiable functions ofR, andg is a nowhere differentiable continuous function
onR. Some particular cases &)Wwere analysed ind1, 32]. In general, no necessary
and sufficient conditions for the existence of solutions of equatpare known. A
variant of the above problem is the following: Consider the following convolution
equation

(4) fox g = —Tox py,

whereu,, 1, € Mc(R) are given. Equationtf can be written as a convolution equation
for vector valuedfunctions: let = (f;, f2) : R — Candy = (1, po) : By — C.
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Then equation4) is a homogeneous equatidr . = 0. This leads to consideration
of vector valued mean-periodic functions, the main content of this paper. We consider
such equations in a more general setting and analyse their solutions.

Let G be a locally compact abelian group. Détbe a complex Banach space and
X" denote the weakdual of X. We denote by#; the o-algebra of Borel subsets of
G. We recall some results on integration of functiohs G — X with respect to
X’-valued measures a#s, denoted byM (G, X’). For details one may refer Schmets
[34]. Let u € M(G, X') and for everyx, let u, denote the scalar measure &y
defined byuy(E) := (X, u(E)) for everyE € %s. The measure: is said to be
regular if i, is regular for everyx € X. ForE € %, if E = |J_, E; for some
Ei, Es, ..., Ey € B suchthatg (E; =@ fori # j, wecal{E, E,, ..., Es}a
measurable partitiorof E. Let #2(E) denote the set of all measurable partitions of
E. Let

n
V. (E) := sup{z I(EN : {E1, Ea, ..., En} € @(E)} :
i=1
The scalar measuné, is called thevariation of x. We sayu has finite variation if
V,(E) < +oo for everyE € %s. Let M(G, X’) denote the set of all regular Borel
measureg. on G such thatu has finite variation. Fopr € M(G, X’) the smallest
closed seSwith u(E) = 0 for everyE € % with ENS = @ is called the support of
w. We write S = suppp) if Sis the support ofc. Let M.(G, X') denote the set of all
u € M(G, X’) such that support gk is compact. LeC(G, X) denote the space of
all X-valued continuous functions @ with the topology of uniform convergence on
compact sets. Lef € C(G, X) andu € M(G, X') with supgu) € K, a compact
set. Then there exists a sequeng®(K) := {Bf,Bf,..., Bf} of measurable
partitions of K with the following property : for arbitrary choice df € By, the
sequence > (f(t), u(Bf))},_, is convergent and is independent of the choice
of t's. This limit is called theintegral of f with respect tox and is denoted by
[ fdu. For f € C(G, X) andu € M(G, X) the scalar valued function

(f + 1)(Q) :=/ f(g—hyduth), YgeG
G

is called theconvolutionof f with u, thatis,(f x ©)(9) = u(fy) = (u, fy), where
fg(h) = f(g+h)and(u, f) = u(f) = J; f(—g)du(g) is the duality pairing of
M.(G, X") with C(G, X).

DerINITION 1.2. We sayf € C(G, X) ismean-periodidf there exists a non-trivial
n € Mo(G, X') such that f » u)(9) = 5 f(g—h)du(h) =0,vgeG.

The aim of this paper is to answer the following questionsMd® (G, X) denote
the space of alK-valued mean-periodic functions @
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e ISMP(G, X) # #? Thatis, when does there exist non-zero mean-periodic
functions?

e IsSMP(G, X) # C(G, X)? Thatis, do there exist continuous functions which
are not mean-periodic?

e Is MP(G, X) dense inC(G, X)? That is, how large iMP (G, X) as a
subspace o€ (G, X)?
We answer these questions for the particular c&esR, in Section2 andG = T,
circle group, in SectioB. Analysis of such questions for more general groups remain
open.

The problem of analysing mean-periodic functions is also related to the problem
of ‘spectral analysis’ and ‘spectral synthesis’. In order to carry-out the analysis, we
define next vector valued exponential monomials and exponential polynomials.

An additive functionon a locally compact abelian group is a complex valued
continuous functiora on G such thata(g, + g,) = a(g,) + a(g,) for all g; andg,
in G. A polynomialon G is a function of the fornp(a;, a,, ... , an), wherepis a
polynomialinmvariables andy, a,, ... , a, are additive functions o8. A monomial
onG is afunction of the fornp(ay, a,, . .. , an), wherepis a monomial irmvariables
anday, a, ... , &, are additive functions ofs. An exponentiabn G is a non-zero
continuous complex valued functiensuch thatw(g; + @,) = @ (g1)w(g,) for all g;
andg, in G. An exponential monomia$ a point-wise product of a monomial and an
exponential. Arexponential polynomias a point-wise product of a polynomial and
an exponential. The set of all exponentials is denotefbilote that2 c C(G).

We define exponential polynomials @(G, X) as follows:

DerFINITION 1.3, (i) Wecallf € C(G, X) anX-valuedexponentialf for every
g e G, f(g) = w(g)x for somew € Q2 andx € X.

(i) We call f € C(G, X) an X-valuedexponential monomiaf for everyg € G,
f(9) = p(g)w(g)x for somex € X, p a monomial inC(G) andw an exponential in
C(G).

(i) Wecall f € C(G, X) anX-valuedexponential polynomiaf for everyg € G,
f(g9) = p(@)w(g)x for somex € X, p a polynomial inC(G) andw an exponential
in C(G).

ExavmpPLE 1. (1) Let f € C(R, X). Thenf is an exponential if and only if for
everyt € R, f(t) = e*'x forsomer € Candx € X. f is anexponential monomial if
and only if for everyt € R, f(t) = t“e*'x forsomer € C, k € Nandx € X. Finally,
f is an exponential polynomial if and only if for evetye R, f(t) = p(t)e*'x
for somei € C, polynomial p(t) andx € X. Thus the exponentials, exponential
monomials and exponential polynomials are the scalar multiples of the ones defined
by Schwartz B5).
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(2) A function f € C(T, X) is an exponential if and only if for every € R,
f (') = e"x for some non-negative integrrandx € X.

ReMARK. We shall use the following convention: Wh&n= C we choose th& e
X appearing in the exponential, exponential monomial and exponential polynomial to
be the scalar constant 1. The generality is not lost due to this choice, since if a closec
translation invariant subspace contains an exponential or exponential monomial or
exponential polynomial if and only if it contains their scalar multiples.

DerINITION 1.4. Let V be a closed translation invariant subspac€ ¢&, X). We
say

(i) spectral analysis holds fov if V contains an exponential;
(i) spectral synthesis holds fof if the linear span of the set of all exponential
monomials inV is dense inv;
(iii) if spectral analysis (synthesis) holds for every closed translation invariant sub-
spaceV of C(G, X), then we say thapectral analysigsynthesisholds inC (G, X).

DerINITION 1.5. Let V be a closed translation invariant subspac€ ¢&, X) and
f € C(G, X) be mean-periodic. Let(f) denote the closed translation invariant
subspace o€ (G, X) generated byf.

(i) Thespectrunof V is defined to be the set of all exponential monomialyin
and is denoted by spé¢) oro (V).

(i) Thespectrumof f is defined to be spée(f)) and is denoted by spet) or
o(f).

Some of the known results for spectral analysis and spectral synthe&s=oR"
are as follows: LeE(R") be the space of all infinitely differentiable functions Rh
in the topology of compact convergence of functions and their derivatives. Then its
dual E(R") is the space of all compactly supported distributionsRn Schwartz
[35] proved the following theorem:

THEOREM 1.6 ([35]). In E(R), every closed translation invariant subspace is the
closure of finite linear combinations of the exponential monomials in it.

As a consequence of this theorem, the linear span of exponential monomials in
every closed translation invariant subsp&cef C(R) is dense iV. That is, spectral
analysis and spectral synthesis holdQiiR). Using this Schwartz35] described
mean-periodic functions oR.

LetV be the closed translation invariant subspacE@") generated by the solu-
tions of the homogeneous constant coefficient partial differential equatidnf = 0.
Malgrange 8] proved that spectral synthesis holds Yor
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In 1975 Gurevich17] proved that Theorerh.6 cannot be extended f&", n > 1.
Though Theoren.6fails for R", n > 1, spectral analysis and spectral synthesis hold
in C(G) for certain groups, for example, f@& = 7" (see p6]) and for discrete abelian
groups (seel2, 13]). Consider the following example from ).

EXAMPLE 2 ([10, 15]). Define f;, f, : R? — C by
fl(Xl’ Xz) =1 and fz(Xl, Xz) = X; + Xo, v (Xl’ Xz) S [RZ.

Let V be the closed translation invariant subspac€ @k?) generated byf; and f..
Then the spectrum of is { f;}. But the closed linear span of the spectrumvois a
proper subspace &f. Thus spectral synthesis fails @(R?) and spectral synthesis
fails for V even ifV is finite dimensional.

However, for certain closed translation invariant subspates C(R?) the linear
span of all exponential polynomials his dense ir'V. These subspaces are described
in the following three theorems.

THEOREM 1.7 ([4]). LetV be a closed translation and rotation invariant subspace
of C(R?). Then the linear span of exponential polynomial¥iis dense inv.

THEOREM 1.8 ([16]). Letu € M (R™). Then the linear span of exponential poly-
nomials int, := {f € C(R") : f xu =0} isdenseir,.

THEOREM 1.9 ([14]). LetV be a finite dimensional translation invariant subspace
of C(R"). Then every element &f is a finite linear combination of exponential
polynomials.

The following question is raised irLf] and the answer is not known: L&t be
closed translation invariant subspacedafk?).

e Does there exist an exponential\f?

In Sectiord, we answer this question affirmatively wh¥ris either finite dimensional
or rotation invariantoV = t,, := {f € C(R?) : f » u = 0} for someu € M (R?).

LetV be a closed translation invariant subspac€ @b, X). Then theproblems of
spectral analysis and synthesige the following:

Is every exponential monomial @(G, X) mean-periodic?
Are exponential monomials dense@{G, X)?
When does there exist an exponential monomial i
When is the linear span of exponential monomial¥idenseV?
e Doesthere existan exponential monomial solution for the convolution equation
f x u = 0 foragivenu € M.(G, X')?

We analyse these problems f8r= R in Section2 andG = T in Section3.
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2. Mean-periodic functions onG = R

ForG = RandX = C, itis known (see Schwart3§]) that f € C(R, C) is mean-
periodic if and only ifz(f), the closed translation invariant subspac€oR, €) is
proper. We first extend this result ¥, arbitrary Banach space.

THEOREM 2.1. The following are equivalent

(i) f is mean-periodic
(i) t(f) # C(R, X).

PrOOF. We use the fact thaC (R, X) is a locally convex space and its dual is
Mc(R, X"). To show that (i) implies (ii): letu € M(R, X’) be non-trivial such
that f x « = 0. Thenu(g) = O for everyg € =(f). Hencetr(f) # C(R, X),
for otherwiseu(g) = O for everyg € C(R, X), which is not possible, sincg is
non-trivial. The implication (ii) implies (i) follows from the Hahn-Banach theorem
for locally convex spaces and the fact thaf ) is a proper closed translation invariant
subspace o€ (R, X). O

We show next that there exist nontriviglvalued mean-periodic functions @
ProPOsSITIONZ2.2. MP(R, X) # .

PrROOF. Let 0 # x € X and 0# X’ € X'. Chooseg € MP(R), scalar valued
function mean-periodic with respect to somes M (R). Definev : 4y — X' by
v(E) := u(E)X and definef : R — C by f(t) := g(t)x. Thenu is a X'-valued
measure and is a continuousX-valued function withf x v = (g » ©)(x, X’y = 0.
Thus f is mean-periodic with respect to 0

We prove next that existence of functions which are not mean-periodic is related to
the X being separable.

THEOREM2.3. MP (R, X) is a proper subset dE (R, X) if and only if X is sepa-
rable.

PROOF. Suppose thaX is a non-separable complex Banach spacefa@(R, X).
Sincef continuous,f (R) is separable and hent&(R)] is separable. Since, for every
get(f),g(R) C[f(R)], r(f) # C(R, X). Hencef is mean-periodic.

Conversely, suppose that is separable. We show ths P(R, X) # C(R, X).
For everyn € N, let

(5) fo(t) == Zanje‘*“i‘, t e R,
j=1



370 P. Devaraj and Inder K. Rana [8]

wherel,,; anda,; satisfy the following conditions:

(i) 0#a,eC.

(il) Anj € [a, B] for somex < B.

(i) {Anj ] € N}N{Amj 1 | € N} =@ form # nand for everyn, {1}, has a
limit 1, € R.

(iv) The convergence irp] is uniform on compact sets with eaéhbounded by 1.

(V) D nii il [anj] < oo
Let {xy, Xo, ...} be a dense subset ¥ Definef : R — X by

[ee}

1
(6) f(t) := Z mfn(t)xn, teR.

n=1

We show thatf is not mean-periodic. Since@*'}>._, is an equicontinuous family,

n,j=

{fa}o2, is an equicontinuous family. Therefore, fare M¢(R, X"),

= 1 = 1
f = S EEEEE—— ann == fn* Xn *
" gzn(u EATRAR §2n<1+ X "

Thus f x u = 0 if and only if

1
————(faxpuy)() =0, VteR,
;2"(1+ %D "
that is, for everyt € R,
o0 1 o0
7 —————— ) @iy, (M = 0.
@ — 2n(1+||xn||>; o

n

Let Spq(t) = Y gy D7) €@ iy, (Anj) /2°(L+ [I% ). Notice thatS,, is almost
periodic and its Fourier coefficiendgS,q; A) satisfy the following:

anj flx, (Anj)

(8) a(SgiA) =1 27+ XD
0 otherwise.

A=hn, l<n<p 1l<j<q;

Since the convergence i)(is uniform, the convergence irv) also is uniform.
ThereforeS,, converges to 0 uniformly gs, @ — oo. Further, the Fourier coefficients
a(Syq; 2) convergesto0ag, g — oo ([27]). Inview of (8), a(S,q; A) = Oforeverya.
Moreover,iiy, (Asj) = O for everyn andj. Since{i,;}52; has limit point, this implies
iy, = 0 foralln. Thereforep = 0. Hencef is not mean-periodic. O

Let f € C(R, X) and letx’ € X'. Thenx' o f € C(R). Itis natural to ask the
following question: Isx’ o f mean-periodic for every’ # 0 if f is mean-periodic?
We analyse this in the following theorem.
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THEOREM2.4. For f € C(R, X) and X',y € X' with X' # y' the following
hold:

(i) If X' o f is mean-periodic, theri is mean periodic.
(i) Ifxof =y o f,thenf is mean-periodic.
(i) If X =C",n> 1, thenf is a finite sum of mean-periodic functions.
(iv) There existsf € MP(R, C") such thatx’ o f is not mean-periodic for any
x e X', x" #0.

PrOOF. (i) By Theorem?2.1, it suffices to show that(f) # C(R). For this,
let g € C(R), g # 0 be such thag ¢ t(X' o f). Choosev € X such that
(X', v) # 0 and defind : R — X by h(t) = g(t)v/(X, v). Thenhis continuous and
(X' o h)(t) = g(t). We show thah is notint(f). If possible leth € (f). Then
there exists ¢ f; — h, which impliesx’'(}_¢; f,) — X' o h = g, a contradiction.

(i) Chooseg € C(R, X) such thatx'(g) # y'(g). We show thatg ¢ (f).
If possible, letg € t(f). Since) c¢f, - g = xXO.¢f,) — x/(g) and
y(Q_cfy) — y(g), and also since'(f) = y'(f), XQ_cify) = yQ_afy).
This impliesx’(g) = y'(g), a contradiction.

(iiyLet f = (fy, f5, ..., fy). Obviously(,... ,0, f;,0,...,0)ismean-periodic
for everyi with respecttow = (u4, ... , un) Where 0# u; € M¢(R) are arbitrary
and forj =i, uj = 0. Hencef is a finite sum of mean-periodic functions.

(iv) Choose a non zero, compactly supported complex valued continuous fugction
Letf =(g0,0,...,0). Thenf is aC"-valued continuous function dR. Clearly f
is mean-periodic with respect jo = (vy, —v1,0, ..., 0), where 0 v; € M (R) is
arbitrary butx’ o f is not mean periodic for any £ x’ € X'. O

REMARK. WhenX = C, MP(R, X) is a subspace df (R, X). It follows from
Theorenm2.4 (jii) that sum of mean-periodic functions (R, X) need not be mean-
periodic and henc# P (R, X) in general need not be a vector subspacg @&, X).
Moreover, the same argument works for separable complex Hilbert spaces.

THEOREM 2.5. MP(R, X) is dense irC(R, X).

PrOOF. Case (i): X = C. It suffices to show that the annihilator BfP(R) is {0}.
Let u € Mc(R) be such thate(M P(R)) = {0}. In particularu(e*') = ji(1) = 0 for
everyi € C. Hencey = 0.

Case (ii): LetX be finite dimensionalX = C". ConsiderC(R) x C(R) x

- x C(R). This is a finite product of locally convex spaces. Hence it is a locally
convex space in the product topology. It is easy to seeGli@t X) is isomorphic to
C(R)x---xC(R)aslocally convex spaces. Al$6P(R)x MP(R)x---x MP(R) C
MP(R, X) andM P(R) is dense irC(R). Thus it follows thatM P (R, X) is dense in
C(R, X).



372 P. Devaraj and Inder K. Rana [10]

Case (iii): X is not finite dimensional. Consider the set ERpX) = {€"'x: A €
C, x € X}. We show that the linear span of B X) is contained irM P(R, X) and
itis dense iNC(R, X). Let f(t) = e*'xy, g(t) = €%, € EXp(R, X) anda, B € C.
Choose 0#£ x' € X' such thatx'(x;) = X'(X;) = 0 anduy, 4o, € M(R) such that
e w g = 0 = e x u,. Defineuw(E) = (u1 » uo)(E)X/, for everyE € ;.
Then(af + Bg) » u = 0. To prove the denseness, lete M.(R, X") be such that
w annihilates the linear span of B¢, X). Thenji,(A) =0,V1 e C,Vx e X. It
follows thatu = 0. This completes the proof. O

We analyse next the problem of spectral analysis and spectral synth@s®,iiX).
LetV be aclosed translation invariant subspade @, X). ForX = C, Schwartz35
proved thatV contains exponential monomials and the linear span of exponential
monomials inV is dense inV. It is well known [L7] that spectral synthesis fails
for R", n > 1. Further, it holds for certain locally compact abelian groups, namely
for 7" due to Lefranc 26] and discrete groups due to Gilbedtq 15] and Elliott
[12, 13]. However, nothing is known for vector valued functions. In this section, we
extend Schwartz’s result for finite dimensional closed translation invariant subspace
of C(R, X), X an arbitrary Banach space. For this we need the following lemmas.

LEMMA 2.6. Letvt, v? ... v" € X", v' = (v}, v), ... ,v)), be linearly indepen-
dent. Then there exigt, x;, ... , X/ € X" which satisfy
X (v]) + X5 (v3) 4 - -+ + X\ (vh) =1,
X;(v9) + X5 (v3) + -+ + X (v7) = 0,

Xp(v]) + X,(v9) + -+ + X (vy) = 0.

PROOF. Let Y be the linear span ofv?, v, ... ,v"}. ThenY being a finite di-

mensional subspace of" is closed. Since?,v?,...,v" are linearly independent,
v! ¢ Y. Thus by Hahn-Banach theorem, there exists (X")’ such thatA(Y) = {0}
andA(v*) = 1. ClearlyA can be written as\ = (x{, X5, ... , X,), wherex’ € X’

satisfy A(Xg, Xz, ... , Xn) = X{(X1) + X5(X2) + - - - + X' (X,). Therefore,

X (1) + X5 (v3) + -+ X (v) = A(v;,0,...,0)+--- +AQO,...,0,v})
= A((v},v3,...,00) =1

For everyi,2<i <n,

Xy (V) + Xp(0h) + -+ + X (vp) = AL, 0,...,0) 4+ + A0, ... ,0,vp)
= AV}, v, ..., v)) =0.

This completes the proof of the lemma. O



[11] Mean-periodic functions on groups 373

For setsA andB, let.Z (A, B) denote the set of all functions frodto B. For a
setE C V, avector space, ldt S(E) denote the linear span &.

LEMMA 2.7. Let S be any set containing at-least points andV be a vector

space ovell. Let{f, f,,..., f,} € Z(S V). Then{fy, f,, ..., f,}is linearly
independent inZ (S, V) if and only if there exista distinct pointsty, t,, ... ,t, € S
such that{ f1, f,, ..., f,} is linearly independentidZ ({ti, t5, ... , t,}, V).

PrOOF. We prove the straight implication by induction. Suppose ttiatf,, ... ,
f.} is a linearly independent set i (S, V). As {f,} is linearly independent, there
existst; € Ssuch thatfi(t;) # 0. Then{f,} is linearly independent oft;}. Thus the
lemmais true when = 1. If fi(t;) = af,(t;), for some nonzere < C, choosd, € S
such thatfy(t,) # af,(ty), which is possible, sincéy, f,, ..., f, are linearly inde-
pendent ors. Theniit is easy to check théf,, f,} is linearly independent ofty, t}.

If fi(ty) # afs(ty) for any non zero scalar anfi(t;) # 0, then choose arnty # t;. It
is easy to see thaf,, f,}islinearly independentofiy, t,}. If fo(t;) = 0, then choose
t, such thatf,(t,) # 0. In this case also one can easily verify thét, f,} is linearly

independent orty, t,}. Assume thaf f;, f,, ..., f,_1} is linearly independent on
{t, to, ... tg ) IF{f, T, o0, fooyq, fo}islinearly independent ofty, to, . .. , th_1}
then choose ant;, which is different fromt,, to, ... , to_1. If {fy, fo, ..., fq, ol
is linearly dependent, then there exist unique scadars,, ... ,a,_; such that
arfi+afo+ oo+ for = foon{t, b, ..., th_1). Since{fy, fo, ..., fo}
is linearly independent o1$, there exists, € S such thato; fi(t,) + oo fo(th) +
v gy fooa(ty) # faty). It follows from this that{ f,, f,, ..., f.} is linearly
independent ofty, t,, ... , t,}. This proves the required claim.

The converse is trivial. O

Using these lemmas we prove that every finite dimensional translation invariant
subspac® of C(R, X) includes an exponential and every elemen{iis a finite sum
of exponential monomials.

THEOREM2.8. Let V be an n-dimensional translation invariant subspace of
C(R, X). Then the following hold

(i) Thereexisky, A, ..., Aq € Candmy, my, ... ,my € Nwithm; +my+-- -+
my =N, andws, wy, ... , wq € X, not all zero, such tha*''w; € V,forl < j <q.
(i) There exishq, Ay, ... ,Aqg € C, My, my, ... ,my € Nwithm; +m, +--- +
My = nandxy, Xy, ... , X, € X such that everyff e V is of the formf = >, g, x,
where eacly € LS{te*': 0<k<m; -1, 1<j <q}.
(iii) There exisky, Az, ..., Aq € Candmy, my, ..., Mg € Nwithmy+mp+---+
m, = n such that everyf e V is of the formf = "} | g thetity,;, where

ayj € Candyyj e XforO<k<m; -1, 1<j<q.
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PrROOF. Fixabasiqfi, fs, ..., f,} of V. SinceV istranslation invariant,f;)s € V
for everys € R. Therefore there exist unique scalats € C such that(f)s =
Z'J.‘:l ;i (s) f;. Let f denote then x 1 matrix f = [f;, f,, ..., f,]' andA(s) denote
then x n matrix («;; (s)). Then
(9) fs = A(S)[ fl, fz, ey fn]t = A(S) f
Now
(10) (fs = f)/s = ((A(s) — A(0))/s) .

CLAM. s+ A(s) is continuous. We give two proofs of this claim.
ProoOF 1. By the Lemma2.7 there existn distinct points{t;,t,,... ,t,} C R

such that{ f,, f,, ..., f,} is linearly independent oft, t5, ... , t,}. In view of (9),
f(s+t)) = A(s)f(t))forj=1,2,...,n. Thatis(fi(s+t;)';_; = AS)(fi ()},
Letv' = (fi(ty), fit),..., fit), L <i < n. Then{v, v? ..., v"}is a linearly

independent subset of". By the Lemma2.6there exists; € X’ such that

Xn:(f(t)x/)—a wheres, — 1+ T1=1i
Lt 1T Tl T A "7 lo i .

Thus we have
( fi (S + tj ))Rjzl(xi/j )21:1 = A(S)( fi (tj ))Rjzl(xi/j )21:1 = A(S) (aij )21:1 = A(S)-

The entries of the matrix obtained by multiplying the matrices on the left side of the
above equation are continuous. This shows ghat A(s) is continuous fronR to
BL(CM).

PrROOF2. For everyt € R, define an operatdr; : V — V by

(T,f)(s):=f(t+s), VfeV, ser.

ThenT, € BL(V) and satisfies the following properties: For every € R

(i) TsoTi=Te;

(i) To=1,

(iii) TooTy,=TyoT..
Let {t;, 5, ... ,t,} be as given by Lemma.7. Let{K,},-; be compact subsets &f
suchthat J,,_; Kn = Rwith {t;, t5, ... ,t,} € Ky € K, C ---. To show the required
claim we have to show that— T, is continuous irBL(V). We shall show first that
t — T, is continuous point-wise. Led, — sasn — oco. Now T (f) = fg and
Ts(f) = fs, forevery f € V. Since f is uniformly continuous on compact sets,
fs — fsin C(R, X). ThereforeT;, — T point-wise. To show thaly, — Ts in
BL(V), itis sufficient to show that for evem, || Ts, — Ts[lk,, — 0 asn — oo, where
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ITs, = Tsllkn = SUR ¢y, <1 1 Ts, (F) = To(F)llk,,. Lete > 0. Since{fy, fp, ..., fo}is

a basis olv, for every f € V, there exist unique scalas, a,, ... , o, € C such that
f=afi+afo+ - +a,f,. Alsosince{fy, f,, ..., f,} is linearly independent
on Ky, {(ag, 2, ... ,00) € C" 2 Jlagfy+aafo+ -+ 4+ o follk, < 1} is bounded in
C", that is, there existM > 0 such thafjo; fy + ap o + - - + an fullk, < 1 implies
that || (aq, oo, ... , o) || < M. Since{fy, f,, ..., f,} is equicontinuous, there exists
asd > 0, withé < 1, such that whenevey, t, € s + K, + [0, 1] with |t; — t,] < §,

|| f;(ty) — fj()] < €/M, foreveryj = 1,2,...,n. ChooseN e N such that
|s, — S| < 8, wheneven > N. Then for everyf € V with || |, < 1, for every

t € K, andn > N, we have
[ fs,() = fs O = f(s,+t)— f(s+1)]
= (a1 f1+' <oy fn)(sn+ t)— (o fl+' <oy fn)(s+t)|l
<laa|ll fi(sh+t) = fa(s+ O+ - - +lanl |l fa(si+1) — fa(s+D)l

<e€.

Thus||Ts, — Tsllk, — 0 asn — oo for everym and hencély, — Tsin BL(V) as
n — oo. This completes the second proof of the claim.
Thus A(s) satisfies the following properties:

(i) s+ A(s) is continuous.
(i) A©) =1.
(i) A +t) = A)AM) = A)A(S).
Therefores — A(s) is differentiable (refer18]) and

(11) A(s) = e#0,

By virtue of equations10) and (L1),

(12) f'= AT

This equation can be solved(]) and the solution is given by
f(t) =e¥OIx, Xo, ..., X 1%

LetAy, Ao, ..., Aq € C be the eigen values o0& (0) with multiplicities my, m,, ... ,
mq, respectively. Let the Jordan canonical formA¢0) be given by

BA(O)B! = '
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wherelJ,, ... , J, are the Jordan blocks &' (0), B is an invertible matrix. This gives

) B

where eachB, is anm, x m, matrix given by

Mt paat L ezxkttmrl/(mk _ ]_)!
0 eX ... gtM2Z/(m —2)!
B=1 . ) ) .
6 o e ekat

Thus f(t) = C[Xy, X2, ... , X,]', whereC = (g;) and eaclt; € LS{t*e*' : 0 <
k<m —11<j <q} thatis, for eveny, fi(t) = Z'J.‘:l g (1)X;, whereg;; €
LS{tket':0 <k <m; —1,1 < j <q}. Hence every elemehtof V is of the form
ht) = >, g;()x;, where eacly; € LS{t'e¢"' : 0 <k <m; —1,1<j <q}.
This proves (ii).

(iii) By the discussion abovesachf; can be expressed as follows:

q mj-1
fi=2_ > e By
j=1 k=0
Everyh e V is of the form
n n qg mj-1
h=>aifi=)"" > tehlapyx,
i=1 i=1 j=1 k=0
q m-1 n g mj-1
S 9 ST 0 SRV B o S
j=1 k=0 i=1 j=1 k=0
This proves (iii). For (i),fi = >, ka:"gltke“i‘y,‘(i. For everyj choose largest

such thaty,; # 0, let it bek;. We will show thate’i'y, ; € V. To prove this, let
u € M(R, X') be such that (V) = {0}. Thenf xu = 0 foreveryf € V, sinceV is
translation invariant. Henckxu = 0O, foreveryi. As f; xu is a finite sum of complex

valued exponential monomials aij (1)) is the coefficient o&*", fy, (A) = 0.
. ] i
This implies thag’'y, ; € V. O

COROLLARY 2.9. Let f € C(R, X). Thent(f) is finite dimensional if and only if
f is afinite linear combination of exponential monomialCi(R, X).
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PrROOF. Suppose that(f) is finite dimensional. Then it follows from the above
theorem thatf is a finite linear combination of exponential monomials. Con-
versely, suppose is a finite linear combination of exponential monomials. Let
f = (j:I:l ka:jalajktke‘kitxjk. Thenf(f) C LS{tkilethXjk :0 < | < k,O < k <
m; — 1,1 < j <q}. Thereforer (f) is finite dimensional. O

REMARK. (i) Some authors (seé4, 25]) define exponential polynomials to
be functions of the form}_"", f;, where f; are exponential polynomials defined as
in Definition 1.3. With this definition, our result states that every finite dimensional
translation invariant subspateof C(R, X) is generated by exponential polynomials
inV.

(i) Anselone and Korevaad] have proved that wheX = C, V ¢ C(R) is
finite dimensional if and only i is the solution space of a homogeneous constant
coefficient ordinary differential equation. This resultis not true for arbitdamwhich
can be seen by the following examples.

ExamMPLE 3. Let X be a separable infinite dimensional complex Hilbert space. Let
{e,} be a complete orthonormal basis. Consider the homogeneous ordinary differential
equation with constant coefficient.

(13) af +af +--+a,f™=0.

Lethy, Ay, ... , Aq With multiplicitiesm,, m,, ... , my be the roots of the characteristic
polynomialp(t). Thenforeverym e N,0 <k <m;,1 < j < q,t‘e*i'e, is asolution
of the differential equation1(3). Thus the solution space is not finite dimensional.

ExamMPLE 4. Let X be a complex Banach space. Fxe BL(X). Consider the
following differential equatiomlu/dt = Au. Then the solution spada € C(R, X) :
du/dt = Au} = {€”x : x € X} is a closed translation invariant subspac€oR, X).
Further, it is finite dimensional if and only X is finite dimensional.

Letu € M(R, X'). Inthe case wheX = Citis known [35] that for a giveru the
linear span of exponential monomial solutions of the convolution equdtiop = 0
is dense in the space of all solutions. We extend this<fes C" as follows:

THEOREM2.10. Letf = (fy, fo, ..., f) € C(R, C") satisfies the followirng

(i) f; is mean-periodic, for every < j <n;

(i) o(f)na(fy)=0forj £k
Thent(f) contains exponential monomials and the linear span of exponential mono-
mials int(f) is dense inc(f).
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ProOF. Clearly t(f) € t(f)) x t(fy)) x --- x ©(f,). We show that these two
sets are equal. Leg € ©(f)) Nt(fy). Thent(g) C t(fy) Nt(f,) and hence by
Schwartz’s theoremy; () N7 () = (0). Thust(fi) Nz(f;) = (0) fori # j. Let
€ Mc(R, X)besuchthat(z(f)) = {0}. Letu = (w1, o, ..., un). Sincer(f)is
translation invariantf » = Y7 | fju; = 0. Lete’', te’, ... t™ e € z(fy)
andt™e?t ¢ 7(f;). By Hahn-Banach theorem there exists a measure M.(R)
such thaw,(z (f))) = {0} for everyl # 1 andv,(¢*') # 0. Thereforef, x v; = 0, for
| £ 1. Now fy* g % vy = (f % ) * g = 0. Thereforgi1v1)(A) = (101) (L) =
coo = ()™ D) = 0. As 4 (M)Di(A) = 0 anddy(h) # 0, fuu(A) = 0. Also
(fi191)' (1) = 0 implies a7 (1) (V1) (A) + 2(A)D3(A) = 0. This impliesj; (1) = 0.
Similarly we can show that}(1) = --- = 4{™ P(1) = 0. Thusx is a zero offi,
with multiplicity at-leastm,. This shows thatf; » ; = 0. Similarly, f; x u; = 0
for everyj. Thusu(r(fy) x ©(fy) x --- x ©(f,)) = 0. It follows thatt(f) =
(f) x t(f,) x --- x (f,). This completes the proof. O

COROLLARY 2.11. Let X = C". Letf = (fy, f,,..., f) €e C(R,X) andu €
M:(R, X"). Suppose that each) is mean-periodic and (fj) No (fy) = @ for j # k.
If f+u =0,thenf isafinite linear combination of exponential monomials solutions.

PrOOF. Since spectral synthesis holds RyL S(o ( f;)) isdensein (f;), for every
j. Itis easyto see that(f,) x o(f,) x --- x o(f,) C LS(E), whereE = {tke*'x :
X # 0,t*e*x x u = 0}. ThusLS(E) = 7(f,) x 7(fy) x --- x =(f,). The required
result follows from the Theorer®.10 O

ExaMPLE 5. (1) WhenG = RandX = C, the notion of mean-periodic functions
was introduced by Delsarte in 1935][ In [35] Schwartz gave an intrinsic charac-
terization of mean-periodic functionst € C(R, €) is mean-periodic if and only if
7(f), the closed translation invariant subspac€ @R, €) is proper. Clearly, for every
reC, f(t) = e, t € R, is mean-periodicf » u = 0 for u = 8, — €*8,, wheres,
denote the Dirac measure @natx € R. Schwartz B5] showed that iff € C(R, C)
is mean-periodic withf x © = 0, thenf is a limit of finite linear combinations of
functions of the typef, (t) = tke!, such thatf, « © = 0. In Laird [27] it is shown
that if f € C(R, C) is mean-periodic and is an exponential polynomial, that is,
g(t) = p(t)e*, wherep(t) is a polynomial, therfg is mean-periodic.

(2) LetG be a compact abelian group. Then every charactérisfmean-periodic,

as observed in Ran&§].

(3) For X=C, mean-periodic functions on various locally compact groups have been
analysed by various authors (s€e3, 5, 7, 10, 11, 17, 19, 20, 23, 24, 22, 29, 30, 36,

38, 37, 39)).
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In general setting, even whé&h = R and X is an arbitrary Banach space, nothing
seem to be known.
NoTE. The following questions still remain unanswered:

(1) LetV be a closed translation invariant subspac€0R, X). DoesV always
include a monomial exponential? 1 the closed linear span of the monomial
exponentials in it?

(2) The problem of finding solutions fofr« © = g, for a givenu andg, seems to be
much more difficult even for the cage = R andX = C: Some particular situations
are analysed ind1] and [32]. Another particular case is given in the next theorem.

THEOREM 2.12. For a givenu € Mc(R) and g a finite sum of exponential polyno-
mials iNnC(R), there existsf € C(R) such thatf x u = g.

PROOF. First suppose thatis an exponential polynomial. Lgtt)=e*) ,_; actk.
LetZ(1) = {r € C: a(x) = 0}. We say

(i) A e Z(p) is of multiplicity O if a(Ax) # O.

(i) A€ Z(iv) of multiplicity me N, if 4(A) =0, ¥(A) =0,...,4™PQ) =0
andi™(r) #£ 0.
Let m be the multiplicity ofs € Z(j1). Define f (t) := Y _, bt™*e*, where

Ok () m} Ok

b= ——F—a,, Y
(M am o) O™ | T am )

’

bn—l = |:an1 - bn

(A ™0 QA0
bO = |:a0 - bl +l(t)m+l - b2 +2(L)m+2 o
L ) AT O ] @
oM (A™G)

A simple computation off x u gives f x u = g. In the general case, suppose that
g = >, 0, whereg;(t) = p;(t)e’", for everyj andx, # A; fork # j. Let f;

be the exponential polynomial function correspondingjtabtained as in the first
case, thatisf; » u = g;. Thenf = Y7, f; is a solution of the given convolution
equation. O

3. Mean-periodic functionsonG =T

We shall consider integrals of-valued functions with respectto scalar measuresin
the sense of Bochner integral, and the integrals of scalar valued continuous functions
with respect toX’-valued measures in the sense similar to that of Bochner discussed
in the last section.
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DEFINITION 3.1. Let f € C(T, X) andu € M(T, X). For everyn € Z,

f(n) :=/z”f(z)dz and ji(n) :=/z”d,u(z)
T T

are called theth-Fourier coefficienof f andu, respectively.

For f € C(T, X), letz(f) denote the closed translation invariant subspace gener-
ated byf.

ProPOSITION3.2. f € C(T, X) is mean-periodic if and only if (f) %= C(T, X).
ProOF. Follows from the fact that the dual &f(T, X) is M (T, X'). O

LEMMA 3.3. For f € C(T, X) andu € M(T, X'), the following hold

iy fxu i§ a uniformly continuous function df
(i) (fxp) = (f(n), a(n)).

PrOOF. (i) Follows from the facts thaff is uniformly continuousu has finite
variation and thaf(f x ©)(2) — (f x W (w)| < [; | T(Z5) — f(wS)[ dV,(s).

(i) SinceT is compact,f is uniformly continuous off. Lete, > O be such that
ex — 0 ask — oo. Since the metric o is invariant under rotation, there exist
finite Borel partitionsP, of T = LUBy; such that ifz;, wy € By, then| f (zsw) —
f(wqw)|| < & wheneveltw| = 1. Now

(14) (f *Mi(n) = /(f *u)(2z"dz= // f(zZw)du(w)z"dz
T TJT

J

= Tk'L”!o (Z(f(Zw_kj), M(B@)) z"dz
Sincef is continuous o, f(T) c B(0,r) =rB(0, 1) for somer > 0. We have

|Z<f(zw—k,->, 1(Bq))
j

< > (@), u(Bg))]
j

< Y rVu(By) <1V, (T) <rC.
j

Applying dominated convergence theoremd)(for the functions

z> ) (@), w(Bg)Z ™"
j
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we obtain

(F @ = fim [ S°{f(@m0). nBrp)z"dz
o Jy j

JLToXJ:/T(f(ZW)’ 1(By))z " dz

k— o0

lim Z/(z"f(Zw_kj), w(By)) dz
i T

Now apply change of variable formula for the functior> (z ™" f (zwy;), w(By))),
to get

(f * )y (n) ZJLTOZ/«%) f(2), M(Bki)>dz
it !

— lim < / (é) f(2)dz u(Bk;>>
—> 00 i T wki

= Jim > G5 " (f ), n(By)
J
- <fA(n>, lim. Z(w—kj>“u(8kj>> = (f(). am). 0
i

COROLLARY 3.4. For f € C(T, X) andu € M(T, X'), f x u = Oif and only if
(f(n), a(n)) =o0forallnez.

PrOOF. Follows from Lemma3.3 and the uniqueness of Fourier-Stieltjes coeffi-
cients of scalar valued functions @n O

PROPOSITION3.5. Let f € C(T, X). Theno (f) = {«Z'f(n) : f(n) # 0and0 #
a e (.

PrROOF. First we show thataz" f (n) : f(n) # 0} Co(f). Letu € M(T, X) be
suchtha(z(f)) = 0. Thenf xu = 0, sincer(f) is translation invariant. Hence by
Corollary3.4, (f (n), i(n)) = 0foreveryn. Thusu(az' f (n)) = a(f(n), 2 (N)) = 0,
and by Corollang.4, az" f (n) € t(f). Hencexz"f(n) € o (f).

On the other hand, le™x € o (f). To show thaix = « f (m) for some scalas.
Letx’ € X’ be such thax'(f (m)) = 0. Letdv(z) = z"x'dz. Then

X ifn=m;

wl(m = {0 if n #£m.
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Thus by Corollary3.4, f xv = 0. Thereforez™x «x v = 0 and henceéx, v(m)) = 0,
thatis,(x, X’) = 0. Thus forx’ € X', (f(m), X’) = 0 implies(x, x’) = 0. Therefore
X = o f (m) for somea € C. This completes the proof. O

PROPOSITION3.6. Let f € C(T, X). Theno(f) =@ifand onlyif f = 0.

PROOF. By Proposition3.5, it suffices to show thaf (n) = 0, for everyn € Z if
and only if f = 0. Using the uniqueness of Fourier coefficients for scalar valued
functions we obtain, for eveny € Z andx’ € X/,

f(n)=0 & (x, f(n)=0< <x/ f(z)z”dz>=0 @/(x/, f(2))z"dz=0
T T
& XofY(N)=0w xXof=0<« f=0. U
THEOREM 3.7. For a complex Banach spacg # C the following hold

(i) MP(T, X) = C(T, X).
(i) Forevery0 # pu e M(T, X), {0} # MP(w) # C(T, X).

PrOOF. (i) Let f : T — X be a non zero continuous function. Thémo) # 0
for someny. Chosex’ € X’ such thatx’ #£ 0 and(x’, f(ng)) = 0. Definen(E) :=
(fE z”°dz) X', for everyE € #y. Thenu € M(T, X') and

. X" ifn=ng;
p(n)

0 ifns#no.

Thus (f % Mf(n) = (fA(n),,&(n)) = 0, for everyn € Z. Hence it follows from
Corollary3.4, f xu = 0.

(i) Let 0 £ u € M(T, X"). Thenji(ng) # 0 for somen,. Let 0 # x € X be such
that (1(ny), x) = 0, andy € X be such thatii(ng), y) # 0. Definef,g: T — X,
by f(2) = z°x andg(z) = z*y. Then

() = X |- n = no; and g(n) = y |- n = no;
0 ifn#ng 0 ifn#n.

Therefore{ f (n), 4(n)) = Oforalln € Zand(g*uf(no) = (§(ny), 1(Ng)) # 0. Thus
f is mean-periodic with respect foandg is not mean-periodic with respegt [

REMARK. (1) TheorenB.7(i)is nottrue whenX = C. For instance, the function
f : T — Cdefined byf(2) := Y~ _a.z",z € T, wherea, € C, a, # 0 for everyn
anchj"oo |an| < oo is not mean-periodic.
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(2) Let G be a locally compact abelian group aKda complex Banach space. A
function f € C(G, X) is said to bealmost periodidf the set of all translates of is
relatively compact irC(G, X). Every f € C(T, X) is almost periodic and iK # C,
then everyf € C(T, X) is mean-periodic. WheX = C, there are complex valued
continuous functions on the circle grotlipivhich are not mean-periodic.

We have the following result for spectral analysis and spectral synthedis for

THEOREM 3.8. The following hold

(i) Letx e X, x #0,andng € Z. Thent(z2™x), the closed translation invariant
subspace generated Y x, does not contain any non-zero proper closed translation
invariant subspace o (T, X).

(i) Every non-zero closed translation invariant subsp&cef C(T, X) contains
an exponential, that is, spectral analysis hold<i(T, X).

(i) The linear span of the exponentials in every closed translation invariant sub-
spaceV of C(T, X) is dense iV, that is, spectral synthesis holds@{T, X).

PrOOF. (i) Let V; be a non-zero closed translation invariant subspad&(@f X)
such thatV; € 7(z%x). Then forf € t(z"x), fA(nO) = cx forsome 0# c € C
and f(n) = 0if n # ny. To showV, = t(z*X), let x € M(T, X) be such
that u(Vy) = {0}. Then{i(n), x) for everyn. In particular{/i(ny), x) and hence
w(V) = {0}. HenceV, = t(z2"x).

(i) ChoosenyeZ and f eV such thatf (ng)0. We will show thatz" f (ny)eV.
For, letu € M(T, X’) be such that (V) = {0}. SinceV is translation invariant and
n(V) = {0}, f »u = 0. This implies(f(no), i(ng)) = 0. Thusz™ f (ng) . = 0.
Hencez™ f (ny) € V.

(iii) Let V be closed translation invariant subspac€¢f, X). Let\, be the closed
linear span of" f(n), f € V. Then by (ii),Vo C V. Let f € V. Letu € M(T, X')
such thatu(Vy) = 0. Then(f(n), &(n)) = 0, for everyn € Z. Thusf  u = 0.
Thereforew(f) = 0. O

CoROLLARY 3.9. For f € C(T, X) andu € M(T, X), the following are equiva-
lent

(i) fxu=0.

(i) f is a limit of finite linear combinations of functior®8x which satisfy the
equationz"x » u = 0.

PrOOF. First observe that for a given, MP(u) = {f € C(T,X) : f*xu =
0} is a closed translation invariant subspaceCdil, X). The result follows from
Theorem3.8 (jii). O
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4. Some results for general groups

As mentioned earlier, problem of analysing mean-periodic functions, the problem of
spectral analysis and spectral synthesis seems difficult to answer for general groups
However, it is not difficult to show that if5 is compact andX = C then every
nontrivial closed translation invariant subspatef C(K, €) includes exponentials
and the linear span of exponentials\inis dense in it. Hence every mean-periodic
(scalar valued) function on a compact group is a limit of finite linear combination of
exponentials.

For G arbitrary locally compact abelian, axd= C we have the following: recall,
Q={w:G— C:0eC(G)andw(g + g2) = w(G)w (%)}

THEOREM4.1. (i) Everyw € Q is mean-periodic.

(i) LetG be aninfinite locally compadf, abelian group. Then every exponential
polynomial onG is mean-periodic.

(i) LetMP(G) be the set of all mean-periodic functions @n ThenM P(G) is
dense inC(G) if and only if G is not finite.

ProOF. (i) Clearly, every translatey of » is a constant multiple ab, and hence
every finite linear combination of translates®is a constant multiple ab. Therefore
the closed translation invariant subspa¢e) is a one dimensional subspacex(iG).
Thust(w) # C(G), if G is non-trivial.

(i) Let f be an exponential polynomial @3,

f(g) = (Z C.81(Q)"35(Q)" - - - am<g)“m) (Q).

wherex = (o, ... , o), € N, c, arecomplex constantsaag . .. , a, are additive

functions. LetV = LS{a;(9)"a,(9)”---an(9)frw(Q) : B; € Z,,B; < a;forl <

j < mj}. Itis easyto see thdt € V andV is a finite dimensional translation invariant

subspace of2(G). SinceV is finite dimensional, it is closed and it follows that

(f) C V. ButC(G) is infinite dimensional a& is not finite. Hence (f) # C(G).
(i) Suppose thaG is finite, G = {91, 02, ... , On}. Letf € C(G) andu € M.(G).

Letu(g) = ¢. Thenf x u = 0 for a non-trivialu if and only if

f(h—0) f(@—0) -~ (G-
f(—0) (k-0 -+ f(G—0) B
f(O—0) fG—0) - f(G—0gn
The columns of the above matrix are permutationg ©fg:), f(g), ..., f(g)].

Thus f is mean-periodic if and only i€ f (g;), f(92), ..., f(g,)) is a root of some
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fixed polynomial P in the variablew,, z, ... , z,. The roots of this polynomiaP
form a closed seZ (P) in C" of 2n-dimensional Lebesgue measure zero. Therefore
Z(P)isnotdensei". ButMP(G) = Z(P). HenceM P(G) is not dense ilC (G).
Conversely, suppose th&t is not finite. LetE P(G) be the set of all exponential
polynomials inC(G). By (i), EP(G) € MP(G), thatis,I' € @ € EP(G) C
MP(G). MoreoverS2 separates points @. Since the pointwise product of finite
number of exponentials is again an exponential, it is easy to see that product of two
exponential polynomial$ andg is a finite sum of exponential polynomials and hence
7(fg) is finite dimensional. Therefore the algel#éE P(G)), generated b P(G),
is contained inM P(G), that is,A(EP(G)) € M P(G). Hence by Stone Weierstrass
theorem (P]) A(EP(G)) is dense inC(G). SinceA(EP(G)) € MP(G), MP(G)
is dense irC(G). O

CoROLLARY 4.2. If G is a finite T, topological abelian group, thefd} # M P(G)
# C(G).

LEMMA 4.3. Let G be a locally compact abelian group having no nontrivial
compact subgroups. LeB be the dual group ofG. Then foru € M.(G),
Ar(ly eIt a(y) =0} =0.

PrOOF. Refer []. O
THEOREM4.4. If G does not have compact elements, tf@nz M P(G) # C(G).

PrOOF. Let f € C(G) be compactly supported. By Lemmda3, f is not mean-
periodic. ThusM P(G) # C(G). O

As we have pointed earlier, the problem of spectral synthesis does not hold for every
closed translation invariant subspa¢ef C(R?, C). However, with some conditions
onV this is true. First we prove the following lemma.

LEmMMA 4.5. The following hold

(i) LetAq, As, ..., A, be distinct complex numbers ama, m,, ... ,m, € N.
Then the seteit, teit, ..., tMe*t : 1 < j < n} € C(R) is linearly independent
overC.

(i) LetAs, Aoy ..., An; N1, 72, ..., Ny be complex numbers and far< j, k, I <

N, &, Bk be non-negative integers. Thefl’ et - 1 <| j <n}isalinearly
independent subset 6f(R?) overC if (A;, nj) # (A, nk) OF (aj, Bij) # (cik, Bik)-

PrOOF. (i) Without loss of generality, we may assume that

IM@Gn) = maxim,)),
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where Im denotes the imaginary part of a complex number. Thén,bmIm(i;) > 0
forl1<j <n-—1. Nowfora; € C,

n
Z(aojezxjt +aljtemjt 4. +arnjjtmjezxjt) -0 —
j=1
n

J

wherepy(t) = @y + ant + -+ + amt™ = am,(t — B — o) -+ (t — By,), for
somepi, Ba, ... , Bn, € €. Now ast — —oo, tke®i=* — 0 for everyj # n. This
impliesa,,, = 0, since a$ — —oo, p,(t) /4 0if a,, # 0. Similarly by repeating
the same argument one can easily showahat 0 for alli, j.

(i) Case (i): A1, A2, ... , A, are distinct. Fol; € C,

n n n n
MY (agrettt) =0 = Y3 (@t'emtlert) =o.

=1 j=1 I=1 j=1

-1
(aoj el(}\.j —Amt + aljtel(}\.j —An)t RS amjjtmj ez(kj 7)\n)t) + pn(t) — 0’
=1

By (i), this impliesa; = O for alli, j.

Case (ii): Aj = A; for somei andj. In this case rearrange the terms of the above
expression by collecting the distinct exponential monomiats.iBy the hypothesis,
the coefficients of the exponential monomialtinare finite linear combination of
exponential monomials it3. By applying (i) twice, namely, fird; variable and then
t, variable we ge&;; = O for alli, j. O

THEOREM4.6. LetV be a closed translation invariant subspacé&dfR?) satisfying
any one of the following conditions

(i) Vs finite dimensional.
(i) V is rotation invariant.
(i) V=1,:={f € C(R?): f*pu=0}for someu € M:(R?).
ThenV contains an exponential.

ProOOF. Case (i):V is finite dimensional. Lef € V andf # 0. By Theorent.9,
f is of the formf = YT | p; (s, t)@* ™%, wherep is a non-zero polynomial in
ti, t and (A, nj) # (A nw) for j # k. Letu € Mc(R?) be such thap(V) = {0}.
We show thaju (e*iu*tn%2) = 0. SinceV is translation invariantf 4 = 0. Write
f as a linear combination of elements {itf"t}" et 1 < | j < n}. Let
Gttt tintnt o teotfegtiutn) ¢ totfrgtiutnt pe the terms contain-
ing eitn2 gand the largest degree termtgfnamelyt;°, wherec,, ¢, . .. , G, are
non-zero scalars. Alsof = u has the same representation and the terms contain-
ing teog®ittn® are g fi(h;, ot @ittt g i, gt eetitn
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Ckm,l:\b()\.j, Z’]j)tfotfkmel(}”jtlertZ). Since f * nw =20 and Cy; # 0, ,l:\L()\.j, nj) = 0, by
Lemma4.5. Thereforgu(e*ittn®) = 0, Thusg®ittn ¢V,

Cases (ii) and (iii): V is rotation invariant, oV = t,. By Theoreml.7 and
Theoreml.8, V contains an exponential polynomial. It follows easily from the proof
of (i) thatV contains an exponential. O
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