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Abstract

Let G be a locally compact Hausdorff abelian group andX be a complex Banach space. LetC.G; X/
denote the space of all continuous functionsf : G → X, with the topology of uniform convergence
on compact sets. LetX′ denote the dual ofX with the weak∗ topology. LetMc.G; X′/ denote the
space of allX′-valued compactly supported regular measures of finite variation onG. For a function
f ∈ C.G; X/ and¼ ∈ Mc.G; X′/, we define the notion of convolutionf ? ¼. A function f ∈ C.G; X/
is called mean-periodic if there exists a non-trivial measure¼ ∈ Mc.G; X′/ such thatf ? ¼ = 0. For
¼ ∈ Mc.G; X′/, let M P.¼/ = { f ∈ C.G; X/ : f ? ¼ = 0} and let M P.G; X/ = ⋃

¼ M P.¼/. In
this paper we analyse the following questions: IsM P.G; X/ 6= ∅? Is M P.G; X/ 6= C.G; X/? Is
M P.G; X/ dense inC.G; X/? IsM P.¼/ generated by ‘exponential monomials’ in it? We answer these
questions for the groupsG = R, the real line, andG = T, the circle group. Problems of spectral analysis
and spectral synthesis forC.R; X/ andC.T; X/ are also analysed.

2000Mathematics subject classification: primary 43A45; secondary 42A75.
Keywords and phrases: Convolution of vector valued functions, spectrum, vector valued mean-periodic

functions, spectral synthesis.

1. Introduction

The notion of mean-periodic functions was introduced in 1935 by Delsarte [5]. It
is well known that every solution of a constant coefficient homogeneous ordinary
differential equation is a finite linear combination of solutions of the typet ke�½t , where
½ ∈ C, andk ∈ Z+. Delsarte was interested in knowing whether this result is still true
for convolution equation of the following type∫

R

f .s − t/k.t/dt = 0; ∀ s ∈ R;(1)
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wherek is a continuous function which is zero out side some interval. For− > 0,
periodic continuous functions of period− are solutions of the convolution equation

1

−

∫ s+−=2

s−−=2
f .t/dt = 0; ∀ s ∈ R:(2)

For this reason Delsarte called the continuous functions which are solutions of equation
(1) as mean-periodic. In [35], Schwartz observed that the mean-periodicity of a
continuous function does not depend upon the functionk, and he extended Delsarte’s
definition as follows:

DEFINITION 1.1. A continuous functionf : R → C is said to bemean-periodicif
there exists a non-trivial regular measure¼ of compact support and finite variation
such that. f ? ¼/.s/ = ∫

R
f .s − t/d¼.t/ = 0, ∀ s ∈ R.

Schwartz also gave an intrinsic characterization of mean-periodic functions. Let
C.R/ denote the vector space of complex valued continuous functions onR with the
topology of uniform convergence on compact sets (u.c.c.). LetMc.R/ denote the space
of all regular measures of compact support and finite variation onR. For f ∈ C.R/,
let −. f / denote the closed translation invariant subspace ofC.R/ generated byf .
Schwartz in [35] showed thatf ∈ C.R/ is mean-periodic if and only if−. f / 6= C.R/.
Further, if f ? ¼ = 0 for some non-zero¼ ∈ Mc.R/, then f is a limit of finite linear
combination of exponential monomialstke�½t which satisfytke�½t ? ¼ = 0. More
generally, convolution equation of the type

f ? ¼ = g;(3)

where¼ ∈ Mc.R/ andg ∈ C.R/ are given, can be analysed as in the case of ordinary
differential equations. Ifp is a particular solution of the equation (3), then every other
solution is of the formh + p, whereh is a solution of the homogeneous equation
f ? ¼ = 0. In general, equation (3) need not have any solution inC.R/. For
instance, let¼ be such thatd¼.t/ = �.t/dt, where� ∈ C∞

c .R/, space of all infinitely
differentiable functions onR, andg is a nowhere differentiable continuous function
onR. Some particular cases of (3) were analysed in [31, 32]. In general, no necessary
and sufficient conditions for the existence of solutions of equation (3) are known. A
variant of the above problem is the following: Consider the following convolution
equation

f1 ? ¼1 = − f2 ? ¼2;(4)

where¼1; ¼2 ∈ Mc.R/are given. Equation (4) can be written as a convolution equation
for vector valued functions: letf = . f1; f2/ : R → C

2 and¼ = .¼1; ¼2/ : BR → C
2.
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Then equation (4) is a homogeneous equationf ? ¼ = 0. This leads to consideration
of vector valued mean-periodic functions, the main content of this paper. We consider
such equations in a more general setting and analyse their solutions.

Let G be a locally compact abelian group. LetX be a complex Banach space and
X′ denote the weak∗-dual of X. We denote byBG the¦ -algebra of Borel subsets of
G. We recall some results on integration of functionsf : G → X with respect to
X′-valued measures onBG, denoted byM.G; X′/. For details one may refer Schmets
[34]. Let ¼ ∈ M.G; X′/ and for everyx, let ¼x denote the scalar measure onBG

defined by¼x.E/ := 〈x; ¼.E/〉 for every E ∈ BG. The measure¼ is said to be
regular if ¼x is regular for everyx ∈ X. For E ∈ BG, if E = ⋃n

i =1 Ei for some
E1; E2; : : : ; En ∈ BG such thatEi

⋂
Ej = ∅ for i 6= j , we call{E1; E2; : : : ; En} a

measurable partitionof E. LetP.E/ denote the set of all measurable partitions of
E. Let

V¼.E/ := sup

{
n∑

i =1

‖¼.Ei /‖ : {E1; E2; : : : ; En} ∈P.E/
}
:

The scalar measureV¼ is called thevariation of ¼. We say¼ has finite variation if
V¼.E/ < +∞ for everyE ∈ BG. Let M.G; X′/ denote the set of all regular Borel
measures¼ on G such that¼ has finite variation. For¼ ∈ M.G; X′/ the smallest
closed setSwith ¼.E/ = 0 for everyE ∈BG with E ∩ S = ∅ is called the support of
¼. We writeS= supp.¼/ if S is the support of¼. Let Mc.G; X′/ denote the set of all
¼ ∈ M.G; X′/ such that support of¼ is compact. LetC.G; X/ denote the space of
all X-valued continuous functions onG with the topology of uniform convergence on
compact sets. Letf ∈ C.G; X/ and¼ ∈ Mc.G; X′/ with supp.¼/ ⊆ K , a compact
set. Then there exists a sequencePk.K / := {Bk

k1
; Bk

k2
; : : : ; Bk

kn
} of measurable

partitions of K with the following property : for arbitrary choice ofti ∈ Bki
, the

sequence
{∑n

i =1〈 f .ti /; ¼.Bk
ki
/〉}

k≥1
is convergent and is independent of the choice

of t ′
i s. This limit is called theintegral of f with respect to¼ and is denoted by∫

f d¼. For f ∈ C.G; X/ and¼ ∈ Mc.G; X′/ the scalar valued function

. f ? ¼/.g/ :=
∫

G

f .g − h/d¼.h/; ∀ g ∈ G

is called theconvolutionof f with ¼, that is,. f ? ¼/.g/ = ¼. fg/ = 〈¼; fg〉, where
fg.h/ = f .g + h/ and〈¼; f 〉 = ¼. f / = ∫

G f .−g/d¼.g/ is the duality pairing of
Mc.G; X′/ with C.G; X/.

DEFINITION 1.2. We say f ∈ C.G; X/ is mean-periodicif there exists a non-trivial
¼ ∈ Mc.G; X′/ such that. f ? ¼/.g/ = ∫

G f .g − h/d¼.h/ = 0, ∀ g ∈ G.

The aim of this paper is to answer the following questions: letM P.G; X/ denote
the space of allX-valued mean-periodic functions onG.
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• Is M P.G; X/ 6= ∅? That is, when does there exist non-zero mean-periodic
functions?

• Is M P.G; X/ 6= C.G; X/? That is, do there exist continuous functions which
are not mean-periodic?

• Is M P.G; X/ dense inC.G; X/? That is, how large isM P.G; X/ as a
subspace ofC.G; X/?

We answer these questions for the particular casesG = R, in Section2 andG = T,
circle group, in Section3. Analysis of such questions for more general groups remain
open.

The problem of analysing mean-periodic functions is also related to the problem
of ‘spectral analysis’ and ‘spectral synthesis’. In order to carry-out the analysis, we
define next vector valued exponential monomials and exponential polynomials.

An additive functionon a locally compact abelian group is a complex valued
continuous functiona on G such thata.g1 + g2/ = a.g1/ + a.g2/ for all g1 andg2

in G. A polynomialon G is a function of the formp.a1;a2; : : : ;am/, wherep is a
polynomial inmvariables anda1;a2; : : : ;am are additive functions onG. A monomial
onG is a function of the formp.a1;a2; : : : ;am/, wherep is a monomial inmvariables
anda1;a2; : : : ;am are additive functions onG. An exponentialon G is a non-zero
continuous complex valued function! such that!.g1 + g2/ = !.g1/!.g2/ for all g1

andg2 in G. An exponential monomialis a point-wise product of a monomial and an
exponential. Anexponential polynomialis a point-wise product of a polynomial and
an exponential. The set of all exponentials is denoted by�. Note that� ⊂ C.G/.

We define exponential polynomials inC.G; X/ as follows:

DEFINITION 1.3. .i/ We call f ∈ C.G; X/ anX-valuedexponentialif for every
g ∈ G, f .g/ = !.g/x for some! ∈ � andx ∈ X.
.ii/ We call f ∈ C.G; X/ an X-valuedexponential monomialif for every g ∈ G,

f .g/ = p.g/!.g/x for somex ∈ X, p a monomial inC.G/ and! an exponential in
C.G/.
.iii / We call f ∈ C.G; X/ anX-valuedexponential polynomialif for everyg ∈ G,

f .g/ = p.g/!.g/x for somex ∈ X, p a polynomial inC.G/ and! an exponential
in C.G/.

EXAMPLE 1. .1/ Let f ∈ C.R; X/. Then f is an exponential if and only if for
everyt ∈ R, f .t/ = e�½t x for some½ ∈ C andx ∈ X. f is an exponential monomial if
and only if for everyt ∈ R, f .t/ = tke�½t x for some½ ∈ C; k ∈ N andx ∈ X. Finally,
f is an exponential polynomial if and only if for everyt ∈ R, f .t/ = p.t/e�½t x
for some½ ∈ C, polynomial p.t/ and x ∈ X. Thus the exponentials, exponential
monomials and exponential polynomials are the scalar multiples of the ones defined
by Schwartz [35].
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.2/ A function f ∈ C.T; X/ is an exponential if and only if for everyt ∈ R,
f .e�t/ = e�ntx for some non-negative integern andx ∈ X.

REMARK. We shall use the following convention: WhenX = Cwe choose thex ∈
X appearing in the exponential, exponential monomial and exponential polynomial to
be the scalar constant 1. The generality is not lost due to this choice, since if a closed
translation invariant subspace contains an exponential or exponential monomial or
exponential polynomial if and only if it contains their scalar multiples.

DEFINITION 1.4. Let V be a closed translation invariant subspace ofC.G; X/. We
say

.i/ spectral analysis holds forV if V contains an exponential;
.ii/ spectral synthesis holds forV if the linear span of the set of all exponential

monomials inV is dense inV;
.iii / if spectral analysis (synthesis) holds for every closed translation invariant sub-

spaceV of C.G; X/, then we say thatspectral analysis(synthesis) holds inC.G; X/.

DEFINITION 1.5. Let V be a closed translation invariant subspace ofC.G; X/ and
f ∈ C.G; X/ be mean-periodic. Let−. f / denote the closed translation invariant
subspace ofC.G; X/ generated byf .

.i/ Thespectrumof V is defined to be the set of all exponential monomials inV
and is denoted by spec.V/ or ¦.V/.
.ii/ Thespectrumof f is defined to be spec.−. f // and is denoted by spec. f / or

¦. f /.

Some of the known results for spectral analysis and spectral synthesis forG = R
n

are as follows: LetE.Rn/ be the space of all infinitely differentiable functions onRn

in the topology of compact convergence of functions and their derivatives. Then its
dual E.Rn/′ is the space of all compactly supported distributions onR

n. Schwartz
[35] proved the following theorem:

THEOREM 1.6 ([35]). In E.R/, every closed translation invariant subspace is the
closure of finite linear combinations of the exponential monomials in it.

As a consequence of this theorem, the linear span of exponential monomials in
every closed translation invariant subspaceV of C.R/ is dense inV . That is, spectral
analysis and spectral synthesis hold inC.R/. Using this Schwartz [35] described
mean-periodic functions onR.

Let V be the closed translation invariant subspace ofE.Rn/ generated by the solu-
tions of the homogeneous constant coefficient partial differential equationp.D/ f = 0.
Malgrange [28] proved that spectral synthesis holds forV .
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In 1975 Gurevich [17] proved that Theorem1.6cannot be extended forRn, n > 1.
Though Theorem1.6fails forRn, n > 1, spectral analysis and spectral synthesis hold
in C.G/ for certain groups, for example, forG = Z

n (see [26]) and for discrete abelian
groups (see [12, 13]). Consider the following example from [15].

EXAMPLE 2 ([10, 15]). Define f1; f2 : R2 → C by

f1.x1; x2/ := 1 and f2.x1; x2/ := x1 + x2; ∀ .x1; x2/ ∈ R2:

Let V be the closed translation invariant subspace ofC.R2/ generated byf1 and f2.
Then the spectrum ofV is { f1}. But the closed linear span of the spectrum ofV is a
proper subspace ofV . Thus spectral synthesis fails inC.R2/ and spectral synthesis
fails for V even ifV is finite dimensional.

However, for certain closed translation invariant subspacesV ⊂ C.R2/ the linear
span of all exponential polynomials inV is dense inV . These subspaces are described
in the following three theorems.

THEOREM 1.7 ([4]). Let V be a closed translation and rotation invariant subspace
of C.R2/. Then the linear span of exponential polynomials inV is dense inV.

THEOREM 1.8 ([16]). Let¼ ∈ Mc.R
n/. Then the linear span of exponential poly-

nomials in−¼ := { f ∈ C.Rn/ : f ? ¼ = 0} is dense in−¼.

THEOREM 1.9 ([14]). Let V be a finite dimensional translation invariant subspace
of C.Rn/. Then every element ofV is a finite linear combination of exponential
polynomials.

The following question is raised in [15] and the answer is not known: LetV be
closed translation invariant subspace ofC.R2/.

• Does there exist an exponential inV?

In Section4, we answer this question affirmatively whenV is either finite dimensional
or rotation invariant orV = −¼ := { f ∈ C.R2/ : f ? ¼ = 0} for some¼ ∈ Mc.R

2/.
Let V be a closed translation invariant subspace ofC.G; X/. Then theproblems of

spectral analysis and synthesisare the following:

• Is every exponential monomial inC.G; X/ mean-periodic?
• Are exponential monomials dense inC.G; X/?
• When does there exist an exponential monomial inV ?
• When is the linear span of exponential monomials inV denseV?
• Does there exist an exponential monomial solution for the convolution equation

f ? ¼ = 0 for a given¼ ∈ Mc.G; X′/?

We analyse these problems forG = R in Section2 andG = T in Section3.
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2. Mean-periodic functions onG = R

For G = R andX = C, it is known (see Schwartz [35]) that f ∈ C.R;C/ is mean-
periodic if and only if−. f /, the closed translation invariant subspace ofC.R;C/ is
proper. We first extend this result toX, arbitrary Banach space.

THEOREM 2.1. The following are equivalent:

.i/ f is mean-periodic;
.ii/ −. f / 6= C.R; X/.

PROOF. We use the fact thatC.R; X/ is a locally convex space and its dual is
Mc.R; X′/. To show that (i) implies (ii): let¼ ∈ Mc.R; X′/ be non-trivial such
that f ? ¼ = 0. Then¼.g/ = 0 for everyg ∈ −. f /. Hence−. f / 6= C.R; X/,
for otherwise¼.g/ = 0 for everyg ∈ C.R; X/, which is not possible, since¼ is
non-trivial. The implication (ii) implies (i) follows from the Hahn-Banach theorem
for locally convex spaces and the fact that−. f / is a proper closed translation invariant
subspace ofC.R; X/.

We show next that there exist nontrivialX-valued mean-periodic functions onR.

PROPOSITION2.2. M P.R; X/ 6= ∅.

PROOF. Let 0 6= x ∈ X and 0 6= x′ ∈ X′. Chooseg ∈ M P.R/, scalar valued
function mean-periodic with respect to some¼ ∈ Mc.R/. Define¹ : BR → X′ by
¹.E/ := ¼.E/x′ and definef : R → C by f .t/ := g.t/x. Then¼ is a X′-valued
measure andf is a continuousX-valued function withf ? ¹ = .g ? ¼/〈x; x ′〉 = 0.
Thus f is mean-periodic with respect to¹.

We prove next that existence of functions which are not mean-periodic is related to
the X being separable.

THEOREM 2.3. M P.R; X/ is a proper subset ofC.R; X/ if and only if X is sepa-
rable.

PROOF. Suppose thatX is a non-separable complex Banach space andf ∈C.R; X/.
Since f continuous,f .R/ is separable and hence[ f .R/] is separable. Since, for every
g ∈ −. f /; g.R/ ⊆ [ f .R/], −. f / 6= C.R; X/. Hencef is mean-periodic.

Conversely, suppose thatX is separable. We show thatM P.R; X/ 6= C.R; X/.
For everyn ∈ N, let

fn.t/ :=
∞∑
j =1

anj e
�½nj t; t ∈ R;(5)
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where½nj andanj satisfy the following conditions:

.i/ 0 6= anj ∈ C.
.ii/ ½nj ∈ [Þ; þ] for someÞ < þ.
.iii / {½nj : j ∈ N} ∩ {½mj : j ∈ N} = ∅ for m 6= n and for everyn, {½nj}∞

j =1 has a
limit ½n ∈ R.
.iv/ The convergence in (5) is uniform on compact sets with eachfn bounded by 1.
.v/

∑∞
n=1

∑∞
j =1 |anj | < ∞.

Let {x1; x2; : : : } be a dense subset ofX. Define f : R → X by

f .t/ :=
∞∑

n=1

1

2n.1 + ‖xn‖/ fn.t/xn; t ∈ R:(6)

We show thatf is not mean-periodic. Since{e�½nj t}∞
n; j =1 is an equicontinuous family,

{ fn}∞
n=1 is an equicontinuous family. Therefore, for¼ ∈ Mc.R; X′/,

f ? ¼ =
∞∑

n=1

1

2n.1 + ‖xn‖/. fnxn/ ? ¼ =
∞∑

n=1

1

2n.1 + ‖xn‖/ fn ? ¼xn
:

Thus f ? ¼ = 0 if and only if
∞∑

n=1

1

2n.1 + ‖xn‖/. fn ? ¼xn
/.t/ = 0; ∀ t ∈ R;

that is, for everyt ∈ R,
∞∑

n=1

1

2n.1 + ‖xn‖/
∞∑
j =1

anj ¼̂xn
.½nj /e

�½nj t = 0:(7)

Let Spq.t/ = ∑p
n=1

∑q
j =1 e�½nj tanj ¼̂xn

.½nj /=2n.1 + ‖xn‖/. Notice thatSpq is almost
periodic and its Fourier coefficientsa.Spq;½/ satisfy the following:

a.Spq;½/ =



anj ¼̂xn
.½nj /

2n.1 + ‖xn‖/ if ½ = ½nj ; 1 ≤ n ≤ p; 1 ≤ j ≤ q;

0 otherwise.
(8)

Since the convergence in (6) is uniform, the convergence in (7) also is uniform.
ThereforeSpq converges to 0 uniformly asp;q → ∞. Further, the Fourier coefficients
a.Spq;½/ converges to 0 asp;q → ∞ ([27]). In view of (8), a.Spq;½/ = 0 for every½.
Moreover,¼̂xn

.½nj / = 0 for everyn and j . Since{½nj }∞
j =1 has limit point, this implies

¼xn
= 0 for all n. Therefore,¼ = 0. Hencef is not mean-periodic.

Let f ∈ C.R; X/ and letx′ ∈ X′. Thenx′ ◦ f ∈ C.R/. It is natural to ask the
following question: Isx′ ◦ f mean-periodic for everyx ′ 6= 0 if f is mean-periodic?
We analyse this in the following theorem.
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THEOREM 2.4. For f ∈ C.R; X/ and x′; y′ ∈ X′ with x′ 6= y′ the following
hold:

.i/ If x′ ◦ f is mean-periodic, thenf is mean periodic.
.ii/ If x′ ◦ f = y′ ◦ f , then f is mean-periodic.
.iii / If X = C

n;n > 1, then f is a finite sum of mean-periodic functions.
.iv/ There existsf ∈ M P.R;Cn/ such thatx′ ◦ f is not mean-periodic for any

x′ ∈ X′; x′ 6= 0.

PROOF. (i) By Theorem2.1, it suffices to show that−. f / 6= C.R/. For this,
let g ∈ C.R/, g 6= 0 be such thatg 6∈ −.x′ ◦ f /. Choosev ∈ X such that
〈x′; v〉 6= 0 and defineh : R → X by h.t/ = g.t/v=〈x′; v〉. Thenh is continuous and
.x′ ◦ h/.t/ = g.t/. We show thath is not in−. f /. If possible let,h ∈ −. f /. Then
there exists

∑
ci fti → h, which impliesx ′.

∑
ci fti / → x′ ◦ h = g, a contradiction.

(ii) Chooseg ∈ C.R; X/ such thatx′.g/ 6= y′.g/. We show thatg =∈ −. f /.
If possible, let g ∈ −. f /. Since

∑
ci fti → g ⇒ x′.

∑
ci fti / → x′.g/ and

y′.
∑

ci fti / → y′.g/, and also sincex′. f / = y′. f /, x′.
∑

ci fti / = y′.
∑

ci fti /.
This impliesx′.g/ = y′.g/, a contradiction.

(iii) Let f = . f1; f2; : : : ; fn/. Obviously.0; : : : ;0; fi ;0; : : : ;0/ is mean-periodic
for everyi with respect to¼ = .¼1; : : : ; ¼n/ where 0 6= ¼ j ∈ Mc.R/ are arbitrary
and for j = i; ¼ j = 0. Hencef is a finite sum of mean-periodic functions.

(iv) Choose a non zero, compactly supported complex valued continuous functiong.
Let f = .g; g; : : : ; g/. Then f is aCn-valued continuous function onR. Clearly f
is mean-periodic with respect to¼ = .¹1;−¹1;0; : : : ;0/, where 06= ¹1 ∈ Mc.R/ is
arbitrary butx′ ◦ f is not mean periodic for any 06= x ′ ∈ X′.

REMARK. When X = C, M P.R; X/ is a subspace ofC.R; X/. It follows from
Theorem2.4(iii) that sum of mean-periodic functions inC.R; X/ need not be mean-
periodic and henceM P.R; X/ in general need not be a vector subspace ofC.R; X/.
Moreover, the same argument works for separable complex Hilbert spaces.

THEOREM 2.5. M P.R; X/ is dense inC.R; X/.

PROOF. Case (i):X = C. It suffices to show that the annihilator ofM P.R/ is {0}.
Let¼ ∈ Mc.R/ be such that¼.M P.R// = {0}. In particular¼.e�½t / = ¼̂.½/ = 0 for
every½ ∈ C. Hence¼ = 0.

Case (ii): Let X be finite dimensional,X = C
n. ConsiderC.R/ × C.R/ ×

· · · × C.R/. This is a finite product of locally convex spaces. Hence it is a locally
convex space in the product topology. It is easy to see thatC.R; X/ is isomorphic to
C.R/×· · ·×C.R/as locally convex spaces. AlsoM P.R/×M P.R/×· · ·×M P.R/ ⊆
M P.R; X/ andM P.R/ is dense inC.R/. Thus it follows thatM P.R; X/ is dense in
C.R; X/.
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Case (iii): X is not finite dimensional. Consider the set Exp.R; X/ = {e�½t x : ½ ∈
C; x ∈ X}. We show that the linear span of Exp.R; X/ is contained inM P.R; X/ and
it is dense inC.R; X/. Let f .t/ = e�½1t x1; g.t/ = e�½2t x2 ∈ Exp.R; X/ andÞ; þ ∈ C.
Choose 06= x′ ∈ X′ such thatx′.x1/ = x′.x2/ = 0 and¼1; ¼2 ∈ Mc.R/ such that
e�½1t ? ¼1 = 0 = e�½2t ? ¼2. Define¼.E/ = .¼1 ? ¼2/.E/x′, for every E ∈ BR.
Then.Þ f + þg/ ? ¼ = 0. To prove the denseness, let¼ ∈ Mc.R; X′/ be such that
¼ annihilates the linear span of Exp.R; X/. Then¼̂x.½/ = 0, ∀ ½ ∈ C, ∀ x ∈ X. It
follows that¼ = 0. This completes the proof.

We analyse next the problem of spectral analysis and spectral synthesis inC.R; X/.
LetV be a closed translation invariantsubspace ofC.R; X/. ForX = C, Schwartz [35]
proved thatV contains exponential monomials and the linear span of exponential
monomials inV is dense inV . It is well known [17] that spectral synthesis fails
for Rn;n > 1. Further, it holds for certain locally compact abelian groups, namely
for Zn due to Lefranc [26] and discrete groups due to Gilbert [16, 15] and Elliott
[12, 13]. However, nothing is known for vector valued functions. In this section, we
extend Schwartz’s result for finite dimensional closed translation invariant subspace
of C.R; X/, X an arbitrary Banach space. For this we need the following lemmas.

LEMMA 2.6. Let v1; v2; : : : ; vn ∈ Xn, vi = .vi
1; v

i
2; : : : ; v

i
n/, be linearly indepen-

dent. Then there existx′
1; x′

2; : : : ; x ′
n ∈ X′ which satisfy

x′
1.v

1
1/ + x′

2.v
1
2/ + · · · + x′

n.v
1
n/ = 1;

x′
1.v

2
1/ + x′

2.v
2
2/ + · · · + x′

n.v
2
n/ = 0;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x′
1.v

n
1/+ x′

2.v
n
2/+ · · · + x′

n.v
n
n/ = 0:

PROOF. Let Y be the linear span of{v2; v3; : : : ; vn}. ThenY being a finite di-
mensional subspace ofXn is closed. Sincev1; v2; : : : ; vn are linearly independent,
v1 =∈ Y. Thus by Hahn-Banach theorem, there exists3 ∈ .Xn/′ such that3.Y/ = {0}
and3.v1/ = 1. Clearly3 can be written as3 = .x′

1; x′
2; : : : ; x ′

n/, wherex′
i ∈ X′

satisfy3.x1; x2; : : : ; xn/ = x′
1.x1/+ x′

2.x2/+ · · · + x′
n.xn/. Therefore,

x′
1.v

1
1/+ x′

2.v
1
2/ + · · · + x′

n.v
1
n/ = 3.v1

1;0; : : : ;0/+ · · · +3.0; : : : ;0; v1
n/

= 3..v1
1; v

1
2; : : : ; v

1
n// = 1:

For everyi , 2 ≤ i ≤ n,

x′
1.v

i
1/+ x′

2.v
i
2/+ · · · + x′

n.v
i
n/ = 3.vi

1;0; : : : ;0/+ · · · +3.0; : : : ;0; v i
n/

= 3..vi
1; v

i
2; : : : ; v

i
n// = 0:

This completes the proof of the lemma.
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For setsA andB, letF .A; B/ denote the set of all functions fromA to B. For a
setE ⊆ V , a vector space, letL S.E/ denote the linear span ofE.

LEMMA 2.7. Let S be any set containing at-leastn points andV be a vector
space overC. Let { f1; f2; : : : ; fn} ⊂ F .S;V/. Then{ f1; f2; : : : ; fn} is linearly
independent inF .S;V/ if and only if there existsn distinct pointst1; t2; : : : ; tn ∈ S
such that{ f1; f2; : : : ; fn} is linearly independent inF .{t1; t2; : : : ; tn};V/.

PROOF. We prove the straight implication by induction. Suppose that{ f1; f2; : : : ;

fn} is a linearly independent set inF .S;V/. As { f1} is linearly independent, there
existst1 ∈ Ssuch thatf1.t1/ 6= 0. Then{ f1} is linearly independent on{t1}. Thus the
lemma is true whenn = 1. If f1.t1/ = Þ f2.t1/, for some nonzeroÞ ∈ C, chooset2 ∈ S
such that f1.t2/ 6= Þ f2.t2/, which is possible, sincef1; f2; : : : ; fn are linearly inde-
pendent onS. Then it is easy to check that{ f1; f2} is linearly independent on{t1; t2}.
If f1.t1/ 6= Þ f2.t1/ for any non zero scalar andf2.t1/ 6= 0, then choose anyt2 6= t1. It
is easy to see that{ f1; f2} is linearly independent on{t1; t2}. If f2.t1/ = 0, then choose
t2 such thatf2.t2/ 6= 0. In this case also one can easily verify that{ f1; f2} is linearly
independent on{t1; t2}. Assume that{ f1; f2; : : : ; fn−1} is linearly independent on
{t1; t2; : : : ; tn−1}. If { f1; f2; : : : ; fn−1; fn} is linearly independent on{t1; t2; : : : ; tn−1}
then choose anytn which is different fromt1; t2; : : : ; tn−1. If { f1; f2; : : : ; fn−1; fn}
is linearly dependent, then there exist unique scalarsÞ1; Þ2; : : : ; Þn−1 such that
Þ1 f1 + Þ2 f2 + : : : + Þn−1 fn−1 = fn on {t1; t2; : : : ; tn−1}. Since { f1; f2; : : : ; fn}
is linearly independent onS, there existstn ∈ S such thatÞ1 f1.tn/ + Þ2 f2.tn/ +
· · · + Þn−1 fn−1.tn/ 6= fn.tn/. It follows from this that{ f1; f2; : : : ; fn} is linearly
independent on{t1; t2; : : : ; tn}. This proves the required claim.

The converse is trivial.

Using these lemmas we prove that every finite dimensional translation invariant
subspaceV of C.R; X/ includes an exponential and every element inV is a finite sum
of exponential monomials.

THEOREM 2.8. Let V be an n-dimensional translation invariant subspace of
C.R; X/. Then the following hold:

.i/ There exist½1; ½2; : : : ; ½q ∈ C andm1;m2; : : : ;mq ∈ Nwith m1 +m2+· · ·+
mq = n, andw1;w2; : : : ; wq ∈ X, not all zero, such thate�½ j tw j ∈ V , for 1 ≤ j ≤ q.
.ii/ There exist½1; ½2; : : : ; ½q ∈ C, m1;m2; : : : ;mq ∈ N with m1 + m2 + · · · +

mq = n andx1; x2; : : : ; xn ∈ X such that everyf ∈ V is of the formf = ∑n
l=1 gl xl ,

where eachgl ∈ L S{t ke�½ j t : 0 ≤ k ≤ mj − 1; 1 ≤ j ≤ q}.
.iii / There exist½1; ½2; : : : ; ½q ∈ C andm1;m2; : : : ;mq ∈ Nwith m1 +m2+· · ·+

mq = n such that everyf ∈ V is of the form f = ∑q
j =1

∑mj −1
k=0 Þk j t ke�½ j t yk j , where

Þk j ∈ C and ykj ∈ X for 0 ≤ k ≤ mj − 1; 1 ≤ j ≤ q.
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PROOF. Fix a basis{ f1; f2; : : : ; fn}of V. SinceV is translation invariant,. fi /s ∈ V
for every s ∈ R. Therefore there exist unique scalarsÞi j ∈ C such that. fi /s =∑n

j =1Þi j .s/ f j . Let f denote then × 1 matrix f = [ f1; f2; : : : ; fn]t andA.s/ denote
then × n matrix .Þi j .s//. Then

fs = A.s/[ f1; f2; : : : ; fn]t = A.s/ f:(9)

Now

. fs − f /=s = ..A.s/ − A.0//=s/ f:(10)

CLAIM . s 7→ A.s/ is continuous. We give two proofs of this claim.
PROOF 1. By the Lemma2.7 there existn distinct points{t1; t2; : : : ; tn} ⊂ R

such that{ f1; f2; : : : ; fn} is linearly independent on{t1; t2; : : : ; tn}. In view of (9),
f .s+t j / = A.s/ f .t j / for j = 1;2; : : : ;n. That is. fi .s+t j //

n
i; j =1 = A.s/. fi .t j //

n
i; j =1.

Let vi = . fi .t1/; fi .t2/; : : : ; fi .tn//, 1 ≤ i ≤ n. Then{v1; v2; : : : ; vn} is a linearly
independent subset ofXn. By the Lemma2.6there existsx′

i j ∈ X′ such that

n∑
k=1

〈 fi .tk/; x′
k j 〉 = Ži j ; whereŽi j =

{
1 if i = j ;

0 if i 6= j .

Thus we have

. fi .s + t j //
n
i; j =1.x

′
i j /

n
i; j =1 = A.s/. fi .t j //

n
i; j =1.x

′
i j /

n
i; j =1 = A.s/.Ži j /

n
i; j =1 = A.s/:

The entries of the matrix obtained by multiplying the matrices on the left side of the
above equation are continuous. This shows thats 7→ A.s/ is continuous fromR to
BL.Cn/.

PROOF2. For everyt ∈ R, define an operatorTt : V → V by

.Tt f /.s/ := f .t + s/; ∀ f ∈ V; s ∈ R:
ThenTt ∈ BL.V/ and satisfies the following properties: For everys; t ∈ R
.i/ Ts ◦ Tt = Ts+t ;
.ii/ T0 = I ;
.iii / Ts ◦ Tt = Tt ◦ Ts.

Let {t1; t2; : : : ; tn} be as given by Lemma2.7. Let {Kn}n≥1 be compact subsets ofR
such that

⋃∞
m=1 Km = Rwith {t1; t2; : : : ; tn} ⊆ K1 ⊆ K2 ⊆ · · · . To show the required

claim we have to show thatt 7→ Tt is continuous inBL.V /. We shall show first that
t 7→ Tt is continuous point-wise. Letsn → s asn → ∞. Now Tsn

. f / = fsn
and

Ts. f / = fs, for every f ∈ V. Since f is uniformly continuous on compact sets,
fsn

→ fs in C.R; X/. ThereforeTsn
→ Ts point-wise. To show thatTsn

→ Ts in
BL.V /, it is sufficient to show that for everym, ‖Tsn

− Ts‖Km
→ 0 asn → ∞, where
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‖Tsn
− Ts‖Km

= sup‖ f ‖Km≤1 ‖Tsn
. f /− Ts. f /‖Km

. Let ž > 0. Since{ f1; f2; : : : ; fn} is
a basis ofV , for every f ∈ V , there exist unique scalarsÞ1; Þ2; : : : ; Þn ∈ C such that
f = Þ1 f1 + Þ2 f2 + · · · + Þn fn. Also since{ f1; f2; : : : ; fn} is linearly independent
on Km, {.Þ1; Þ2; : : : ; Þn/ ∈ C

n : ‖Þ1 f1 + Þ2 f2 + · · · + Þn fn‖Km
≤ 1} is bounded in

C
n, that is, there existsM > 0 such that‖Þ1 f1 + Þ2 f2 + · · · + Þn fn‖Km

≤ 1 implies
that‖.Þ1; Þ2; : : : ; Þn/‖ ≤ M . Since{ f1; f2; : : : ; fn} is equicontinuous, there exists
a Ž > 0, with Ž < 1, such that whenevert1; t2 ∈ s + Km + [0;1] with |t1 − t2| < Ž,
‖ f j .t1/ − f j .t2/‖ < ž=M , for every j = 1;2; : : : ;n. ChooseN ∈ N such that
|sn − s| < Ž, whenevern ≥ N. Then for everyf ∈ V with ‖ f ‖Km

≤ 1, for every
t ∈ Km, andn ≥ N, we have

‖ fsn
.t/− fs.t/‖=‖ f .sn +t/− f .s+t/‖

=‖.Þ1 f1+· · ·+Þn fn/.sn + t/−.Þ1 f1+· · ·+Þn fn/.s+t/‖
≤|Þ1|‖ f1.sn +t/− f1.s+t/‖+· · ·+|Þn|‖ fn.sn +t/− fn.s+t/‖
≤ ž:

Thus‖Tsn
− Ts‖Km

→ 0 asn → ∞ for everym and henceTsn
→ Ts in BL.V / as

n → ∞. This completes the second proof of the claim.
ThusA.s/ satisfies the following properties:

.i/ s 7→ A.s/ is continuous.
.ii/ A.0/ = I .
.iii / A.s + t/ = A.s/A.t/ = A.t/A.s/.

Therefore,s 7→ A.s/ is differentiable (refer [18]) and

A.s/ = es A′.0/:(11)

By virtue of equations (10) and (11),

f ′ = A′.0/ f:(12)

This equation can be solved ([21]) and the solution is given by

f .t/ = et A′.0/[x1; x2; : : : ; xn]t :

Let ½1; ½2; : : : ; ½q ∈ C be the eigen values ofA′.0/ with multiplicities m1;m2; : : : ;

mq, respectively. Let the Jordan canonical form ofA′.0/ be given by

B A′.0/B−1 =




J1

J2
: : :

Jq


 ;
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whereJ1; : : : ; Jq are the Jordan blocks ofA′.0/, B is an invertible matrix. This gives

et A′.0/ = B−1




B1

B2
: : :

Bq


 B;

where eachBk is anmk × mk matrix given by

Bk =




e�½kt te�½kt · · · e�½kt tmk−1=.mk − 1/!
0 e�½kt · · · e�½kt tmk−2=.mk − 2/!
:::

:::
: : :

:::

0 0 · · · e�½kt


 :

Thus f .t/ = C[x1; x2; : : : ; xn]t , whereC = .ci j / and eachci j ∈ L S{t ke�½ j t : 0 ≤
k ≤ mj − 1;1 ≤ j ≤ q}, that is, for everyi , f i .t/ = ∑n

j =1 gi j .t/xj , wheregi j ∈
L S{tke�½ j t : 0 ≤ k ≤ mj − 1;1 ≤ j ≤ q}. Hence every elementh of V is of the form
h.t/ = ∑n

j =1 gj .t/xj , where eachgj ∈ L S{t ke�½ j t : 0 ≤ k ≤ mj − 1;1 ≤ j ≤ q}.
This proves (ii).

(iii) By the discussion above,each fi can be expressed as follows:

fi =
q∑

j =1

mj −1∑
k=0

tke�½ j tþ i
k j x

i
k j :

Everyh ∈ V is of the form

h =
n∑

i =1

Þi fi =
n∑

i =1

q∑
j =1

mj −1∑
k=0

tke�½ j tÞiþ
i
k j x

i
k j

=
q∑

j =1

mj −1∑
k=0

tke�½ j t

(
n∑

i =1

Þiþ
i
k j x

i
k j

)
=

q∑
j =1

mj −1∑
k=0

tke�½ j t yk j :

This proves (iii). For (i), fi = ∑q
j =1

∑mj −1
k=0 tke�½ j t yi

k j . For every j choose largestk
such thatyi

k j 6= 0, let it bekj . We will show thate�½ j t yi
kj j ∈ V . To prove this, let

¼ ∈ Mc.R; X′/ be such that¼.V / = {0}. Then f ?¼ = 0 for every f ∈ V , sinceV is
translation invariant. Hencefi ?¼ = 0, for everyi . As fi ?¼ is a finite sum of complex
valued exponential monomials and¼̂yi

k j j
.½ j / is the coefficient ofe�½ j t , ¼̂yi

k j j
.½ j / = 0.

This implies thate�½t yi
kj j ∈ V.

COROLLARY 2.9. Let f ∈ C.R; X/. Then−. f / is finite dimensional if and only if
f is a finite linear combination of exponential monomials inC.R; X/.
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PROOF. Suppose that−. f / is finite dimensional. Then it follows from the above
theorem that f is a finite linear combination of exponential monomials. Con-
versely, supposef is a finite linear combination of exponential monomials. Let
f = ∑q

j =1

∑mj −1
k=0 Þ jk t ke�½ j t x jk. Then−. f / ⊆ L S{tk−l e�½ j t x jk : 0 ≤ l ≤ k;0 ≤ k ≤

mj − 1;1 ≤ j ≤ q}. Therefore−. f / is finite dimensional.

REMARK. .i/ Some authors (see [14, 25]) define exponential polynomials to
be functions of the form

∑m
j =1 f j , where f j are exponential polynomials defined as

in Definition 1.3. With this definition, our result states that every finite dimensional
translation invariant subspaceV of C.R; X/ is generated by exponential polynomials
in V.
.ii/ Anselone and Korevaar [1] have proved that whenX = C, V ⊂ C.R/ is

finite dimensional if and only ifV is the solution space of a homogeneous constant
coefficient ordinary differential equation. This result is not true for arbitraryX which
can be seen by the following examples.

EXAMPLE 3. Let X be a separable infinite dimensional complex Hilbert space. Let
{en} be a complete orthonormal basis. Consider the homogeneous ordinary differential
equation with constant coefficient.

a0 f + a1 f ′ + · · · + an f .n/ = 0:(13)

Let½1; ½2; : : : ; ½q with multiplicitiesm1;m2; : : : ;mq be the roots of the characteristic
polynomialp.t/. Then for everyn ∈ N, 0 ≤ k ≤ mj ;1 ≤ j ≤ q, t ke�½ j ten is a solution
of the differential equation (13). Thus the solution space is not finite dimensional.

EXAMPLE 4. Let X be a complex Banach space. FixA ∈ BL.X/. Consider the
following differential equationdu=dt = Au. Then the solution space{u ∈ C.R; X/ :
du=dt = Au} = {et Ax : x ∈ X} is a closed translation invariant subspace ofC.R; X/.
Further, it is finite dimensional if and only ifX is finite dimensional.

Let¼ ∈ Mc.R; X′/. In the case whenX = C it is known [35] that for a given¼ the
linear span of exponential monomial solutions of the convolution equationf ? ¼ = 0
is dense in the space of all solutions. We extend this forX = C

n as follows:

THEOREM 2.10. Let f = . f1; f2; : : : ; fn/∈ C.R;Cn/ satisfies the following:

.i/ f j is mean-periodic, for every1 ≤ j ≤ n;
.ii/ ¦ . f j / ∩ ¦. fk/ = ∅ for j 6= k.

Then−. f / contains exponential monomials and the linear span of exponential mono-
mials in−. f / is dense in−. f /.
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PROOF. Clearly −. f / ⊆ −. f1/ × −. f2/ × · · · × −. fn/. We show that these two
sets are equal. Letg ∈ −. f1/ ∩ −. f2/. Then−.g/ ⊆ −. f1/ ∩ −. f2/ and hence by
Schwartz’s theorem,−. f1/ ∩ −. f2/ = .0/. Thus−. fi / ∩ −. f j / = .0/ for i 6= j . Let
¼ ∈ Mc.R; X′/ be such that¼.−. f // = {0}. Let¼ = .¼1; ¼2; : : : ; ¼n/. Since−. f / is
translation invariant,f ? ¼ = ∑n

j =1 f j ? ¼ j = 0. Lete�½t ; te�½t; : : : ; tm1−1e�½t ∈ −. f1/

and tm1e�½t 6∈ −. f1/. By Hahn-Banach theorem there exists a measure¹1 ∈ Mc.R/

such that¹1.−. fl // = {0} for everyl 6= 1 and¹1.e�½t/ 6= 0. Thereforefl ? ¹1 = 0, for
l 6= 1. Now f1 ? ¼1 ? ¹1 = . f ? ¼/ ? ¼1 = 0. Therefore.¼̂1¹̂1/.½/ = .¼̂1¹̂1/

′.½/ =
· · · = .¼̂1¹̂1/

.m1−1/.½/ = 0. As ¼̂1.½/¹̂1.½/ = 0 and¹̂1.½/ 6= 0, ¼̂1.½/ = 0. Also
.¼̂1¹̂1/

′.½/ = 0 implies ¼̂′
1.½/.¹̂1/.½/ + ¼̂1.½/¹̂

′
1.½/ = 0. This implies¼̂′

1.½/ = 0.
Similarly we can show that̂¼′′

1.½/ = · · · = ¼̂
.m1−1/
1 .½/ = 0. Thus½ is a zero of¼̂1

with multiplicity at-leastm1. This shows thatf1 ? ¼1 = 0. Similarly, f j ? ¼ j = 0
for every j . Thus¼.−. f1/ × −. f2/ × · · · × −. fn// = 0. It follows that−. f / =
−. f1/× −. f2/ × · · · × −. fn/. This completes the proof.

COROLLARY 2.11. Let X = C
n. Let f = . f1; f2; : : : ; fn/ ∈ C.R; X/ and¼ ∈

Mc.R; X′/. Suppose that eachf j is mean-periodic and¦. f j /∩ ¦. fk/ = ∅ for j 6= k.
If f ?¼ = 0, then f is a finite linear combination of exponential monomials solutions.

PROOF. Since spectral synthesis holds forR, L S.¦ . f j // is dense in−. f j /, for every
j . It is easy to see that¦. f1/× ¦. f2/× · · · × ¦. fn/ ⊂ L S.E/, whereE = {tke�½t x :
x 6= 0; t ke�½t x ? ¼ = 0}. ThusL S.E/ = −. f1/ × −. f2/ × · · · × −. fn/. The required
result follows from the Theorem2.10.

EXAMPLE 5. .1/ WhenG = RandX = C, the notion of mean-periodic functions
was introduced by Delsarte in 1935 [5]. In [35] Schwartz gave an intrinsic charac-
terization of mean-periodic functions:f ∈ C.R;C/ is mean-periodic if and only if
−. f /, the closed translation invariant subspace ofC.R;C/ is proper. Clearly, for every
½ ∈ C, f½.t/ = e�½t , t ∈ R, is mean-periodic,f ? ¼ = 0 for¼ = Ž0 − e�½Ž1, whereŽx

denote the Dirac measure onR at x ∈ R. Schwartz [35] showed that if f ∈ C.R;C/
is mean-periodic withf ? ¼ = 0, then f is a limit of finite linear combinations of
functions of the typef½.t/ = tke�½t , such thatf½ ? ¼ = 0. In Laird [22] it is shown
that if f ∈ C.R;C/ is mean-periodic andg is an exponential polynomial, that is,
g.t/ = p.t/e�½t , wherep.t/ is a polynomial, thenf g is mean-periodic.
.2/ Let G be a compact abelian group. Then every character ofG is mean-periodic,
as observed in Rana [33].
.3/ For X=C, mean-periodic functions on various locally compact groups have been
analysed by various authors (see [2, 3, 5, 7, 10, 11, 17, 19, 20, 23, 24, 22, 29, 30, 36,
38, 37, 39]).
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In general setting, even whenG = R andX is an arbitrary Banach space, nothing
seem to be known.

NOTE. The following questions still remain unanswered:

.1/ Let V be a closed translation invariant subspace ofC.R; X/. DoesV always
include a monomial exponential? IsV the closed linear span of the monomial
exponentials in it?
.2/ The problem of finding solutions forf ?¼ = g, for a given¼ andg, seems to be
much more difficult even for the caseG = R andX = C: Some particular situations
are analysed in [31] and [32]. Another particular case is given in the next theorem.

THEOREM 2.12. For a given¼ ∈ Mc.R/ andg a finite sum of exponential polyno-
mials inC.R/, there existsf ∈ C.R/ such that f ? ¼ = g.

PROOF. First suppose thatg is an exponential polynomial. Letg.t/=e�½t
∑n

k=0 aktk.
Let Z.¼̂/ = {½ ∈ C : ¼̂.½/ = 0}. We say

.i/ ½ ∈ Z.¼̂/ is of multiplicity 0 if ¼̂.½/ 6= 0.
.ii/ ½ ∈ Z.¼̂/ of multiplicity m ∈ N, if ¼̂.½/ = 0; ¼̂′.½/ = 0; : : : ; ¼̂.m−1/.½/ = 0

and¼̂.m/.½/ 6= 0.

Let m be the multiplicity of½ ∈ Z.¼̂/. Define f .t/ :=∑n
k=0 bktm+ke�½t , where

bn = .�/m(n+m
m

)
¼̂.m/.½/

an; bn−1 =
[

an−1 − bn

(
m+n
m+1

)
¼̂.m+1/.½/

.�/m+1

]
.�/m(

m+n−1
m

)
¼̂.m/.½/

; : : : ;

b0 =
[

a0 − b1

(m+1
m+1

)
¼̂.m+1/.½/

.�/m+1
− b2

(m+2
m+2

)
¼̂.m+2/.½/

.�/m+2
− · · ·

−bn

(m+n
m+n

)
¼̂.m+n/.½/

.�/m+n

]
.�/m(m

m

)
¼̂.m/.½/

:

A simple computation off ? ¼ gives f ? ¼ = g. In the general case, suppose that
g = ∑p

j =1 gj , wheregj .t/ = pj .t/e�½ j t , for every j and½k 6= ½ j for k 6= j . Let f j

be the exponential polynomial function corresponding togj obtained as in the first
case, that is,f j ? ¼ = gj . Then f = ∑p

j =1 f j is a solution of the given convolution
equation.

3. Mean-periodic functions onG = T

We shall consider integrals ofX-valued functions with respect to scalar measures in
the sense of Bochner integral, and the integrals of scalar valued continuous functions
with respect toX′-valued measures in the sense similar to that of Bochner discussed
in the last section.
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DEFINITION 3.1. Let f ∈ C.T; X/ and¼ ∈ M.T; X′/. For everyn ∈ Z,

f̂ .n/ :=
∫
T

z−n f .z/dz and ¼̂.n/ :=
∫
T

z−nd¼.z/

are called thenth-Fourier coefficientof f and¼, respectively.

For f ∈ C.T; X/, let −. f / denote the closed translation invariant subspace gener-
ated by f .

PROPOSITION3.2. f ∈ C.T; X/ is mean-periodic if and only if−. f / 6= C.T; X/.

PROOF. Follows from the fact that the dual ofC.T; X/ is M.T; X′/.

LEMMA 3.3. For f ∈ C.T; X/ and¼ ∈ M.T; X′/, the following hold:

.i/ f ? ¼ is a uniformly continuous function onT;
.ii/ . f ? ¼/̂ = 〈 f̂ .n/; ¼̂.n/〉.

PROOF. (i) Follows from the facts thatf is uniformly continuous,¼ has finite
variation and that|. f ? ¼/.z/ − . f ? ¼/.w/| ≤ ∫

T
‖ f .zs/− f .ws/‖ dV¼.s/.

(ii) SinceT is compact,f is uniformly continuous onT. Let žk > 0 be such that
žk → 0 ask → ∞. Since the metric onT is invariant under rotation, there exist
finite Borel partitionsPk of T = tBki such that ifzki ;wki ∈ Bki , then‖ f .zkiw/ −
f .wkiw/‖ < žk whenever|w| = 1. Now

. f ? ¼/̂.n/ =
∫
T

. f ? ¼/.z/z−n dz =
∫
T

∫
T

f .zw/d¼.w/z−n dz(14)

=
∫
T

lim
k→∞

(∑
j

〈 f .zwk j /; ¼.Bkj /〉
)

z−n dz:

Since f is continuous onT, f .T/ ⊂ B.0; r / = r B.0;1/ for somer > 0. We have∣∣∣∣∣
∑

j

〈 f .zwk j /; ¼.Bkj /〉
∣∣∣∣∣ ≤

∑
j

|〈 f .zwk j /; ¼.Bkj /〉|

≤
∑

j

r V¼.Bkj / ≤ r V¼.T/ ≤ rC:

Applying dominated convergence theorem in (14) for the functions

z 7→
∑

j

〈 f .zwk j /; ¼.Bkj /〉z−n
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we obtain

. f ? ¼/̂ .n/ = lim
k→∞

∫
T

∑
j

〈
f .zwk j /; ¼.Bkj /

〉
z−n dz

= lim
k→∞

∑
j

∫
T

〈
f .zwk j /; ¼.Bkj /

〉
z−n dz

= lim
k→∞

∑
j

∫
T

〈
z−n f .zwk j /; ¼.Bkj /

〉
dz:

Now apply change of variable formula for the functionz 7→ 〈z−n f .zwk j /; ¼.Bkj /〉,
to get

. f ? ¼/̂ .n/ = lim
k→∞

∑
j

∫
T

〈(
z

wk j

)−n

f .z/; ¼.Bkj /

〉
dz

= lim
k→∞

∑
j

〈∫
T

(
z

wk j

)−n

f .z/dz; ¼.Bkj /

〉

= lim
k→∞

∑
j

.wk j /
−n〈 f̂ .n/; ¼.Bkj /〉

=
〈

f̂ .n/; lim
k→∞

∑
j

.wk j /
−n¼.Bkj /

〉
= 〈 f̂ .n/; ¼̂.n/〉:

COROLLARY 3.4. For f ∈ C.T; X/ and¼ ∈ M.T; X′/, f ? ¼ = 0 if and only if
〈 f̂ .n/; ¼̂.n/〉 = 0 for all n ∈ Z.

PROOF. Follows from Lemma3.3 and the uniqueness of Fourier-Stieltjes coeffi-
cients of scalar valued functions onT.

PROPOSITION3.5. Let f ∈ C.T; X/. Then¦. f / = {Þzn f̂ .n/ : f̂ .n/ 6= 0 and0 6=
Þ ∈ C}.

PROOF. First we show that{Þzn f̂ .n/ : f̂ .n/ 6= 0} ⊆ ¦. f /. Let¼ ∈ M.T; X′/ be
such that¼.−. f // = 0. Then f ?¼ = 0, since−. f / is translation invariant. Hence by
Corollary3.4, 〈 f̂ .n/; ¼̂.n/〉 = 0 for everyn. Thus¼.Þzn f̂ .n// = Þ〈 f̂ .n/; ¼̂.n/〉 = 0,
and by Corollary3.4, Þzn f̂ .n/ ∈ −. f /. HenceÞzn f̂ .n/ ∈ ¦. f /.

On the other hand, letzmx ∈ ¦. f /. To show thatx = Þ f̂ .m/ for some scalarÞ.
Let x′ ∈ X′ be such thatx′. f̂ .m// = 0. Letd¹.z/ = zmx′dz. Then

¼̂.n/ =
{

x′ if n = m;

0 if n 6= m:
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Thus by Corollary3.4, f ? ¹ = 0. Thereforezmx ? ¹ = 0 and hence〈x; ¹̂.m/〉 = 0,
that is,〈x; x′〉 = 0. Thus forx′ ∈ X′, 〈 f̂ .m/; x′〉 = 0 implies〈x; x ′〉 = 0. Therefore
x = Þ f̂ .m/ for someÞ ∈ C. This completes the proof.

PROPOSITION3.6. Let f ∈ C.T; X/. Then¦. f / = ∅ if and only if f = 0.

PROOF. By Proposition3.5, it suffices to show that̂f .n/ = 0, for everyn ∈ Z if
and only if f = 0. Using the uniqueness of Fourier coefficients for scalar valued
functions we obtain, for everyn ∈ Z andx′ ∈ X′,

f̂ .n/=0 ⇔ 〈x′; f̂ .n/〉=0 ⇔
〈
x′;
∫
T

f .z/z−n dz

〉
=0 ⇔

∫
T

〈x′; f .z/〉z−n dz=0

⇔ .x′ ◦ f /̂ .n/=0 ⇔ x′ ◦ f =0 ⇔ f =0:

THEOREM 3.7. For a complex Banach spaceX 6= C the following hold:

.i/ M P.T; X/ = C.T; X/.
.ii/ For every0 6= ¼ ∈ M.T; X′/, {0} 6= M P.¼/ 6= C.T; X/.

PROOF. (i) Let f : T → X be a non zero continuous function. Thenf̂ .n0/ 6= 0
for somen0. Chosex′ ∈ X′ such thatx′ 6= 0 and〈x′; f̂ .n0/〉 = 0. Define¼.E/ :=(∫

E zn0dz
)

x′, for everyE ∈ BT. Then¼ ∈ M.T; X′/ and

¼̂.n/ =
{

x′ if n = n0;

0 if n 6= n0:

Thus . f ? ¼/̂.n/ = 〈 f̂ .n/; ¼̂.n/〉 = 0, for everyn ∈ Z. Hence it follows from
Corollary3.4, f ? ¼ = 0.

(ii) Let 0 6= ¼ ∈ M.T; X′/. Then¼̂.n0/ 6= 0 for somen0. Let 0 6= x ∈ X be such
that 〈¼̂.n0/; x〉 = 0, andy ∈ X be such that〈¼̂.n0/; y〉 6= 0. Define f; g : T → X,
by f .z/ = zn0x andg.z/ = zn0 y. Then

f̂ .n/ =
{

x if n = n0;

0 if n 6= n0

and ĝ.n/ =
{

y if n = n0;

0 if n 6= n0:

Therefore,〈 f̂ .n/; ¼̂.n/〉 = 0 for alln ∈ Z and.g?¼/̂.n0/ = 〈ĝ.n0/; ¼̂.n0/〉 6= 0. Thus
f is mean-periodic with respect to¼ andg is not mean-periodic with respect¼.

REMARK. .1/ Theorem3.7(i) is not true whenX = C. For instance, the function
f : T → C defined by f .z/ := ∑∞

−∞ anzn, z ∈ T, wherean ∈ C, an 6= 0 for everyn
and

∑∞
−∞ |an| < ∞ is not mean-periodic.
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.2/ Let G be a locally compact abelian group andX a complex Banach space. A
function f ∈ C.G; X/ is said to bealmost periodicif the set of all translates off is
relatively compact inC.G; X/. Every f ∈ C.T; X/ is almost periodic and ifX 6= C,
then everyf ∈ C.T; X/ is mean-periodic. WhenX = C, there are complex valued
continuous functions on the circle groupT which are not mean-periodic.

We have the following result for spectral analysis and spectral synthesis forT.

THEOREM 3.8. The following hold:

.i/ Let x ∈ X, x 6= 0, andn0 ∈ Z. Then−.zn0 x/, the closed translation invariant
subspace generated byzn0 x, does not contain any non-zero proper closed translation
invariant subspace ofC.T; X/.
.ii/ Every non-zero closed translation invariant subspaceV of C.T; X/ contains

an exponential, that is, spectral analysis holds inC.T; X/.
.iii / The linear span of the exponentials in every closed translation invariant sub-

spaceV of C.T; X/ is dense inV , that is, spectral synthesis holds inC.T; X/.

PROOF. (i) Let V1 be a non-zero closed translation invariant subspace ofC.T; X/
such thatV1 ⊆ −.zn0 x/. Then for f ∈ −.zn0 x/, f̂ .n0/ = cx for some 06= c ∈ C

and f̂ .n/ = 0 if n 6= n0. To show V1 = −.zn0 x/, let ¼ ∈ M.T; X′/ be such
that¼.V1/ = {0}. Then〈¼̂.n/; x〉 for everyn. In particular〈¼̂.n0/; x〉 and hence
¼.V / = {0}. HenceV1 = −.zn0 x/.

(ii) Choosen0∈Z and f ∈V such that f̂ .n0/6=0. We will show thatzn0 f̂ .n0/∈V .
For, let¼ ∈ M.T; X′/ be such that¼.V / = {0}. SinceV is translation invariant and
¼.V / = {0}, f ? ¼ = 0. This implies〈 f̂ .n0/; ¼̂.n0/〉 = 0. Thuszn0 f̂ .n0/ ? ¼ = 0.
Hencezn0 f̂ .n0/ ∈ V .

(iii) Let V be closed translation invariant subspace ofC.T; X/. LetV0 be the closed
linear span ofzn f̂ .n/, f ∈ V. Then by (ii),V0 ⊆ V . Let f ∈ V . Let¼ ∈ M.T; X′/
such that¼.V0/ = 0. Then〈 f̂ .n/; ¼̂.n/〉 = 0, for everyn ∈ Z. Thus f ? ¼ = 0.
Therefore,¼. f / = 0.

COROLLARY 3.9. For f ∈ C.T; X/ and¼ ∈ M.T; X′/, the following are equiva-
lent:

.i/ f ? ¼ = 0.
.ii/ f is a limit of finite linear combinations of functionsznx which satisfy the

equationznx ? ¼ = 0.

PROOF. First observe that for a given¼, M P.¼/ = { f ∈ C.T; X/ : f ? ¼ =
0} is a closed translation invariant subspace ofC.T; X/. The result follows from
Theorem3.8(iii).



384 P. Devaraj and Inder K. Rana [22]

4. Some results for general groups

As mentioned earlier, problem of analysing mean-periodic functions, the problem of
spectral analysis and spectral synthesis seems difficult to answer for general groups.
However, it is not difficult to show that ifG is compact andX = C then every
nontrivial closed translation invariant subspaceV of C.K ;C/ includes exponentials
and the linear span of exponentials inV is dense in it. Hence every mean-periodic
(scalar valued) function on a compact group is a limit of finite linear combination of
exponentials.

For G arbitrary locally compact abelian, andX = C we have the following: recall,
� = {! : G → C

∗ : ! ∈ C.G/ and!.g1 + g2/ = !.g1/!.g2/}.
THEOREM 4.1. .i/ Every! ∈ � is mean-periodic.
.ii/ LetG be an infinite locally compactT1 abelian group. Then every exponential

polynomial onG is mean-periodic.
.iii / Let M P.G/ be the set of all mean-periodic functions onG. ThenM P.G/ is

dense inC.G/ if and only ifG is not finite.

PROOF. (i) Clearly, every translate!g of ! is a constant multiple of!, and hence
every finite linear combination of translates of! is a constant multiple of!. Therefore
the closed translation invariant subspace−.!/ is a one dimensional subspace ofC.G/.
Thus−.!/ 6= C.G/, if G is non-trivial.

(ii) Let f be an exponential polynomial onG,

f .g/ :=
(∑

Þ

cÞa1.g/
Þ1a2.g/

Þ2 · · · am.g/
Þm

)
!.g/;

whereÞ = .Þ1; : : : ; Þn/,Þi ∈ N, cÞ are complex constants anda1; : : : ;am are additive
functions. LetV = L S{a1.g/þ1a2.g/þ2 · · · am.g/þm!.g/ : þ j ∈ Z+; þ j ≤ Þ j for 1 ≤
j ≤ m}. It is easy to see thatf ∈ V andV is a finite dimensional translation invariant
subspace ofC.G/. SinceV is finite dimensional, it is closed and it follows that
−. f / ⊆ V . But C.G/ is infinite dimensional asG is not finite. Hence−. f / 6= C.G/.

(iii) Suppose thatG is finite,G = {g1; g2; : : : ; gn}. Let f ∈ C.G/ and¼ ∈ Mc.G/.
Let¼.gi / = ci . Then f ? ¼ = 0 for a non-trivial¼ if and only if∣∣∣∣∣∣∣∣∣

f .g1 − g1/ f .g1 − g2/ · · · f .g1 − gn/

f .g2 − g1/ f .g2 − g2/ · · · f .g2 − gn/
:::

:::
:::

f .gn − g1/ f .gn − g2/ · · · f .gn − gn/

∣∣∣∣∣∣∣∣∣
= 0:

The columns of the above matrix are permutations of[ f .g1/; f .g2/; : : : ; f .gn/].
Thus f is mean-periodic if and only if. f .g1/; f .g2/; : : : ; f .gn// is a root of some
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fixed polynomialP in the variablesz1; z2; : : : ; zn. The roots of this polynomialP
form a closed setZ.P/ in Cn of 2n-dimensional Lebesgue measure zero. Therefore
Z.P/ is not dense inCn. But M P.G/ = Z.P/. HenceM P.G/ is not dense inC.G/.

Conversely, suppose thatG is not finite. LetE P.G/ be the set of all exponential
polynomials inC.G/. By (ii), E P.G/ ⊆ M P.G/, that is,0 ⊆ � ⊆ E P.G/ ⊆
M P.G/. Moreover� separates points ofG. Since the pointwise product of finite
number of exponentials is again an exponential, it is easy to see that product of two
exponential polynomialsf andg is a finite sum of exponential polynomials and hence
−. f g/ is finite dimensional. Therefore the algebraA.E P.G//, generated byE P.G/,
is contained inM P.G/, that is,A.E P.G// ⊆ M P.G/. Hence by Stone Weierstrass
theorem ([9]) A.E P.G// is dense inC.G/. SinceA.E P.G// ⊆ M P.G/, M P.G/
is dense inC.G/.

COROLLARY 4.2. If G is a finiteT1 topological abelian group, then{0} 6= M P.G/
6= C.G/.

LEMMA 4.3. Let G be a locally compact abelian group having no nontrivial
compact subgroups. Let̂G be the dual group ofG. Then for ¼ ∈ Mc.G/,
½0.{ ∈ 0 : ¼̂. / = 0}/ = 0.

PROOF. Refer [6].

THEOREM 4.4. If G does not have compact elements, then{0} 6= M P.G/ 6= C.G/.

PROOF. Let f ∈ C.G/ be compactly supported. By Lemma4.3, f is not mean-
periodic. ThusM P.G/ 6= C.G/.

As we have pointed earlier, the problem of spectral synthesis does not hold for every
closed translation invariant subspaceV of C.R2;C/. However, with some conditions
on V this is true. First we prove the following lemma.

LEMMA 4.5. The following hold:

.i/ Let ½1; ½2; : : : ; ½n be distinct complex numbers andm1;m2; : : : ;mn ∈ N.
Then the set{e�½ j t; te�½ j t; : : : ; tmj e�½ j t : 1 ≤ j ≤ n} ⊆ C.R/ is linearly independent
overC.
.ii/ Let ½1; ½2; : : : ; ½n; �1; �2; : : : ; �n be complex numbers and for1 ≤ j; k; l ≤

n; Þl j ; þkr be non-negative integers. Then{tÞl j

1 tþl j

2 e�.½l t1+�l t2/ : 1 ≤ l ; j ≤ n} is a linearly
independent subset ofC.R2/ overC if .½ j ; � j / 6= .½k; �k/ or .Þl j ; þl j / 6= .Þlk ; þlk/.

PROOF. (i) Without loss of generality, we may assume that

Im.½n/ = max
1≤ j ≤n

Im.½ j /;
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where Im denotes the imaginary part of a complex number. Then Im.½n/−Im.½ j / > 0
for 1 ≤ j ≤ n − 1. Now forai j ∈ C,

n∑
j =1

(
a0 j e

�½ j t + a1 j te
�½ j t + · · · + amj j t

mj e�½ j t
) = 0 H⇒

n−1∑
j =1

(
a0 j e

�.½ j −½n/t + a1 j te
�.½ j −½n/t + · · · + amj j t

mj e�.½ j −½n/t
)+ pn.t/ = 0;

wherepn.t/ = an0 + an1t + · · · + anmn
tmn = anmn

.t − þ1/.t − þ2/ · · · .t − þnm
/, for

someþ1; þ2; : : : ; þnm
∈ C. Now ast → −∞, tke�.½ j −½n/ → 0 for every j 6= n. This

impliesanmn
= 0, since ast → −∞, pn.t/ 6→ 0 if anmn

6= 0. Similarly by repeating
the same argument one can easily show thatai j = 0 for all i; j .

(ii) Case (i):½1; ½2; : : : ; ½n are distinct. Foral j ∈ C,

n∑
l=1

n∑
j =1

(
al j t

Þl j

1 tþl j

2 e�.½l t1+�l t2/
)

= 0 H⇒
n∑

l=1

n∑
j =1

(
.al j t

þl j

2 e��l t2/tÞl j

1 e�½l t1
)

= 0:

By (i), this impliesai j = 0 for all i; j .
Case (ii):½i = ½ j for somei and j . In this case rearrange the terms of the above

expression by collecting the distinct exponential monomials int1. By the hypothesis,
the coefficients of the exponential monomial int1 are finite linear combination of
exponential monomials int2. By applying (i) twice, namely, firstt1 variable and then
t2 variable we getai j = 0 for all i; j .

THEOREM 4.6. LetV be a closed translation invariant subspace ofC.R2/ satisfying
any one of the following conditions:

.i/ V is finite dimensional.
.ii/ V is rotation invariant.
.iii / V = −¼ := { f ∈ C.R2/ : f ? ¼ = 0} for some¼ ∈ Mc.R

2/.

ThenV contains an exponential.

PROOF. Case (i):V is finite dimensional. Letf ∈ V and f 6= 0. By Theorem1.9,
f is of the form f = ∑m

j =1 pj .t1; t2/e�.½ j t1+� j t2/, wherepj is a non-zero polynomial in
t1; t2 and.½ j ; � j / 6= .½k; �k/ for j 6= k. Let¼ ∈ Mc.R

2/ be such that¼.V / = {0}.
We show that¼.e�.½ j t1+� j t2// = 0. SinceV is translation invariant,f ? ¼ = 0. Write
f as a linear combination of elements in{tÞl j

1 tþl j

2 e�.½l t1+�l t2/ : 1 ≤ l ; j ≤ n}. Let
ck1t

Þ0
1 t

þk1
2 e�.½ j t1+� j t2/; ck2t

Þ0
1 t

þk2
2 e�.½ j t1+� j t2/; : : : ; ckm

tÞ0
1 tþkm

2 e�.½ j t1+� j t2/ be the terms contain-
ing e�.½ j t1+� j t2/ and the largest degree term oft1, namelytÞ0

1 , whereck1; ck2; : : : ; ckm
are

non-zero scalars. Also,f ? ¼ has the same representation and the terms contain-
ing tÞ0e�.½ j t1+� j t2/ are ck1¼̂.½ j ; � j /t

Þ0
1 t

þk1
2 e�.½ j t1+� j t2/, ck2¼̂.½ j ; � j /t

Þ0
1 t

þk2
2 e�.½ j t1+� j t2/; : : : ;
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ckm
¼̂.½ j ; � j /t

Þ0
1 tþkm

2 e�.½ j t1+� j t2/. Since f ? ¼ = 0 andckj
6= 0, ¼̂.½ j ; � j / = 0, by

Lemma4.5. Therefore¼.e�.½ j t1+� j t2// = 0. Thuse�.½ j t1+� j t2/ ∈ V.
Cases (ii) and (iii): V is rotation invariant, orV = −¼. By Theorem1.7 and

Theorem1.8, V contains an exponential polynomial. It follows easily from the proof
of (i) that V contains an exponential.
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