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Abstract

The notions of limits and colimits are studied in the categorg€tfalgebras. It is shown that limits and
colimits of diagrams oC*-algebras are stable under tensor product by a fedlgebra, and crossed
product by a locally compact group.
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1. Introduction

In a recent paper, Pedersen hatated a systematic study of pullback and pushout
constructions and their intrinsic connection with extensions and free products in
algebra theory @]). In this paper we investigate the more general notions of limits
and colimits in the category @@ *-algebras, which include pullback and pushout as
special cases. Our main results TheotzMand Theorend.2 are generalization of

[6, Theorem 4.8 and Theorem 6.3] to colimits of diagram€otfalgebras. Namely,
assuming some restrictions, colimits of diagramStfalgebras are shown to be stable
under tensoring by a fixe@*-algebra, and under crossed product with a fixed group.
To prove these results we need to assume that the diagrams are connected and that t
connecting morphisms are proper. However, this restriction is not needed in the case
of limits. Examples of connected diagrams are pullback, pushout, and direct limits.
The paper is organized as follows. In Sectiyrwe gather notations, terminologies,
and several constructions from category theory. In particular, the notions of limits
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and colimits which are the main subjects of the paper are discussed extensively. The
colimit of a diagram is seen to be a generalized amalgamated free product of the
C*-algebras appearing in the diagram , while the limit @*asubalgebra of the direct
product of the family. Sectio, is devoted to tensor products and our main theoremin
this section (Theorei®.3) shows that if a diagram @ *-algebras is tensored (maximal
tensor product) by €*-algebra, then the colimit of the resulting diagram is obtained
simply by taking the tensor product of the colimit of the original diagram with the
tensoringC*-algebra. In Sectiod we prove a similar theorem (Theoreh®) for the
full crossed product by a locally compact group when the algebras in the diagram are
equipped with an action of a locally compact group. The stability of the limit of a
diagram under tensor product (minimal and maximal) and crossed product (full and
reduced) is proved in Secti@gh In the case of minimal tensor product or the reduced
crossed product we need the tensor@igalgebra or the group to be exact (c9])[
Throughout,C*-alg denotes the category 6f-algebras. The maps in this category
arex-homomorphisms o€*-algebras.

As alluded to, this work was motivated by the recent woi)(pf Pedersen on
pullbacks and pushouts. Much of the ideas and techniques used in this paper are base
on that article.

2. Constructions

In this section we introduce our notations, definitions and several constructions.
The notions of limit and colimit in the category 6f-algebras are given. As well,
equalizers and coequalizers@t-alg and their relation with limits and colimits are
studied. We show that in the categdy-alg both limits and colimits exist. The
existence of pullbacks and pushouts then follow as special cases. Our main referenc
for categorical results is4]).

DerFINITION 2.1. Let | be a small (indexed) category with a set of objects and a
set of morphisms. Aliagram D, in C*-alg, indexed by, is a functorl — C*-alg.
In other words, for eache |, A(i) = A and for each — j in I, there is a map
AL A in C*-alg. Fori, j € I, i < j would mean that there exists a map> ]
in the categonyt including the identity maps.

For example anZ*-algebraC determines a constant diagram, which has the same
valueC foralli € 1.

DEFINITION 2.2. A coconeis a map from a diagrar® to a constant diagrar@
(called the vertext), which consists of a family of mg@s —> C};.,, denoted by
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¢t : D — C such that the triangle

ojj

Cc

A A

commutes, where;; is the induced map from— j in I.

A coconeD - C with vertexC is universalto D when for every other cocone
f : D — C’'thereisaunique map : C — C' with yy; = f; foralli € | asinthe
following commutative diagram

(g/

The universal cocone, if it exists, is called tbelimit of the diagramD and is
denoted byC = lim D. For example, ifl is the category— e —, then the colimit
is called apushout and whenl is e = e, the colimit is called aoequalizewhere
we have indicated only the nonidentity maps). The dual notion of colintinis. A
cone is a diagram map from a constant diag@arno some other diagrar®, which
consists of a family of mapgC _f A}, denoted byf : C — D, such that the
triangle

iel’

C
/N
A——aA

commutes, where;; is the induced map from— j in I.

The universal cone, if it exists, is called thit of the diagramD and is denoted
by C = lim D. For example, ifl has two elements as a discrete category, then a
diagramis just a pair d€*-algebras and a limit of that diagram is the product of these
C*-algebras. The limits of the category e < is called a pullback and that ef= e
anequalizer

We show thatC*-alg is closed under colimits. Given a famify }ic, of C*-
algebras, theoproductof the family is the universaC*-algebraA such that there
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exists a morphism from eadh into A compatible with the connecting morphisms of
the diagram and iB is anothelC*-algebra with these properties, then there exists a
unique morphism fronA to B making the relevant diagrams commutative.

LEMMA 2.3. Let{A}ic, be any family ofc*-algebras. Then the coproduct of this
family exists.

PrOOF. Let.Z be the set of finite subsets bf Then, forF € .Z, it is easy to see
that the coproduct ofA¢ } ¢ ¢ is just the free product oA for f € F. If we denote
these free products b&: = [ [;.¢ A+, then we get a directed system@f-algebras
{Ar}res. Now the directed limit of this new family af*-algebras is the coproduct
of the family {A }ic; which we denote byA = [],_, A;. Clearly, there exists an
embedding from each; into A =[];_, Ai. On the other hand, if for eaéhe | there
is a morphisnmy; from A; to anotheiC*-algebraB, then for each € .Z, sinceAr
is finite coproduct, there exists a unique m@pfrom Ar to B making the triangles
commute:

A — Ar

o ‘,BF

B

Now sinceA s the directed limit ofAr’s, there is a uniqgue mapfrom Ato B making
the following diagram commutative

Ar —— Ar —— A
\
\ﬂ/
}

B

Therefore, theC*-algebraA has the universal property of coproduct. O

REMARK 2.4. The coproduct of a familyA }i, is denoted by [. Ai. If D={A}ic,
is a diagram oC*-algebras] [, _; A;, will denote the coproduct of the famifyA; }i -
obtained by adding for eadh< j one copy ofA; to the original family. Similarly,
[]i-; A denotes the product of the famify };-; obtained by adding for eadh< j
one copy ofA; to the original family.

Next we show that ifC*-alg every pair of parallel arrows have a coequalizer.

LEMMA 2.5. Let A% B be parallel maps irC*-alg. Then the coequalizer and
the equalizer off andg exist.
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PrOOF. We show that the diagram

A== B—"— B/{T(X) - g(0)

where (f (x) — g(x)) denotes the closed ideal & generated by the differences
f(x) — g(x) andx is the canonical surjection is the coequalizer of the two maps.
Obviously,7f = 7g. Now if B L Dis any map fromB to D such thahf = hg,
then we can defing : B/(f(X) — g(X)) - Dbyy(b+ 1) =h(b), forallb € B. It

is easy to see that the maps well defined and unique. Therefore the above diagram
is a coequalizer. Itis clearth& = {x € A: f(X) = g(x)} is the equalizer of the
two mapsf andg. O

ExamvPLE. The Calkin algebra is a coequalizer for the embeddirig ) — B(H)
and the zero map. Similarlgach quotient is a coequalizer.

THEOREM 2.6. In C*-alg every diagram has a colimit.

ProOOF. Let D= {A}ic; be a diagram irC*-alg, wherel is an indexed category.
Consider the following diagram

A—1 A

[l A == Llia A

A —a— Ay

Since[ [;_; A is a coproduct, there exists a unique miamaking the upper square
commute and a unique mapsuch that the lower square commutes. By Lenihia
there is a coequalizer diagram for the two mdpsndg,

f

]_[igj A G Lo A ——C.

Now we will show thatC is in fact the colimit of the diagran. The mapn
composite with the injections gives maps;, = ny; : A, — C for eachi. Sincer is
a coequalizer,

o = i = T =7Tfti =Tl = 0j.

HenceD 2> C is a cocone. ID 5> E is any other such cocone, its maps > E
factor through a unique map[._, A’ — E from the coproduct. In other words,

iel
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ki =y foralli. Sincey is a coconekf = kg. And = being a coequalizer, there
exists a unique - E suchthasz = k. Therefore

Soi =8¢y = ki =y,

for alli. Henceso = y, that is,y factors throughs. This proves thatC, o) is
a universal cocone. ThereforéZ, o) is colimit for the diagramD, that is,C =
Iiin> D. Il

COROLLARY 2.7. In C*-alg pushouts exist.

PrROOF. Since a pushout is the colimit of a diagrasn ¢ —, by Theoren?.6, it
exists inC*-alg. O

LEmMMA 2.8. In C*-alg, every coequalizer is a pushout and conversely every pushout
is a coequalizer.

PROOF. Let A% B —— Cbe a coequalizer diagram@r-alg. Then the follow-
ing diagram is pushout

where(lf) and (?) are the unique induced maps from the coproduct (free product)
AxB. If x,y: B — X are two maps withx() = y(9), thenxf = ygandx = y.
But 7 is coequalizer, so there exists a unique Map> X such thatyr = x = y.
Hence the diagram is pushout. The converse follows dually. O

The following theorem is the dual of Theorénh®, which shows tha€*-alg is also
closed under limits.

THEOREM 2.9. Any diagramD in C*-alg has a limit.

PrOOF. By LemmaZ2.5, the equalizer of any two parallel maps existsGtralg.
If we show that the product of any family @*-algebras exists, then the limit of
the diagramD would be the equalizer of the two parallel maps betwggn, A
and ]_[iSj A, and the proof is the dual of Theoret6. Given{A }i,, a family of
C*-algebras, the product of the family is simply the direct product denotgd, b4 .
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This is theC*-algebra of functions defined dnsuch thatf (i) € A andi — || f(i)]l
is bounded, under pointwise operations. Th@isalgebra has also universal property
of product. For, iffC = A }SE' is a family of maps from &*-algebra C toA;, then
we define the unique map — [, A by y(c) = f, wheref (i) = 7; (c). O

In fact, an explicit description of the limit of a diagraB@({A }ic;) as aC*-
subalgebra is given by

Li_D={f e[[A: @ =ay(fin, a :AHA}.

COROLLARY 2.10. In C*-alg pullbacks exist.

PrOOF. Since a pullback is the limit of a diagram e <—, by Theoren?.9it exists
in C*-alg. O

LeEmmMA 2.11. In C*-alg every equalizer is a pullback and conversely a pullback is
an equalizer.

PROOF. Let E — A% Bbe an equalizer diagram@i-alg. Then the following
diagram is pullback

—e>A

(.9

>—2—m

0 Ax B

wherel is the identity mapA S A Ifab:Y — Aaretwo maps fronY to A
such that(l, g)a = (I, f)b, thenga= fbanda = b. SinceE is an equalizer, there
exists a unique maj§ — E such thaiex = a = b. Therefore the above diagram is
pullback. The converse follows dually. O

3. Tensor products

In this section we prove that colimit diagrams are stable under maximal tensor
product by a fixedC*-algebraY. Throughout this pape® will denote the maximal
tensor product. Recall that a morphism: A — B betweenC*-algebras is said
to be proper if for any approximate unit;) of A, (@(u;)) is an approximate unit
of B. For aC*-algebraA, M (A) denotes the multiplier algebra éf Itis easy to see
that a proper morphism : A — B extends to a morphism froml (A) into M (B).

Let D = {A}ic; be a diagram oC*-algebras. ThenD ® Y denotes the diagram
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obtained by taking the maximal tensor product of the membef3 by Y. Given a
mapa : A — B, the induced morphisnyy ® i from A® Y into B ® Y will always

be denoted bw. The case of minimal tensor product is considered at the end of the
next section along with the reduced crossed product.

DerINITION 3.1. A diagram, D, of C*-algebras is said to be connected if given
A, A; € D, at least one of the following holds
(i) there exists a morphism; : A, — Aj;
(i) there exists a morphism; : A; — Aj;
(iii) there existk € | and morphisms;, : Ai — A¢ andaj, : Aj — Ay
(iv) there existk € | and morphismsy; : A — A andey; : A — A;.

For A, A;, Acin D with morphismsy : Ac — A, o : Ac = Aj let A be the
corresponding pushout given by the commutative diagram

Ac—— A

'

Al — A

TheC*-algebraA; may not be inD. Denote byD the diagram obtained by adding all
such pushouts t®, that is, the pushout completion &Y. The pullback completion
is defined similarly and denoted Y. With these conventions we have the following
lemma whose proof is routine and omitted.

LEMMA 3.2. Let D be a diagram ofc*-algebras. Then,
(i) lim D = lim D;

— —
(i) limD =Iim D.

“— <«

THEOREM 3.3. Let D be a connected diagram €f*-algebras such that the con-
necting morphisms are proper. Then, for @&xalgebraY, Ii_)m(D@Y) = I|_r>n D®Y.

PROOF. Let A = Il_)m D. We wantto prove thaA® Y = Ii_)m(D ®Y). Firstassume

thatY is a unitalC*-algebra. For eache |, lety; : A ® Y — Z be a morphism
into theC* algebraZ such that for all, j the diagram

ARY ————— AQY

\/
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commutes, where;; = o;; ® |. Restrict eacly; to A to get commuting diagrams

A—D A
N A
Z

Hence, there exists a unique morphism A — Z such that the triangles

are commutative, thatig; = o og; forall j € |, wherey, : A; — Aisthe injection.
Next, consider the diagrams

AQY—— -~ AQY
\/

whereZ;; is theC*-subalgebra oZ generated bwj (AU Vi (A ®Y). Since

ajj is proper, an application of §f Lemma 4.4]) shows that there exists a map
Vi - M(A ® YY) — M(Z;) C M(Z), an extension off;, where the last inclusion
follows from ([5, 3.12.12]). Now, in view of the inclusiolf =1 @ Y € M(A ®Y)

we obtain morphismg; = |y : Y — M(Z). We show thap, (y) is independent of

i foreachy € Y. Giveni, j € I, using the connectedness of the diagfanthere are
three cases. There exists : AL — A, (or from A; to Aj), or there exist& € | and
morphismsy; : Ay — Acandaj @ Aj — A, Oray : Aqc = A andoy; : A = Aj.
Since the morphisms;;'s are proper we obtain commuting diagrams

MA®Y) ————— M(A; ®Y)

S~ A

M(Z)
and
M(A ®Y) = M(A®Y) =~ M(A ®Y)

SO

M(Z)



106 M. Khoshkam and J. Tavakoli [10]

The claim in the first two cases follows easily from the commutativity of the above
diagrams. The third case is reduced to the previous cases by using Leé@nmko

see thap (y) commutes withr (a) for eachy € Y anda € A, it suffices to verify this

for a € A;. But,

op@)p(y) =v%@DYy (1Y) =vi(@y).
On the other hand,
p(Y)o(p@) = (o(p@)p(y) = W@ y)N" =vi@ey).

Hence,p(y) commutes witho (¢(A)). Sincel J, i (A) generated it follows that
for eachy € Y, p(y) commutes withs (A). There exists, by { Proposition 4.7]), a
unique morphism : AQ Y — Zsuchthat(a® y) = o(a)p(y). To complete the
proof we must show that the triangles

A®Y - A

commute, that isy; (X) = (g (X)). Itis enough to check this for the elements of the
formaye A QY.

T(@@®y) =t@@ y) =oc(@g@)p(y)
=vi@DYi(1l®y) =v@®y).

Finally, we consider the non-unital case. Given coherentmorphjism# Y —
Z, first as before we extend them to get morphisps: M(A ® Y) — M(2Z).
Since A ® Y is an essential ideal i\, ® Y, whereY is the unitization ofY,
we have thath; ® Y ¢ M(A ® Y). Hence, by restriction we obtain morphisms
Vi : A ®Y — M(Z). By the first part of the proof there exists a morphism
o :AQ®Y — M(Z)suchthatforeache |, ¥; =5 og. Leto = T|agy. Then,
Yi =0 og foralli € |. This completes the proof. O

REMARK 3.4. The above theorem is false if the connectedness is not assumed.
For the simplest nonconnected diagram consisting of two poingnd B and no
morphism, the theorem implies théA « B) @ D = (A® D) * (B ® D) which is
false. Any disconnected diagram can be reduced to the discrete case of points and n
morphisms by taking the colimits of its components.
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4. Crossed products

Let G be a locally compact group. An action & on a C*-algebraA is a
homomorphisnw : G — Aut (A), Aut(A) being the automorphism group 8f such
thatg — «(g)a is continuous for each € A. Thefull andreduced crossed products
A x G and A x, G are theC*-closures of the involutive algebrdal(G, A) under
certain norms. Seé| 7.6] for details of crossed product constructions. Recall that if
the groupG acts on theC*-algebrasA and B, then a morphisnf : A — B is said
to be equivariant if it commutes with the action®f that is, f (ga) = gf(a) for all
ae€ Aandg € G.

ProPOsSITION4.1. Let D = {A}ic; be a diagram ofC*-algebras with a group
G acting on eachA; such that the connecting morphisms &eequivariant. Let

= I|m DandA = I(@ D. Then there exists a unique action@bn A, and a unique
actlon onA such that the morphisms : A’ — Aandx : A — A are equivariant
foralli e l.

PrROOF. For each € | andg € G we have a morphism; o g : A, — A defined
by ¢i o 9(X) = ¢ (gx). Moreover, ife;; : Ay — A, then

@i 0 9(oj (X)) = @i (9eij (X)) = @i (@i (9X)) = ¢i(9X) = @i o G(X).
Hence, by the universal property of colimit, there exists a unique morphism
og: A— A

such thaty; o g = 04 0 ¢;. Itis routine to check theg — o4 defines an action d& on
A. The limit case is similar or one may use the remarks following Thed&&mand
define the action bysf)(i) = s. f (i) for eachf ¢ L@ D,i el,ands e G. O

THEOREM4.2. Let D be a connected diagram 6f-algebras equipped with an ac-
tion of alocally compact grou. If, the connecting maps are proper and equivariant,
then

h_)m(DxG):Ii_r)anG,
where the action o6 onlim D is given by Propositior. 1

PROOF. Let A = hin) D and lety, : Ay — Abetheinjection. Let; : A xG — Y
be coherent morphisms intoGt-algebraY. This means thaf; o o;; = 7;, where
aj : A x G — Aj x Gis induced from théG-invariant morphismy; : A, — A.
Assume thaly ¢ B(H) for some Hilbert spacél. By [5, Proposition 7.6.4] there
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exists a covariant representation, u;) of (A, G) such thafr; = m; x u;. First we

show that the diagram
A - A

B(H)

commutes whenever there exists a morphigm A, — A;. Let{ f,} be an approxi-
mate unit ofL*(G). Then,

(1) i (aij (@) 0 () = 7T (ej (@) ® fi) = (o5 (@ ® i)

=m@® f) =m@0uG(fo),
wherea ® f denotes the function defined lay® f(g) = f(g)a and(; denotes
the representation of'(G) induced byu,. Taking limit ask — oo we obtain

7j(oj(a)) = m(a) whena € A. This shows that the morphisms are coherent.
Hence, there exists a unique morphism A — B(H) such that the triangles

B(H)

A aij AJ
commute. Next, we show that if there exists a morphigin: A — A;, and
y = m(pj (aijj (@))), then

(2 ui (@)Y = u;(Q)y.

This fact is needed later in the proof. First fife C.(G), whereC.(G) denotes the
algebra of compactly supported continuous complex valued functio® amdg €
G, thenu;(9)yGi (f) = u;(9)yG;(f). To see this observe that,= 7 (¢; (v (a)) =
T (Olij(a)) = m(a). If f ¢ Ll(G), then by q.), T (Olij (a))L]J(f) = T (a)l],(f)
Moreover, wherg € G it is easy to see that; (g)G; (f) = Gi(fy), wherefy(h) =
f(g~*h) forh € G. Now

) Ui (@)Y (f) = ui(@)m (@G (f) = 7 (gayu; (9)Gi (f)
= mi (gl (fg) = mj (e (@) G; (fy)
= 7 (et (QA)U; ()05 () = 75 (gayj (@)U (9)T; (T)
= U (@)m; (o (@) 0 (F) = uj (@) (f).
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Now (2) follows from (3) by taking the limit over an approximate unit &f (G).

To define the representatian: G — B(H) such that(r, u) is a covariant pair
for the C*-dynamical systemA, o, G) we proceed as follows. Without loss of
generality we assume that is nondegenerate. That is the linear span of the set
H = {r@¢&:aec A& e H}isdenseinH. SincelJ; ¢i (A) generatesA and the
diagramD is connected, it suffices to defingg) on vectors of the formr (¢, (a))&
forae A and¢ € H. Let

u(Q) (7 (¢ (@)§) = U (9)m (a)é.

To show thatg is well defined we must prove thatif(¢; (a))é = w(¢;(b))n, then
Ug(m (¢ ())& = ug(m(pj(a@))n. If there is a mapy; : A — A;, then by @),
ui (9)m () = u;(g)m (a) and hence

u(9) (T (¢ ())§) = ui (9w (a) = uj(9)m (a)§

= Uj(Q)m;(@)n = u(@) (7 (¢; (@)n).
Next, suppose there is no morphism betwégrand A; but there exist maps;y :
A — Acandaj, : Aj — A forsomek € |. Then, usingZ) we get
u(@)(m (@ (@)§) = Ui (9 (a) = w(Pm (a)é§ = u(9)r;(a)n
= U;j(Q)m;(@)n = u(9)(m (¢; (@)n).
Finally, suppose there exist mapg : Ac — A andwy; : Ac — A for some
k € I. Let A; be the resulting pushout of; andey; (see Propositiod.1) added
to the diagramD. Since the maps are proper, I, [Theorem 6.3] there exists a
covariant pair(r;, u;;) for the C*-dynamical systeniA;;, G) which brings us back
to the previous case, and hencés well defined. Clearlyy is bounded and hence
extends tdH. To showthat, : H — H is a unitary operator again we must consider
three cases. Consider the generating veai@iené, ¢;(b)n in H. If o : A — A},
ae A, andb € Aj, then using
(U@ (¢ (@))&, Ugm (¢; ((0)))n)

= (Ui (@7 (@&, uj (@) (b)) = (Uj(Pmi ()&, u;(9)r; (b)n)

= (m (@&, 7 (D)n) = (w(g @)§, 7 (p; (b))n),
where the second equality follows by usir).( The other cases can be dealt with
by using the connectedness of the diagram. This provesighiata unitary operator.
Now we prove thayy — uq is a representation @. Letg, h € G anda € A;. Then,

u(@h)z (¢ (@))€ = ui(gh)(m (@)§) = U (Q)u; () (@)§
= Ui (9) (i (hayu; (h)§) = uy(r (¢ (ha))u; (h)§)

Ug (i (ha)u; (h)&) = ug(u; (h)m; (2)§)
= Ug(Un (7 (¢ (8))§)).
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Hence,u(gh) = u(g)u(h). It is also easy to show that § — g in G, then
u(g)é — u(g)é for eacht € H. Finally, to show thatrn, u) is a covariant pair, one
checks thati(g)7 (¢ () = w(gy (@))u(g) forg e G, anda € A foralli e I. It
suffices to verify this identity for vectors of the form (b)¢ forb € A;, £ € H, and

j € |. For this consider three cases.

Case |. There exists a map betwenand A;. From the commutativity of the first
diagram on pag&08, we have

u(@)7 (¢ (&) (r; (b)§) = ugmi (a) (7 (D)) = u(Q)m; (e (Q)D)E
= U (@7 (aij (@) ()& = 7 (s (GA)U; (Q)7r; (0)§
= m (ga)u; (9)7; (D)§ = (¢ (ga)u(Q)7 (¢; (0)§
= 7 (gei @)UY (¢; (0))§.

Case Il. There is no morphism betweén and A; but for somek € | we have
morphismsy; : AL — A¢ andaj : Aj — A.. Using the corresponding commuting
diagram we have

u(@)r (¢ (@) (; (D)€)
= U(Q)7 (g (i (@) (i (e (0)E) = u(Q)mic (atic (@) i (et i ())&
= m (i (9@) Uk (@)1t (e (D)é = 713 (9@) Uk (9) 7tk (i (D)) &
= mi (@a)u(9)m; (D)E = m(gyi (Q)u(g)7; (b)é.

Case lll. For som& € | there exists morphismg; : A — A andoy; : Ac — A|.

Let Aj, mj, andu;; be as before. Then, we are back in the previous case. Since
U i (A) generated\, uy(a) = w(ga)u, foralla € Aandg € G. This proves that

(7, u) is a covariant pair. It is straightforward to show thak u: A x G — B(H)

is the desired map. O

EXAMPLE. Let A% B— B/(f(x) —g(x)) be a coequalizer situation (see
Lemma2.5 with a groupG acting on theC*-algebrasA and B, and equivariant
morphismsf andg. Note that the idedl = (f (x) — g(x)) is G invariant. Then, the
above theorem says that

Ax G Bx G —— (B/{f(x) —g(x))) x G

is also a coequalizer. ThismeanstBat G/J = B/I x G, whereJ = (ft) — a)).
On the other hand, by the general properties of the crossed prdgilcty G =
B x G/l x G. From these we have conclude the relation

(f) —am) = (F00 —g(x)) x G.
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We end this section by proving the analogue of Theose3rand Theoremdt.2 for
limits. It turns out that the minimal tensor product and the reduced crossed product
must be considered in the case of limitsedall that aC* -algebrayY is said to be
exact if whenever a short exact sequence is minimal tensoréflibyemains short
exact. On the other hand a groGpis said to be exact if given a short exact sequence
of C*-algebras equipped with actions Gfand if the maps are equivariant, then the
sequence remains short exact upon taking reduced crossed prod@ct 8ge, for
example [, 2, 3, 9] for more on the notion of exactness. We will denote/A® ., B
the minimal tensor tensor product of te-algebrasA andB.

THEOREM4.3. Let D = {A}io; be a diagram ofC*-algebras.
(@) IfYisexact, then!'m(D Qmin Y) = L@ D ®min Y.
(b) If the exact groups acts onD such that the connecting morphisms are equiv-
ariant, thenLim(D X, G) = I(@ D x, G.

PROOF. Let X = lim D. Then, by Theoren2.9 X —— I, A == [],; A,
is an equalizer. Wherd and g are as mentioned in Theoreth9. Moreover,
f2(g(ITi A)) = p(X). To see this, clearly(X) c f=2(g(]]; A)). If x €
f=1(g(IT; A¥)). then there exista’ € [],., A such thatf(a) = g(a). From the
definition of f andg

iel

ﬂjf(a)=ﬂj(a)=aj, njg(a/):aijm(a/):a].

Hencea = @ and f (a) = g(@) = g(a). Thereforea € p(X) and hencep(X) =
f=2(g(TTic; A))- This implies that

0— kerf Np(X) 2 p(X) - g([Ti., A) = 0
is short exact. Sinc¥ is exact
0—>kerfNpX) QminY = p(E) ®min Y = 9g(A) Qmin Y — 0

is also short exact. AG(A) @min Y = §(A®min Y), we conclude from the above short
exact sequence thdt *(§(A Qmin Y) = (X ®min Y). Using this we show that

f
X ®minY*p’Hi A| ®minYT>Hi§j Aj ®minY

is an equalizer. First, by’[ Proposition 4.22p is injective. Letr : Z — [, A @minY
be suchthaf oo = oa. We must show thai factors throughp uniquely. Forz € Z,
we havefa(z) = §u(2), ora(z) € f29([I., A)) = (X ®min Y). Therefore,
there existx € X ®min Y such thatp(x) = «(2). Define,s : Z - X Qmin Y by
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3(z) = x. Since,p is 1-1,§ is well defined and it is clear thétis unique with respect
to the relationps = «. Now (@) follows from Theorerg.o.

To prove part (b) using the exactnes<®and the above short exact sequence, we
obtain

0— (kerf Np(X)) ¥, G — p(X) %, G — g(]_[iel Ai) X, G—>0
a short exact sequence. Now the proof of part (a) may be repeated. O

REMARK 4.4. The analogue of Theoremh.3 for ®max and full crossed product
follows from [6, Theorem 6.3 and Remark 3.10]. In this case exactne¥soofG is
not needed. We summarize here how this goes for the tensor product. The proof for
crossed product is similar. Using the equalizer stated at the beginning of the proof of
Theoremd.3and using Lemma.11we obtain the pullback

X - [T A
! -
[T A —F5—ILA xIligA
It follows from [6, Remark 3.10] anfi]. A ® Y = [],(A ® Y) that

X®Y - [lA®Y

ﬁ‘ o0

[[LA®Y [IA®Yx[l ;A QY

is a pullback. Now, one checks that

(.

X@Y LA ®Y) ==]_ (A ®Y)

is also an equalizer and hengep Y = Iiin>(D ® Y) by Theoren®.9.
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