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Abstract

For each positive integern let N2;n denote the variety of all groups which are nilpotent of class at most 2
and which have exponent dividingn. For positive integersm andn, let N2;mN2;n denote the variety of all
groups which have a normal subgroup inN2;m with factor group inN2;n. It is shown that ifG ∈ N2;mN2;n,
wherem andn are coprime, thenG has a finite basis for its identities.

2000Mathematics subject classification: primary 20E10.

1. Introduction

The finite basis question for a groupG asks whether the set of all identities ofG is
equivalent to some finite set of identities. (We refer to [13] for terminology and basic
results concerned with varieties of groups, but we use the term ‘identity’ rather than
‘law’.) Between 1970 and 1973 a number of examples were published of groups for
which the answer is negative: see [9] for references covering this period and see [5]
for an account of more recent results. In the majority of these examples, the groups
are metanilpotent (that is, nilpotent-by-nilpotent) and have finite exponent. In the
simplest cases the groups belong to the varietyN2;4N2;4: here, for any positive integer
n, N2;n denotes the variety of all groups which are nilpotent of class at most 2 and have
finite exponent dividingn, and, for varietiesU andV, VU denotes the product variety,
consisting of all groups which have a normal subgroup inV with factor group inU.
However, there are also many positive results. In particular, Lyndon [11] showed that
every nilpotent group has a finite basis for its identities and Krasil’nikov [10] showed,
much more generally, that the same is true for every nilpotent-by-abelian group.
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In the negative examples mentioned above in whichG is metanilpotent of finite
exponent there is no bound on the class of the nilpotent subgroups ofG. It seems
still to be an open question whether a soluble group of finite exponent, in which the
nilpotent subgroups have bounded class, has a finite basis for its identities. Our main
result gives a positive answer in many simple cases.

THEOREM A. LetG ∈ N2;mN2;n wherem andn are coprime positive integers. Then
G has a finite basis for its identities.

A special case of this result was proved by Brady, Bryce and Cossey [2]: they
showed thatG has a finite basis for its identities ifG belongs toAmN2;n, wherem and
n are coprime positive integers andAm denotes the variety of all abelian groups of
exponent dividingm. TheoremA solves a problem posed by Kov´acs and Newman [9].
The method adopted in [2] depends upon an analysis of the irreducible linear groups
in N2;n, in prime characteristic not dividingn, and develops ideas of Higman [8].
However, at about the same time, Cohen [4] introduced a quite different method for
tackling the finite basis question, dependent on the combinatorics of ordered sets.
Cohen used this method to prove that every metabelian group has a finite basis for its
identities, and the method was developed by others in later work such as [3, 10] and
[12]. We apply similar methods here, for which we need the idea of a well-quasi-
ordered set, defined as follows.

A quasi-orderon a setW is a binary relation4 on W which is reflexive and
transitive. (We do not assume thatx 4 y andy 4 x imply x = y, as in a partial order.
Furthermore, we give no meaning to≺, only to4.) As shown in [6], the following
two properties of a quasi-ordered set.W;4/ are equivalent:

.i/ for every infinite sequencew1;w2; : : : of elements ofW there existi and j
with i < j such thatwi 4 w j ;
.ii/ for every subsetX of W there exists a finite subsetY of X such that for every

elementx of X there existsy ∈ Y such thaty 4 x.

If (either of) these conditions hold then.W;4/ is said to bewell-quasi-ordered. If
the relation4 is a total (or linear) order then we obtain the more familiar idea of a
well-ordered set.

We need to apply this idea to bilinear forms. LetK be a non-zero, finite, com-
mutative and associative ring, with identity element, and letS be a finitely generated
K -module. By anS-form we mean a pair.V; �/ consisting of a finitely generated,
non-zero, freeK -moduleV and aK -bilinear mapping� : V × V → S. If .V; �/ and
.V ′; � ′/ areS-forms we write.V; �/ 4 .V ′; � ′/ if there is aK -module monomorphism
¾ : V → V ′ such that�.v1; v2/ = � ′.v1¾; v2¾/ for all v1; v2 ∈ V . The first step in the
proof of TheoremA is the following result (or, to be precise, a more technical version
of this result stated in Section3).
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THEOREM B. The set of allS-forms is well-quasi-ordered under the relation4.

Strictly speaking, the class of allS-forms is not a set. However, TheoremB can be
rephrased to say that every set ofS-forms is well-quasi-ordered under4.

A result like this for trilinear alternating forms over a finite field was obtained by
Atkinson [1] in order to prove a different finite basis result.

The finite basis question for a groupG is equivalent to the finite basis question
for the varietyV generated byG (see [13]). Furthermore, ifF is a free group of
countably infinite rank andV.F/ denotes the verbal subgroup ofF corresponding to
V then every subvariety ofV is finitely based if and only ifV is finitely based and
the maximal condition holds for fully invariant subgroups of the relatively free group
F=V.F/. Much of the proof of TheoremA is concerned with establishing that the
maximal condition holds in some closely related situations, typically for certain ideals
in group algebras.

Let n be a positive integer and letA be a free group of countably infinite rank
in the varietyN2;n. Let F be a field of characteristic which does not dividen. Let
9 be the set of all endomorphisms ofA and, for each positive integerr , let A×r

denote ther -th direct power ofA. Each element of 9 acts ‘diagonally’ onA×r

by .a1; : : : ;ar / = .a1 ; : : : ;ar / for all a1; : : : ;ar ∈ A, and this action can be
extended to the group algebraF.A×r / in the obvious way. Using the version of
TheoremB mentioned above we shall prove the following result.

THEOREM C. For each positive integerr , the maximal condition holds for9-closed
left ideals ofF.A×r /.

If U is a leftC-module, for some algebraC, and if there is also an action of9 onU ,
we callU a .C;9/-module. The concepts of.C;9/-submodule and homomorphism
of .C;9/-modules are defined in the obvious way.

The algebraF.A× A/ is isomorphic toFA⊗FA (where the tensor product is taken
overF) under the linear map which sends.a;a′/ to a ⊗ a′ for all a;a′ ∈ A. We shall
identify these two algebras and write.a;a′/ or a ⊗ a′ interchangeably. LetR be the
subspace ofF.A × A/ spanned by all elements of the forma ⊗ a anda ⊗ a′ + a′ ⊗ a
for a;a′ ∈ A. It is easily verified thatR is a subalgebra ofF.A × A/. Thus we may
regardF.A × A/ as a leftR-module and, indeed, as an.R;9/-module. ClearlyR is
an.R;9/-submodule ofF.A × A/. The last main step in the proof of TheoremA is
the following result.

THEOREM D. The maximal condition holds for.R;9/-submodules ofF.A × A/
which containR.

The vector spaceF.A× A/=R is isomorphic to the exterior squareFA∧FA, which
can therefore be given the structure of an.R;9/-module. Thus TheoremD gives the
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following result.

COROLLARY. The maximal condition holds for.R;9/-submodules ofFA ∧ FA.

TheoremsB, C and D will be proved in Sections3, 5 and 6, respectively. In
Section2 we show how TheoremA can be derived from TheoremsC andD.

2. The derivation of TheoremA

In this section we assume TheoremsC andD, and we obtain TheoremA from these
results.

One step in the proof of TheoremA is the special case proved in [2]. We could,
of course, assume this result, but in order to illustrate our method in a comparatively
simple case we first prove this special case.

LetU andV be varieties of groups. LetAbe a free group inU on a free generating set
{xi : i ∈ N} and letB be a free group inV on a free generating set{ya

i : i ∈ N; a ∈ A}.
For eachi , the elementy1

i is also written asyi . Each elementa′ of A induces an
automorphism ofB in which ya

i 7→ yaa′
i for all i ∈ N, a ∈ A. Accordingly we can

form the semidirect productB A, a split extension ofB by A in which the original
action of A on B becomes conjugation. We denote this groupB A by Fsplit.V;U/.
The group has the following universal property implicit in [14] and straightforward to
prove directly.

LEMMA 2.1. LetG be a split extension of a groupB1 in V by a groupA1 in U. Then
every pair of mappings{xi : i ∈ N} → A1, {yi : i ∈ N} → B1 extends(uniquely) to
a homomorphismFsplit.V;U/ → G.

LEMMA 2.2. LetU andV be locally finite varieties of groups of coprime exponents
and writeW = Fsplit.V;U/. LetS be a subvariety ofVU. ThenS is generated by the
groupW=S.W/, whereS.W/ is the verbal subgroup ofW corresponding toS.

PROOF. SinceS is locally finite it is generated by the finite groups it contains. By
the Schur-Zassenhaus Theorem, each such finite groupG is a split extension of a
group inV by a group inU. It follows, by Lemma2.1, that G is a homomorphic
image ofW=S.W/. ThereforeW=S.W/ generatesS.

LEMMA 2.3. Let F be a relatively free group and letU be an abelian fully invariant
subgroup ofF of exponent dividing a positive integerm. Suppose thatU contains an
infinite strictly ascending chain of fully invariant subgroups ofF . Then there exists a
prime p dividing m such thatU=U p contains an infinite strictly ascending chain of
fully invariant subgroups ofF=U p.
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PROOF. Let� be the set of all endomorphisms ofF , with � regarded as a set of
operators. IfV is any fully invariant subgroup ofF then, since the endomorphisms
of F=V are precisely those induced by elements of�, F=V may be regarded as an
�-group and the�-subgroups ofF=V are precisely the fully invariant subgroups of
F=V , each being of the formW=V for some�-subgroupW of F containingV .
Observe that ifN is an�-subgroup ofU then, sinceU contains an infinite strictly
ascending chain of�-subgroups, eitherN or U=N contains such a chain.

SinceU is abelian of exponent dividingm, we may writeU as a finite direct
productU = U1 ×· · ·×Uk where eachUi is a non-trivial�-subgroup of prime-power
exponent dividingm. By repeated use of the previous observation and isomorphisms
of�-groups, we find that there existsi ∈ {1; : : : ; k} such thatU=

∏
j 6=i U j contains an

infinite strictly ascending chain of�-subgroups. Thus it suffices to prove the lemma
in the case whereU has exponentps for some primep and positive integers. By
the same observation applied to the chainU ≥ U p ≥ · · · ≥ U ps = {1}, there exists
r ∈ {0;1; : : : ; s− 1} such thatU pr

=U pr +1
contains an infinite strictly ascending chain

of �-subgroups. Thus there are�-subgroupsW1;W2; : : : of U satisfying

U pr +1 ≤ W1 < W2 < · · · < U pr

:

Let � : U → U pr
be the homomorphism defined byu� = upr

for all u ∈ U .
Note that� is surjective. ThusU p ≤ W1�

−1 < W2�
−1 < · · · < U . It is easily

verified that� is a homomorphism of�-groups. Thus eachWi�
−1 is an�-group

andW1�
−1=U p < W2�

−1=U p < · · · is an infinite strictly ascending chain of fully
invariant subgroups ofF=U p contained inU=U p.

We shall now obtain the finite basis result of [2]. For any varietyV, F.V/ denotes
the free group ofV of countably infinite rank.

THEOREM 2.4 ([2]). Letmandn be coprime positive integers. Then the subvarieties
of AmN2;n are finitely based.

PROOF. SinceAmN2;n is finitely based by [7], it suffices to show thatF.AmN2;n/

satisfies the maximal condition on fully invariant subgroups. WriteH = F.AmN2;n/

andU = N2;n.H /. Thus H=U ∼= F.N2;n/. By [11], H=U satisfies the maximal
condition on fully invariant subgroups. Thus it suffices to show that the maximal
condition holds for fully invariant subgroups ofH contained inU . By Lemma2.3,
it suffices to show that for each primep dividing m the maximal condition holds for
fully invariant subgroups ofH=U p contained inU=U p. But H=U p ∼= F.A pN2;n/, so
it suffices to show that the minimal condition holds for subvarieties ofA pN2;n which
containN2;n.

Let W = Fsplit.A p;N2;n/ and writeW = B A whereA = 〈xi : i ∈ N〉 ∼= F.N2;n/

andB = 〈ya
i : i ∈ N; a ∈ A〉. ThusB is free inA p. By Lemma2.2, the subvarieties
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of A pN2;n which containN2;n are in one-one correspondence with the corresponding
verbal subgroups ofW, and these verbal subgroups are contained inB. Thus it suffices
to prove that the maximal condition holds for fully invariant subgroups ofW contained
in B.

We can writeB additively as a vector space overFp, the field withp elements, and
B has basis{ya

i : i ∈ N; a ∈ A}. Let T be the subspace with basis{ya
1 : a ∈ A}.

There is anFp-space isomorphism¼ : Fp A → T satisfyinga¼ = ya
1 for all a ∈ A.

Hence we can giveT the structure of a leftFp A-module in such a way that¼ is a
module isomorphism. Let9 be the set of all endomorphisms ofA. By Lemma2.1,
each element of 9 can be extended to an endomorphism ofW by takingyi = yi

for eachi . Thus9 acts onW. ClearlyT is 9-closed and the map¼ : Fp A → T is
an isomorphism of.Fp A;9/-modules.

For eacha ∈ A, let ¾a be the endomorphism ofW satisfyingxi ¾a = xi for all i ,
y1¾a = ya

1 andyi ¾a = yi for all i > 1. ClearlyT is invariant under each¾a, and¾a acts
on T in the same way asa acts (whenT is regarded as a leftFp A-module). It follows
that if V is a fully invariant subgroup ofW thenV ∩ T is an.Fp A;9/-submodule
of T .

For eachi; j ∈ N, let Ži j be the endomorphism ofW determined byxkŽi j = xk for
all k, yi Ži j = yj andykŽi j = 1 for all k ∈ N \ {i }. Let V be a fully invariant subgroup
of W contained inB and letv ∈ V . Then there existsr ∈ N such thatv belongs to the
span of{ya

i : 1 ≤ i ≤ r;a ∈ A}. We havev = vŽ11Ž11+vŽ21Ž12+· · · +vŽr 1Ž1r , where
vŽ11; vŽ21; : : : ; vŽr 1 ∈ V ∩ T . ThusV is generated as a fully invariant subgroup by
V ∩ T .

Suppose thatV1 ≤ V2 ≤ : : : is an ascending chain of fully invariant subgroups of
W contained inB. ThenV1 ∩ T ≤ V2 ∩ T ≤ · · · is an ascending chain of.Fp A;9/-
modules. Hence.V1∩T/¼−1 ≤ .V2∩T/¼−1 ≤ · · · is an ascending chain of9-closed
left ideals ofFp A. By TheoremC, this chain becomes stationary. Therefore, so does
V1 ∩ T ≤ V2 ∩ T ≤ · · · , and so doesV1 ≤ V2 ≤ · · · , which completes the proof of
Theorem2.4.

PROOF OFTHEOREM A. Let m andn be coprime positive integers, and writeF =
F.N2;mN2;n/. By [7], N2;mN2;n is finitely based. Thus it suffices to show thatF satisfies
the maximal condition on fully invariant subgroups. LetU be the verbal subgroup of
F corresponding toAmN2;n. ThusF=U ∼= F.AmN2;n/ and, by Theorem2.4, it suffices
to show that the maximal condition holds for fully invariant subgroups ofF contained
in U . By Lemma2.3it suffices to show that, for each primep dividing m, the maximal
condition holds for fully invariant subgroups ofF=U p contained inU=U p. Let V
be the variety of all groupsG such thatG is nilpotent of class at most two,G has
exponent dividingm andG′ has exponent dividingp. ThusF=U p ∼= F.VN2;n/. It
suffices to show that the minimal condition holds for subvarieties ofVN2;n which
containAmN2;n.
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Let W = Fsplit.V;N2;n/ and writeW = B A whereA = 〈xi : i ∈ N〉 ∼= F.N2;n/

andB = 〈ya
i : i ∈ N; a ∈ A〉. ThusB is free inV. By Lemma2.2, the subvarieties of

VN2;n which containAmN2;n are in one-one correspondence with the corresponding
verbal subgroups ofW, and these verbal subgroups are contained inB′. Thus it
suffices to prove that the maximal condition holds for fully invariant subgroups ofW
contained inB′. If B′ = {1} (as occurs whenp = 2 andm is not divisible by 4) then
the result is trivial. Thus we may assume thatB′ 6= {1}.

We can writeB′ additively as a vector space overFp spanned by{[ya
i ; ya′

j ] :
i; j ∈ N; a;a′ ∈ A}. Let T1 be the subspace spanned by{[ya

1 ; ya′
1 ] : a;a′ ∈ A}

and letT2 be the subspace spanned by{[ya
1 ; ya′

2 ] : a;a′ ∈ A}. Thus T1 has basis
{[ya

1 ; ya′
1 ] : a;a′ ∈ A; a > a′}, where> is an arbitrary total order onA,andT2 has basis

{[ya
1 ; ya′

2 ] : a;a′ ∈ A}. Thus there areFp-space isomorphisms¼1 : Fp A ∧ Fp A → T1

and¼2 : Fp.A× A/ → T2 satisfying.a∧a′/¼1 = [ya
1; ya′

1 ] and.a ⊗a′/¼2 = [ya
1 ; ya′

2 ]
for all a;a′ ∈ A. Hence, withR defined as in Section1, we can giveT1 the structure
of a left R-module andT2 the structure of a leftFp.A × A/-module in such a way that
¼1 and¼2 are module isomorphisms. Let9 be the set of all endomorphisms ofA.
As in the proof of Theorem2.4, 9 acts onW. ClearlyT1 andT2 are9-closed,¼1 is
an isomorphism of.R;9/-modules, and¼2 is an isomorphism of.Fp.A × A/;9/-
modules.

For a ∈ A, let ¾a be the endomorphism ofW satisfying xi ¾a = xi for all i ,
y1¾a = ya

1 andyi ¾a = yi for all i > 1. Fora;a′ ∈ A, let ¾a+a′ be the endomorphism of
W satisfyingxi ¾a+a′ = xi for all i , y1¾a+a′ = ya

1 ya′
1 andyi ¾a+a′ = yi for all i > 1. Thus

T1 is invariant under each¾a and under each¾a+a′ . Furthermore,¾a acts onT1 in the
same way asa ⊗ a acts, while¾a+a′ acts onT1 in the same way as.a + a′/⊗ .a + a′/
acts. It is easily verified thatR is spanned by the elementsa⊗a and.a+a′/⊗.a+a′/
for a;a′ ∈ A. It follows that if V is a fully invariant subgroup ofW thenV ∩ T1 is an
.R;9/-submodule ofT1.

Fora;a′ ∈ A, let¾a;a′ be the endomorphism ofW determined byxi ¾a;a′ = xi for all
i , y1¾a;a′ = ya

1 , y2¾a;a′ = ya′
2 andyi ¾a;a′ = yi for all i > 2. ClearlyT2 is invariant under

each¾a;a′ . Furthermore,¾a;a′ acts onT2 in the same way asa ⊗ a′ acts. It follows that
if V is a fully invariant subgroup ofW thenV ∩ T2 is an.Fp.A × A/;9/-submodule
of T2.

For eachi; j ∈ N, let Ži j be the endomorphism ofW determined byxkŽi j = xk

for all k, yi Ži j = yj and ykŽi j = 1 for all k ∈ N \ {i }. For eachi; j; i ′; j ′ ∈ N with
i 6= j , let "i i ′; j j ′ be the endomorphism ofW determined byxk"i i ′; j j ′ = xk for all k,
yi "i i ′; j j ′ = yi ′, yj "i i ′; j j ′ = yj ′ andyk"i i ′; j j ′ = 1 for all k ∈ N \ {i; j }.

Let V be a fully invariant subgroup ofW contained inB′ and letv ∈ V . Then, for
somer ∈ N, we can writev = v1 + v2 wherev1 is in the span of{[ya

i ; ya′
i ] : 1 ≤ i ≤

r; a;a′ ∈ A} andv2 is in the span of{[ya
i ; ya′

j ] : 1 ≤ i < j ≤ r; a;a′ ∈ A}. Then it is
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easily verified thatv1 = ∑
i vŽi 1Ž1i and

v − v1 = v2 =
∑

i; j
1≤i< j ≤r

v2"i 1; j 2"1i;2 j :

HerevŽi 1 ∈ V ∩ T1 for all i andv2"i 1; j 2 ∈ V ∩ T2 for all i; j . It follows that V is
generated as a fully invariant subgroup by.V ∩ T1/ ∪ .V ∩ T2/.

Suppose thatV1 ≤ V2 ≤ · · · is an ascending chain of fully invariant subgroups
of W contained inB′. Then V1 ∩ T1 ≤ V2 ∩ T1 ≤ · · · is an ascending chain of
.R;9/-submodules ofT1 while V1 ∩ T2 ≤ V2 ∩ T2 ≤ · · · is an ascending chain of
.Fp.A × A/;9/-submodules ofT2. Hence.V1 ∩ T1/¼

−1
1 ≤ .V2 ∩ T1/¼

−1
1 ≤ · · · is an

ascending chain of.R;9/-submodules ofFp A ∧ Fp A and

.V1 ∩ T2/¼
−1
2 ≤ .V2 ∩ T2/¼

−1
2 ≤ · · ·

is an ascending chain of9-closed left ideals ofFp.A × A/. By TheoremC and
the Corollary to TheoremD, both of the last two chains become stationary. Hence
.V1 ∩ T1/ ∪ .V1 ∩ T2/ ≤ .V2 ∩ T1/ ∪ .V2 ∩ T2/ ≤ · · · becomes stationary. Therefore
V1 ≤ V2 ≤ · · · becomes stationary, which proves TheoremA.

3. Bilinear forms

Let K be a non-zero, finite, commutative and associative ring, with identity
element 1. Unless otherwise stated allK -modules are finitely generated (therefore
finite). LetSbe aK -module. AnS-form is a pair.V; �/ consisting of a non-zero free
K -moduleV and aK -bilinear map� : V × V → S. A K -linear map¾ : V → V ′,
where.V; �/ and.V ′; � ′/ are S-forms, is said to be ahomomorphism ofS-forms if
�.v1; v2/ = � ′.v1¾; v2¾/ for all v1; v2 ∈ V. We write ¾ : .V; �/ → .V ′; � ′/. The
termsisomorphismandmonomorphismare defined in the obvious way. We define
a quasi-order4 on the set of allS-forms by defining.V; �/ 4 .V ′; � ′/ if there is a
monomorphism¾ : .V; �/ → .V ′; � ′/. The main result of this section is the following.

THEOREM B. The set of allS-forms is well-quasi-ordered under the relation4.

Let .V; �/ be anS-form. For any subsetU of V we defineP.U / to be the subset of
S⊕Sgiven byP.U / = {.�.v1; v2/; �.v2; v1// : v1; v2 ∈ U }, and we defineQ.U / ⊆ S
by Q.U / = {�.v; v/ : v ∈ U }. Also, for U;U′ ⊆ V we define�.U;U ′/ ⊆ S by
�.U;U ′/ = {�.u;u′/ : u ∈ U; u′ ∈ U ′}. SubsetsU andU ′ are said to beorthogonal
if �.U;U ′/ = �.U ′;U / = {0}.
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LEMMA 3.1. Let V be a freeK -module and letv1; : : : ; vl ∈ V . Then there are
free K -submodulesU1, U2 of V such thatV = U1 ⊕ U2, rank.U1/ ≤ |K |l , and
v1; : : : ; vl ∈ U1.

PROOF. Take elementsx1; : : : ; xm of V wherem is minimal such that{x1; : : : ; xm}
is contained in aK -basis ofV andv1 belongs to the submodule〈x1; : : : ; xm〉. Write
v1 = ∑m

i =1 Þi xi where eachÞi is an element ofK . If m > |K | then there exist
distinct j; k ∈ {1; : : : ;m} such thatÞ j = Þk and we may replacexj andxk by xj + xk,
contrary to the minimality ofm. Thusm ≤ |K |. Let W be a freeK -submodule of
V such thatV = 〈x1; : : : ; xm〉 ⊕ W and, fori = 2; : : : ; l , write vi = v′

i + wi where
v′

i ∈ 〈x1; : : : ; xm〉 andwi ∈ W. The result follows by applying an inductive argument
tow2; : : : ; wl in W.

LEMMA 3.2. Let .V; �/ be anS-form. Suppose thatW is a freeK -submodule of
V and letv1; : : : ; vl ∈ V . Then there are freeK -submodulesW1, W2 of W such that
W = W1 ⊕ W2, rank.W1/ ≤ 2|S|l andW2 is orthogonal to{v1; : : : ; vl }.

PROOF. We assume thatl = 1 since the general case follows easily. We shall
find free submodulesU1, U2 of W such thatW = U1 ⊕ U2, rank.U1/ ≤ |S| and
�.{v1};U2/ = {0}. A similar argument givesU2 = U ′ ⊕ U ′′ with rank.U ′/ ≤ |S| and
�.U ′′; {v1}/ = {0}. The result follows withW1 = U1 ⊕ U ′ andW2 = U ′′.

Take basis elementsx1; : : : ; xm of W wherem is maximal subject to�.v1; xi / = 0
for i = 1; : : : ;m. Let{x1; : : : ; xd} be a basis ofW containing{x1; : : : ; xm}. If d−m>

|S| then there exist distinctj; k ∈ {m + 1; : : : ;d} such that�.v1; xj / = �.v1; xk/ and
we may extend{x1; : : : ; xm} to {x1; : : : ; xm; xj − xk}, contrary to the maximality ofm.
Thusd − m ≤ |S| and we may takeU1 = 〈xm+1; : : : ; xd〉, U2 = 〈x1; : : : ; xm〉.

Let N be a positive integer and defineN[i ], for each non-negative integeri , by
N[0] = 0 and N[i ] = N + N2 + · · · + Ni for i > 0. Let .V; �/ be anS-form
and let {x1; : : : ; xd} be a K -basis ofV . We shall assume, in such notation, that
the elementsxi are distinct (that is,d = rank.V /) and that the basis is ordered
as shown, corresponding to the orderedd-tuple .x1; : : : ; xd/. Let m be the non-
negative integer which satisfiesN[m] < d ≤ N[m+1] and writeV1 = 〈x1; : : : ; xN[1]〉; : : : ,
Vm = 〈xN[m−1]+1; : : : ; xN[m]〉, Vm+1 = 〈xN[m]+1; : : : ; xd〉. Thus rank.Vi / = Ni for
i = 1; : : : ;m and 0< rank.Vm+1/ ≤ Nm+1. For i = 1; : : : ;m + 1, write V +

i =
Vi ⊕ · · · ⊕ Vm+1. We say that.V; �/ is N-regular with respect to the ordered basis
{x1; : : : ; xd} if P.Vi / = P.V+

i / for i = 1; : : : ;m + 1, Q.Vi / = Q.V+
i / for i =

1; : : : ;m + 1, andVi −1 andV+
i +1 are orthogonal fori = 2; : : : ;m. A decomposition

V = V1 ⊕ · · · ⊕ Vm+1 with these properties, which is obtained from some ordered
basis in the way described, is called anN-regular decompositionof V . Note thatVi
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andVj are orthogonal whenever|i − j | ≥ 2. Also P.V1/ ⊇ P.V2/ ⊇ · · · ⊇ P.Vm+1/

andQ.V1/ ⊇ Q.V2/ ⊇ · · · ⊇ Q.Vm+1/.

LEMMA 3.3. Let N ≥ |K |.2|S|2 + |S|/. Then everyS-form is N-regular with
respect to some basis.

PROOF. Write s = |S|. Let .V; �/ be anS-form. Let d = rank.V / and definem
by N[m] < d ≤ N[m+1]. Suppose we can find free modulesV+

1 , V1, V+
2 ;V2, : : : , V+

m ,
Vm, V+

m+1 with the following properties:V+
1 = V; for i = 1; : : : ;m, V +

i = Vi ⊕ V+
i +1,

rank.Vi / = Ni , P.Vi / = P.V+
i / andQ.Vi / = Q.V+

i /; and, fori = 2; : : : ;m, Vi −1

andV+
i +1 are orthogonal. Then, takingVm+1 = V+

m+1, we see thatV = V1 ⊕· · ·⊕ Vm+1

and.V; �/ is N-regular with respect to a basis ofV composed of bases ofV1; : : : ;Vm+1.
We construct the required free modules inductively.

First defineV+
1 = V . If rank.V+

1 / ≤ N thenm = 0 and we have finished. So
suppose that rank.V+

1 / > N. Since|P.V+
1 /| ≤ s2 and|Q.V+

1 /| ≤ s we can choose
elementsv1; : : : ; v2s2+s of V+

1 (not necessarily distinct) such that

{.�.v2i −1; v2i /; �.v2i ; v2i −1// : i = 1; : : : ; s2} = P.V+
1 /;

{�.vi ; vi / : i = 2s2 + 1; : : : ;2s2 + s} = Q.V+
1 /:

By Lemma3.1, we can find free submodulesU1 andU2 of V+
1 such thatV+

1 = U1⊕U2,
v1; : : : ; v2s2+s ∈ U1 and rank.U1/ ≤ |K |.2s2 + s/ ≤ N. Choose free modulesV1 and
V+

2 such thatV+
1 = V1 ⊕ V+

2 , rank.V1/ = N and V1 ⊇ U1. By the choice of
v1; : : : ; v2s2+s, we haveP.V1/ = P.V+

1 / andQ.V1/ = Q.V+
1 /.

Suppose that for somek with 1 ≤ k ≤ m we have found free modulesV+
1 , V1, V+

2 ,
: : : , Vk, V+

k+1 with the required properties for these modules. If rank.V+
k+1/ ≤ Nk+1

thenm = k and we have finished. So suppose that rank.V+
k+1/ > Nk+1. By the method

used in the first part of the proof we may find free submodulesU andW of V+
k+1 such

that V+
k+1 = U ⊕ W, P.U / = P.V+

k+1/, Q.U / = Q.V+
k+1/ and rank.U / = N. By

Lemma3.2, there are free submodulesW1 andW2 of W such thatW = W1 ⊕ W2, W2

andVk are orthogonal and rank.W1/ ≤ 2s Nk. Then

rank.U ⊕ W1/ ≤ N + 2s Nk ≤ .1 + 2s/Nk ≤ Nk+1:

Choose free modulesVk+1 andV+
k+2 such thatV+

k+1 = Vk+1⊕V +
k+2, rank.Vk+1/ = Nk+1,

Vk+1 ⊇ U ⊕W1 andV+
k+2 ⊆ W2. ThenVk+1 andV+

k+2 have the required properties.

LEMMA 3.4. Let .V; �/ be anS-form which has anN-regular decompositionV =
V1 ⊕ · · · ⊕ Vm+1.

.i/ Let k ∈ {1; : : : ;m − 1}. Suppose thatP.Vk/ = P.Vk+2/ and Q.Vk/ =
Q.Vk+2/. ThenP.Vk/ is an additive subgroup ofS ⊕ S and Q.Vk/ is an additive
subgroup ofS.
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.ii/ Let c be a positive integer and letr .1/ and r .2/ be integers such that1 ≤
r .1/ < r .2/ ≤ m + 1. Suppose that

P.Vr .1// = P.Vr .1/+1/ = · · · = P.Vr .2// = P ⊆ S⊕ S;

Q.Vr .1// = Q.Vr .1/+1/ = · · · = Q.Vr .2// = Q ⊆ S;

and r .2/ − r .1/ ≥ c.c + 1/ + 2. Write W = Vr .1/+2 ⊕ · · · ⊕ Vr .2/−2. For all
i; j ∈ {1; : : : ; c} with i < j let pi j ∈ P and for all i ∈ {1; : : : ; c} let qi ∈ Q.
Then there existw1; : : : ; wc ∈ W such that.�.wi ;w j /; �.w j ;wi // = pi j , for all
i; j ∈ {1; : : : ; c} with i < j , and�.wi ;wi / = qi , for all i ∈ {1; : : : ; c}.

PROOF. (i) Let p; p′ ∈ P.Vk/. Then there existv;w ∈ Vk and v′;w′ ∈ Vk+2

such that.�.v;w/; �.w; v// = p and .�.v′ ;w′/; �.w′; v′// = p′. Write V+
k =

Vk ⊕ · · · ⊕ Vm+1. SinceVk andVk+2 are orthogonal,

p + p′ = .�.v + v′;w +w′/; �.w +w′; v + v′// ∈ P.V+
k / = P.Vk/:

Hence, sinceP.Vk/ is finite, it is a group. SimilarlyQ.Vk/ is a group.
(ii) By (i), P and Q are additive groups. There arec.c + 1/=2 modules in the

set{Vr .1/+2;Vr .1/+4; : : : ;Vr .1/+c.c+1/} and so these modules can be relabelled asUi for
1 ≤ i ≤ c andUi j for 1 ≤ i < j ≤ c. These modules are pairwise orthogonal
submodules ofW such thatP.Ui / = P.Ui j / = P andQ.Ui / = Q.Ui j / = Q for all
i; j . For i; j ∈ {1; : : : ; c} with i < j chooseui j ; vi j ∈ Ui j such that

.�.ui j ; vi j /; �.vi j ;ui j // = pi j :

Then for eachi ∈ {1; : : : ; c} chooseui ∈ Ui such that

�.ui ;ui / = qi −
∑
j : j>i

�.ui j ;ui j /−
∑
j : j<i

�.v j i ; v j i /:

Finally, for i = 1; : : : ; c, definewi = ui + ∑
j : j>i ui j + ∑

j : j<i v j i . It is easy to check
that these elements have the required properties.

For eachS-form .V; �/ we need to fix an ordered basis ofV . Thus we define an
S-triple to be a triple.V; �; X/ where.V; �/ is anS-form andX is an ordered basis
of V .

Let .V; �; X/ and.V ′; � ′; X′/ be S-triples, where rank.V / = d, rank.V ′/ = d′,
X = {x1; : : : ; xd} andX′ = {x′

1; : : : ; x ′
d′ }. We say that.V; �; X/ and.V ′; � ′; X′/ are

isomorphicif d = d′ and there is anS-form isomorphism¾ : .V; �/ → .V ′; � ′/
such thatxi ¾ = x′

i for i = 1; : : : ;d. We write.V; �; X/ 4 .V ′; � ′; X′/ if there is a
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one-one order-preserving map� : {1; : : : ;d} → {1; : : : ;d′} together with anS-form
homomorphism¾ : .V; �/ → .V ′; � ′/ such that, fori = 1; : : : ;d,

xi ¾ = x′
i� + zi ; for some zi ∈ 〈x′

1; x′
2; : : : ; x ′

i�−1〉:(3.1)

Clearly4 is a quasi-order on the set of allS-triples. Also, if ¾ satisfies (3.1) then¾
is a monomorphism. Hence.V; �; X/ 4 .V ′; � ′; X′/ implies .V; �/ 4 .V ′; � ′/. An
S-triple .V; �; X/ is said to beN-regular if .V; �/ is N-regular with respect toX.

PROPOSITION3.5. The set of allN-regular S-triples is well-quasi-ordered under
the relation4.

PROOF. Let Y.1/;Y.2/;Y.3/; : : : be an infinite sequence ofN-regularS-triples. It
suffices to show that there exist integersi and j with i < j such thatY.i / 4 Y. j /.
For eachi , let Y.i / = .V .i /; � .i /; X.i // whereV .i / hasN-regular decompositionV .i /

1 ⊕
· · · ⊕ V .i /

m.i /+1, d.i / = rank.V .i // and X.i / = {x.i /1 ; : : : ; x.i /d.i /}. If {m.1/;m.2/; : : : }
is bounded then there are only finitely many isomorphism types in the sequence
Y.1/;Y.2/;Y.3/; : : : and the result is clear. Thus we assume that{m.1/;m.2/; : : : } is
unbounded. By passing to an infinite subsequence we may assume thatm.i / ≥ 1 for
all i ≥ 1. There are only finitely many possibilities for the values�.i /.x.i /j ; x.i /k / for
j; k ∈ {1; : : : ; N [1]}. Thus, by passing to an infinite subsequence, we may assume
that, for all j; k ∈ {1; : : : ; N [1]}, the value�.i /.x.i /j ; x.i /k / is independent ofi . Then,
by passing to an infinite subsequence, we may assume thatm.i / ≥ 2 for all i ≥ 2
and that, for allj; k ∈ {1; : : : ; N [2]}, the value�.i /.x.i /j ; x.i /k / is independent ofi for
all i ≥ 2. Continuing in this way we may pass to an infinite subsequence with the
following property for alln ∈ N:

m.i / ≥ n for all i ≥ n and,

for all j; k ∈ {1; : : : ; N [n]}; �.i /.x.i /j ; x.i /k / is independent ofi for all i ≥ n:
(3.2)

Let V be a freeK -module with countably infinite basisX = {x1; x2; : : : }. Define
a K -bilinear map� : V × V → S by taking �.x j ; xk/ to be the limiting value
of �.i /.x.i /j ; x.i /k /. Furthermore, for each positive integern, let Pn and Qn be the
limiting values of P.V .i /

n / and Q.V .i /
n /, respectively. SinceP1 ⊇ P2 ⊇ · · · and

Q1 ⊇ Q2 ⊇ · · · , there existP ⊆ S⊕ S, Q ⊆ S, and a positive integerr , such that
Pr = Pr +1 = · · · = P and Qr = Qr +1 = · · · = Q. By Lemma3.4, P and Q are
additive groups.

For eachi , let r .i / be the largest integer belonging to{1; : : : ;m.i /} such that
�.i /.x.i /j ; x.i /k / = �.x j ; xk/ for all j; k ∈ {1; : : : ; N[r .i /]}. By construction, the set
{r .1/; r .2/; : : : } is unbounded. Hence, by passing to an infinite subsequence, we may
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assume thatr ≤ r .1/ < r .2/ < · · · . Let

a.i / = N[r .i /−1] = rank
(
V .i /

1 ⊕ · · · ⊕ V .i /
r .i /−1

)
;

b.i / = N[r .i /] = rank
(
V .i /

1 ⊕ · · · ⊕ V .i /
r .i /

) = a.i /+ Nr .i /:

We may pass to an infinite subsequence so that, for eachi , we have

d.i /− a.i / ≤ d.i + 1/ − a.i + 1/ and

r .i + 1/− r .i / ≥ .d.i /− a.i //.d.i / − a.i /+ 1/+ 2:
(3.3)

We now focus onY.1/ andY.2/ and show thatY.1/ 4 Y.2/. By the choice ofr .1/ and
r .2/, we have

P
(
V .1/

r .1/

) = P
(
V .2/

r .1/

) = P
(
V .2/

r .1/+1

) = · · · = P
(
V .2/

r .2/

) = P;

Q
(
V .1/

r .1/

) = Q
(
V .2/

r .1/

) = Q
(
V .2/

r .1/+1

) = · · · = Q
(
V .2/

r .2/

) = Q;

and

�.1/
(
x.1/i ; x.1/j

) = �.2/
(
x.2/i ; x.2/j

)
for all i; j ∈ {1; : : : ;b.1/}:

Sincea.1/ < a.2/ and d.1/ − a.1/ ≤ d.2/ − a.2/ there exists a one-one order-
preserving map� : {1; : : : ;d.1/}→ {1; : : : ;d.2/} such thati�= i for i =1; : : : ;a.1/
and{a.1/ + 1; : : : ;d.1/}� ⊆ {a.2/+ 1; : : : ;d.2/}.

Write W = V .2/
r .1/+2 ⊕ · · · ⊕ V .2/

r .2/−2 as in Lemma3.4. Note that, fori ∈ {a.1/ +
1; : : : ;d.1/},

�.1/
(
x.1/i ; x.1/i

) ∈ Q
(
V .1/

r .1/ ⊕ · · · ⊕ V .1/
m.1/+1

) = Q
(
V .1/

r .1/

) = Q;

and

�.2/
(
x.2/i� ; x.2/i�

) ∈ Q
(
V .2/

r .2/ ⊕ · · · ⊕ V .2/
m.2/+1

) = Q
(
V .2/

r .2/

) = Q:

Similarly,

(
�.1/

(
x.1/i ; x.1/j

)
; �.1/

(
x.1/j ; x.1/i

)) ∈ P;
(
�.2/

(
x.2/i� ; x.2/j�

)
; �.2/

(
x.2/j� ; x.2/i�

)) ∈ P;

for all i; j ∈ {a.1/+ 1; : : : ;d.1/} with i < j . Hence, by Lemma3.4, we can choose
elementswa.1/+1; : : : ; wd.1/ of W satisfying

�.2/.wi ;wi / =
{

−�.2/(x.2/i� ; x.2/i�

)
for i ∈ {a.1/ + 1; : : : ;b.1/};

�.1/
(
x.1/i ; x.1/i

) − �.2/
(
x.2/i� ; x.2/i�

)
for i ∈ {b.1/ + 1; : : : ;d.1/};
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and

(
�.2/.wi ;w j /; �

.2/.w j ;wi /
)

=




(
�.1/

(
x.1/i ; x.1/j

)
; �.1/

(
x.1/j ; x.1/i

)) − (
�.2/

(
x.2/i� ; x.2/j�

)
; �.2/

(
x.2/j� ; x.2/i�

))
;

for i < j with i ∈ {a.1/ + 1; : : : ;b.1/}, j ∈ {b.1/ + 1; : : : ;d.1/};
−(
�.2/

(
x.2/i� ; x.2/j�

)
; �.2/

(
x.2/j� ; x.2/i�

))
;

for i < j with i; j ∈ {a.1/ + 1; : : : ;b.1/};(
�.1/

(
x.1/i ; x.1/j

)
; �.1/

(
x.1/j ; x.1/i

)) − (
�.2/

(
x.2/i� ; x.2/j�

)
; �.2/

(
x.2/j� ; x.2/i�

))
for i < j with i; j ∈ {b.1/ + 1; : : : ;d.1/}.

Then we define aK -linear map¾ : V .1/ → V .2/ by

x.1/i ¾ =




x.2/i for i ∈ {1; : : : ;a.1/};
x.2/i +wi + x.2/i� for i ∈ {a.1/+ 1; : : : ;b.1/};
wi + x.2/i� for i ∈ {b.1/+ 1; : : : ;d.1/}:

Note that, in these equations,x.2/i ∈ V .2/
1 ⊕ · · · ⊕ V .2/

r .1/, while wi ∈ W and x.2/i� ∈
V .2/

r .2/ ⊕· · ·⊕ V .2/
m.2/+1, whereV .2/

1 ⊕· · · ⊕ V .2/
r .1/, W andV .2/

r .2/⊕· · · ⊕ V .2/
m.2/+1 are pairwise

orthogonal. It is straightforward to check that�.2/.x.1/i ¾; x.1/j ¾/ = �.1/.x.1/i ; x.1/j / in all
the various cases fori and j . Hence¾ is a homomorphism ofS-forms. Clearly¾ has
the form required in (3.1). Thus we haveY.1/ 4 Y.2/, as required.

PROOF OFTHEOREM B. Take any positive integerN such thatN ≥ |K |.2|S|2+|S|/.
Then, by Lemma3.3, for eachS-form .V; �/ there exists an ordered basisX.V;�/ of
V such that.V; �; X.V;�// is anN-regularS-triple. If .V; �/ and.V ′; � ′/ areS-forms
such that.V; �; X.V;�// 4 .V ′; � ′; X.V ′;� ′// then.V; �/ 4 .V ′; � ′/. Hence the result
follows by Proposition3.5.

To prove our result about varieties of groups we need, in fact, not TheoremB itself
but the assertion stated below as Proposition3.7.

Let T be any non-empty finite set. We consider finite sequences.t1; : : : ; tn/ of
elements ofT and write.t1; : : : ; tn/ 4 .t ′

1; : : : ; t ′
n′/ if .t1; : : : ; tn/ is a subsequence

of .t ′
1; : : : ; t ′

n′/, that is, if there is a one-one order-preserving map� : {1; : : : ;n} →
{1; : : : ;n′} such thatti = t ′

i� for i = 1; : : : ;n. Clearly4 is a quasi-order (in fact a
partial-order). The following result is a special case of [6, Theorem 4.3].

LEMMA 3.6. The set of all finite sequences of elements ofT is well-quasi-ordered
under the relation4.
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We define an.S;T/-form to be a quadruple.V; �; X; t/ where.V; �; X/ is anS-
triple andt is an orderedd-tuple.t1; : : : ; td/ of elements ofT , with d = rank.V/. We
say that.S;T/-forms .V; �; X; t/ and.V ′; � ′; X′; t ′/ are isomorphicif the S-triples
.V; �; X/ and.V ′; � ′; X′/ are isomorphic andt = t ′. Let rank.V/ = d, rank.V ′/ = d′,
X = {x1; : : : ; xd} andX′ = {x′

1; : : : ; x ′
d′ }. Write .V; �; X; t/ 4 .V ′; � ′; X′; t ′/ if there

is a one-one order-preserving map� : {1; : : : ;d} → {1; : : : ;d′} together with an
S-form homomorphism¾ : .V; �/ → .V ′; � ′/ such that, fori = 1; : : : ;d, ti = t ′

i� and

xi ¾ = x′
i� + zi ; for somezi ∈ 〈x′

1; x′
2; : : : ; x ′

i�−1〉:(3.4)

Clearly 4 is a quasi-order on the set of all.S;T/-forms, and we observe that
.V; �; X; t/ 4 .V ′; � ′; X′; t ′/ implies.V; �; X/ 4 .V ′; � ′; X′/.

An .S;T/-form .V; �; X; t/ is said to beN-regular if the S-triple .V; �; X/ is N-
regular. For givenS, T andN we writeZ for the set of allN-regular.S;T/-forms.

PROPOSITION3.7. The set.Z ;4/ is well-quasi-ordered.

PROOF. Let Z.1/; Z .2/; Z .3/; : : : be an infinite sequence ofN-regular.S;T/-forms.
It suffices to show that there exist integersi and j with i < j such thatZ .i / 4 Z. j /.
For eachi , let Z .i / = .V .i /; � .i /; X.i /; t .i // and use further notation for.V .i /; � .i /; X.i //

exactly as in the proof of Proposition3.5. Also, write t.i / = .t .i /1 ; : : : ; t .i /d.i //.
As in the proof of Proposition3.5, we may assume that{m.1/;m.2/; : : : } is un-

bounded and we may pass to a subsequence with the property (3.2) for all n ∈ N.
But, for eachn and eachk ∈ {1; : : : ; N[n]}, there are only finitely many possibilities
for t .i /k ; thus we may also assume that, for allk ∈ {1; : : : ; N[n]}, t .i /k is independent of
i for all i ≥ n.

DefineV , X, � , P, Q andr as before. Also, for eachk ∈ N, definetk to be the
limiting value of t .i /k . Then definer .i / as before, but with the additional requirement
thatt .i /k = t k for all k ∈ {1; : : : ; N[r .i /]}.

Definea.i /andb.i /as before andpass to an infinite subsequence with property (3.3)
for eachi . Also, definet i = (

t .i /a.i /+1; t .i /a.i /+2; : : : ; t .i /d.i /

)
for eachi . By Lemma3.6, there

exist i and j with i < j such thatt i is a subsequence oft j . Hence, by passing to
an infinite subsequence ofZ.1/; Z .2/; : : : , we may assume thatt1 is a subsequence
of t2. Thus there is a one-one order-preserving map� : {a.1/ + 1; : : : ;d.1/} →
{a.2/ + 1; : : : ;d.2/} such thatt.1/i = t .2/i� for i = a.1/+ 1; : : : ;d.1/. We may extend
� to a one-one order-preserving map� : {1; : : : ;d.1/} → {1; : : : ;d.2/} by defining
i� = i for i = 1; : : : ;a.1/.

As in the proof of Proposition3.5, there is a homomorphism ofS-forms ¾ :
.V .1/; � .1// → .V .2/; � .2// such that¾ has the form required in (3.4). For i =
1; : : : ;a.1/, we havet .1/i = t .2/i = t i , sincea.1/ ≤ N[r .1/] ≤ N[r .2/], and sot .1/i = t .2/i� ,
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sincei = i�. Also, for i = a.1/ + 1; : : : ;d.1/, we havet .1/i = t .2/i� by the choice of
�. ThusZ.1/ 4 Z.2/.

An alternating S-form is anS-form .V; �/ such that�.v; v/ = 0 for all v ∈ V .
Consider now the case whereS= K . An alternatingK -form.V; �/ is calledstandard
with respect to the ordered basis{x1; : : : ; xd} of V if �.xi ; xj / = 0 for all i; j such
that 1≤ i < j ≤ d and.i; j / =∈ {.1;2/; .3;4/; : : : ; .2[d=2] − 1;2[d=2]/}.

LEMMA 3.8 (compare [2]). Let n0 be an integer, withn0 ≥ 2, and letK = Z=n0Z.
Let .V; �/ be an alternatingK -form. Then there is aK -basis{x1; : : : ; xd} of V such
that .V; �/ is standard with respect to{x1; : : : ; xd}.

PROOF. Chooseu1;u2 ∈ V such that the additive cyclic subgroup〈�.u1;u2/〉 of K
has largest possible order. Letx1 be an element ofV of ordern0 such thatu1 ∈ 〈x1〉.
Note thatx1 belongs to some basis ofV. By maximality,〈�.u1;u2/〉 = 〈�.x1;u2/〉.
Hence we may replaceu1 by x1. LetU be a submodule ofV such thatV = 〈x1〉⊕U . If
U = {0} then{x1} is the required basis, so supposeU 6= {0}. Writeu2 = u′

2+u where
u′

2 ∈ 〈x1〉 andu ∈ U . Clearly we may replaceu2 byu. Then, as before,we may replace
u by an elementx2 which belongs to a basis ofU . Thus{x1; x2} is contained in a basis
of V . SetW = {w ∈ V : �.x1;w/ = �.x2;w/ = 0}. Letv ∈ V . The choice ofx1 and
x2 shows that�.x1; x2/ is a generator of the cyclic group{�.x1;u/ : u ∈ V}. Hence
there exists½ ∈ K such that�.x1; v/ = ½�.x1; x2/. Similarly there exists¼ ∈ K such
that�.v; x2/ = ¼�.x1; x2/. It follows thatv−¼x1−½x2 ∈ W and sov ∈ 〈x1; x2〉+W.
ThereforeV = 〈x1; x2〉 + W. Thus we may find a basis{x1; x2;w1; : : : ; wd−2} of V
with w1; : : : ; wd−2 ∈ W. The lemma follows by an inductive argument applied to
〈w1; : : : ; wd−2〉.

4. Direct powers of finite groups

In this section we shall obtain some results which will be useful for both TheoremC
and TheoremD.

Let G be a finite group and letD be the (restricted) direct productD = ∏
i ∈N Gi

whereGi = G for all i . Thus the elements ofD may be regarded as sequences of the
form .g1; g2; : : : / wheregi ∈ G for all i and where{i : gi 6= 1} is finite.

Let � : N → N be a one-one order-preserving function. LetX be a finite subset
of N \N� and let¦ : X → N� be a function such thatj < j¦ for all j ∈ X. Given
such�, X and¦ , let ¾ be the endomorphism ofD defined by

.g1; g2; : : : /¾ = .g′
1; g′

2; : : : /;
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whereg′
j = gi if j = i�, g′

j = 1 if j =∈ N� ∪ X, andg′
j = g′

j¦ if j ∈ X. Let4 be the
set of all such endomorphisms ofD (for all possible choices of�, X and¦ ).

Let ≤ be a total order onG which is arbitrary except that 1≤ g for all g ∈ G.
Then the setD may be ordered lexicographically from the right: ifd;d′ ∈ D where
d = .g1; g2; : : : / andd′ = .g′

1; g′
2; : : : /, we setd < d′ if there existsl ∈ N such that

gl < g′
l but gi = g′

i for all i > l . Clearly .D;≤/ is well-ordered, and it is easy to
prove the following result.

LEMMA 4.1. Let d;d′ ∈ D and let¾ ∈ 4. If d < d′ thend¾ < d′¾ .

For d ∈ D, whered = .g1; g2; : : : /, write

span.d/ = {g ∈ G \ {1} : g = gi for somei };

and, forg ∈ span.d/, let i g.d/ denote the largesti such thatgi = g.
Let d andd′ be elements ofD, whered = .g1; g2; : : : / andd′ = .g′

1; g′
2; : : : /.

Write d 4 d′ if span.d/ = span.d′/ and there is a one-one order-preserving function
� : N → N such thatgi = g′

i� for all i and i g.d/� = i g.d′/ for all g ∈ span.d/.
Clearly.D;4/ is quasi-ordered (in fact, partially-ordered).

LEMMA 4.2. The set.D;4/ is well-quasi-ordered.

PROOF. Let m = |G \ {1}| and assumem ≥ 1 (the result is trivial form = 0).
Write G \ {1} = {a1; : : : ;am}. For d ∈ D andk = 1; : : : ;m, definepk.d/ = iak

.d/
if ak ∈ span.d/ and pk.d/ = 1 otherwise, so that we obtain anm + 1-tuples.d/ =
.p1.d/; : : : ; pm.d/;d/. Let d;d′ ∈ D, whered = .g1; g2; : : : / andd′ = .g′

1; g′
2; : : : /.

Following the notation of [3], we writes.d/ 48 s.d′/ if there exists a one-one order-
preserving map� : N → N such thatgi = g′

i� for all i and pi .d/� = pi .d′/ for
i = 1; : : : ;m. By [3, Lemma 3.2], the set ofm + 1-tupless.d/ is well-quasi-ordered
under48. But s.d/ 48 s.d′/ impliesd 4 d′. The result follows.

Let F be any field. Then each non-zero elementu of the group algebraFD can
be written (uniquely) in the formu = ½1d1 + · · · + ½r dr whered1; : : : ;dr ∈ D,
d1 > · · · > dr and½1; : : : ; ½r ∈ F \ {0}. The largest group elementd1 is called the
leading group elementof u and we writed1 = lead.u/. Since every endomorphism
of D extends toFD, each element of4 acts onFD. For S ⊆ FD we write 〈S〉4 for
the4-closed subspace ofFD generated byS.

LEMMA 4.3. Let u and v be non-zero elements ofFD with lead.u/ 4 lead.v/.
Then there existsv∗ ∈ FD such that〈u; v〉4 = 〈u; v∗〉4 and eitherv∗ = 0 or
lead.v∗/ < lead.v/.
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PROOF. Write u = ½1d1 + · · · + ½r dr andv = ½′
1d′

1 + · · · + ½′
sd

′
s where thedi and

d′
i are elements ofD, d1 > · · · > dr , d′

1 > · · · > d′
s, and the½i and½′

i are elements
of F \ {0}. Write d = d1 = lead.u/ andd′ = d′

1 = lead.v/. Thusd 4 d′. Let
d = .g1; g2; : : : / andd′ = .g′

1; g′
2; : : : /, and let� : N → N be as in the definition of

d 4 d′. Let X = { j : j =∈ N� and g′
j 6= 1}. By the definition ofd 4 d′ we have

i g.d′/ ∈ N� for all g ∈ span.d′/. For eachj ∈ X let j¦ = i g.d′/ whereg = g′
j .

Let ¾ be the element of4 corresponding to�, X and¦ . Then it is easy to check that
d¾ = d′. Hence, by Lemma4.1, lead.u¾/ = d′ = lead.v/. Let v∗ = v − ½′

1½
−1
1 .u¾/.

Then the result follows.

PROPOSITION4.4. The maximal condition holds for4-closed subspaces ofFD.

PROOF. Let U be a4-closed subspace ofFD. It suffices to prove thatU is finitely
generated as a4-closed subspace. By Lemma4.2, there exists a finite subsetS of
U \ {0} such that for allv ∈ U \ {0} there existsu ∈ S such that lead.u/ 4 lead.v/.
We claim thatU = 〈S〉4. Suppose, in order to get a contradiction, that there exists
v ∈ U such thatv =∈ 〈S〉4, and choose suchv so that lead.v/ is as small as possible
in the well-ordered set.D;≤/. There existsu ∈ S such that lead.u/ 4 lead.v/. By
Lemma4.3, there existsv∗ ∈ FD such that〈u; v〉4 = 〈u; v∗〉4 and eitherv∗ = 0 or
lead.v∗/ < lead.v/. Sincev =∈ 〈u〉4, we havev∗ 6= 0. Sincev∗ ∈ 〈u; v〉4 ⊆ U , the
choice ofv givesv∗ ∈ 〈S〉4. Hencev ∈ 〈u; v∗〉4 ⊆ 〈S〉4, and we have the required
contradiction.

Let n be a positive integer and letE be a free group of countably infinite rank in
the varietyAn. Let0 be the set of all endomorphisms ofE.

PROPOSITION4.5. For each positive integerr , the maximal condition holds for
0-closed subspaces ofF.E×r /.

PROOF. Clearly we may assumen > 1. Let {x1; x2; : : : } be a free generating set
for E. For eachi ∈ N, let Gi be the subgroup ofE×r generated by the elements
.xi ;1; : : : ;1/, .1; xi ;1; : : : ;1/, : : : , .1; : : : ;1; xi /. Write G = G1. ThusG is a finite
group. ClearlyE×r is the direct product of the groupsGi and, for eachi , there is an
obvious isomorphism fromG to Gi . Thus we may identifyE×r with the direct power
D of G considered above. The result will follow from Proposition4.4if we can show
that every element of4 is induced by some element of0. Let¾ ∈ 4 and suppose that
¾ is associated with�, X and¦ , in the notation used before. Define a homomorphism
 : E → E by xi = xi�

∏
j ∈X; j¦=i� xj , for eachi , where the product is taken over

all those values ofj , if any, which lie inX and satisfyj¦ = i�. It is straightforward
to verify that induces¾ .
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5. Proof of TheoremC

We use the notation of Section1. In particular,n is a positive integer,A is a free
group ofN2;n of countably infinite rank,9 is the set of endomorphisms ofA andF
is a field of characteristic not dividingn. We shall describe the proof of TheoremC
only in the caser = 2. The proof for generalr is essentially the same, but greater
notational complexity is required forr > 2.

Let F be the algebraic closure ofF. If I is a9-closed left ideal ofF.A × A/ then
F ⊗F I is a9-closed left ideal ofF.A × A/, andI = F.A × A/ ∩ F ⊗F I . Therefore
we may assume thatF = F. We writeF× for the multiplicative groupF \ {0}.

Let {xi : i ∈ N} be a free generating set ofA and, for each positive integerk, let
Ak be the subgroup〈x1; : : : ; xk〉. Definen0 by n0 = n if n is odd andn0 = n=2 if n
is even. For alla;b ∈ A we have.ab/n = 1 and hence[a;b]n0 = [an0;b] = 1. Thus
.A′/n0 = {1} and An0 is central inA. It is easily verified that the relationsxn

i = 1
and[xi ; xj ]n0 = 1, for all i; j ∈ {1; : : : ; k}, imposed on the free nilpotent group of
class 2 on free generatorsx1; : : : ; xk, give a group of exponentn, which is therefore
isomorphic toAk. It follows that A′

k is a free abelian group of exponentn0 with basis
{[xi ; xj ] : 1 ≤ i < j ≤ k}. If n ≤ 2, thenA is the free group of countably infinite
rank in the varietyAn, and, in this case, TheoremC follows from Proposition4.5.
Thus we assume thatn > 2, so thatn0 > 1.

Let K = Z=n0Z and let! be a primitiven0-th root of unity inF. Thus!½ is
well-defined for all½ ∈ K , and{!½ : ½ ∈ K } is the cyclic subgroup ofF× consisting
of all n0-th roots of unity inF.

Let Qk be the set of all ordered pairs.i; j / with 1 ≤ i < j ≤ k, and let1k be the
set of all functionsŽ : Qk → K . For eachŽ ∈ 1k there is a group homomorphism
�Ž : A′

k → F
× determined by�Ž.[xi ; xj ]/ = !Ž.i; j / for all .i; j / ∈ Qk. Since the

elements[xi ; xj ] form a basis forA′
k, every homomorphismA′

k → F
× arises in this

way from someŽ. We extend�Ž by linearity to a function�Ž : FA′
k → F. In

the language of representation theory, the functions�Ž are the characters afforded
by the irreducible representations of the abelian groupA′

k over F, all of which are
one-dimensional.

For eachŽ ∈ 1k, let eŽ be the element ofFA′
k defined by

eŽ = 1

|A′
k|

∑
a∈A′

k

�Ž.a
−1/a:(5.1)

The elementseŽ have the following properties, which may be verified by elementary
representation theory or direct calculation.

weŽ = �Ž.w/eŽ for all Ž ∈ 1k and all w ∈ FA′
k:(5.2)

�Ž.eŽ/ = 1 and e2
Ž = eŽ for all Ž ∈ 1k:(5.3)
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�Ž′.eŽ/ = 0 and eŽeŽ′ = 0 for all Ž; Ž ′ ∈ 1k with Ž 6= Ž′:(5.4) ∑
Ž∈1k

eŽ = 1:(5.5)

Thus the elementseŽ are pairwise orthogonal idempotents. They form a basis
of FA′

k and eacheŽ spans a one-dimensional ideal ofFA′
k. Within the larger group

algebrasFAk andFA, theeŽ are central idempotents. For eachŽ, let IŽ = .FAk/eŽ.
Thus IŽ is the (two-sided) ideal ofFAk generated byeŽ. By (5.3), (5.4) and (5.5),

FAk =
⊕
Ž∈1k

IŽ :(5.6)

It follows from (5.6) and (5.2) that FAk is spanned by all elements of the form
xÞ1

1 · · · xÞk
k eŽ with Ž ∈ 1k andÞi ∈ Z=nZ for i = 1; : : : ; k. It is easily checked that

there are exactly|Ak| such elements. Hence they form a basis forFAk and, for fixed
Ž, the elementsxÞ1

1 · · · xÞk
k eŽ form a basis forIŽ.

If  : Ak → Al is a homomorphism, wherek; l ∈ N, then extends to a
homomorphismFAk → FAl , which we also denote by . In particular, : Ak → Ak

extends to : FAk → FAk.
For eachk, write Ãk = Ak=A′

k.Ak/
n0 and, fora ∈ Ak, write ã = a A′

k.Ak/
n0 ∈ Ãk.

Thus Ãk is a free abelian group of exponentn0 with basis{x̃1; : : : ; x̃k}. We shall
usually think ofÃk in additive notation: thus we may regard it as a freeK -module.

If  : Ak → Al is a homomorphism, we writẽ for the induced homomorphism
from Ãk to Ãl . In particular, if� ∈ Aut.Ak/ then�̃ ∈ Aut.Ãk/.

For eachŽ ∈ 1k, let �Ž be the alternatingK -form on Ãk satisfying�Ž.x̃i ; x̃ j / =
Ž.i; j / for all .i; j / ∈ Qk. Clearly every alternatingK -form on Ãk arises in this way
from someŽ. Since�Ž.[xi ; xj ]/ = !Ž.i; j / it is straightforward to verify that

�Ž.[a1;a2]/ = !�Ž.ã1;ã2/ for all a1;a2 ∈ Ak:(5.7)

LEMMA 5.1. Let Ž ∈ 1k and � ∈ Aut.Ak/. TheneŽ� = e" where" ∈ 1k and
�".ã1; ã2/ = �Ž.ã1�̃

−1; ã2�̃
−1/ for all a1;a2 ∈ Ak.

PROOF. The mapa 7→ �Ž.a�−1/ is a homomorphism fromA′
k to F×. Hence there

exists" ∈ 1k such that�".a/ = �Ž.a�−1/ for all a ∈ A′
k. By direct calculation we

obtain eŽ� = e". Also, for all a1;a2 ∈ Ak, (5.7) gives!�".ã1;ã2/ = �".[a1;a2]/ =
�Ž.[a1;a2]�−1/ = �Ž.[a1�

−1;a2�
−1]/ = !�Ž.ã1�̃

−1;ã2�̃
−1/. The result follows.

LEMMA 5.2. Let Ž ∈ 1k and " ∈ 1l , wherek; l ∈ N. Let  : Ak → Al be a
homomorphism which induces a homomorphism ofK -forms from. Ãk; �Ž/ to .Ãl ; �"/

(that is,�Ž.ã1; ã2/ = �".ã1 ̃; ã2 ̃/ for all a1;a2 ∈ Ak). Then.eŽ /e" = e".
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PROOF. For alla1;a2 ∈ Ak,

�Ž.[a1;a2]/ = !�Ž.ã1;ã2/ = !�".ã1 ̃;ã2 ̃/ = �".[a1 ;a2 ]/ = �".[a1;a2] /:
It follows that�Ž.w/ = �".w / for all w ∈ FA′

k. Therefore, by (5.2) and (5.3),

.eŽ /e" = �".eŽ /e" = �Ž.eŽ/e" = e".

For eachk, we considerF.Ak × Ak/, identified withFAk ⊗F FAk. If  : Ak → Al

is a homomorphism, then yields homomorphisms : Ak × Ak → Al × Al and
 : F.Ak × Ak/ → F.Al × Al /. For Ž; Ž′ ∈ 1k, we writeeŽ ⊗ eŽ′ aseŽŽ′ and IŽ ⊗ IŽ′
as IŽŽ′ . Thus, by (5.6),

F.Ak × Ak/ =
⊕
Ž;Ž′∈1k

IŽŽ′ :(5.8)

Also, IŽŽ′ is the ideal ofF.Ak × Ak/ generated by the central idempotenteŽŽ′, and∑
Ž;Ž′ eŽŽ′ = 1.

For Ž; Ž ′ ∈ 1k, let �ŽŽ′ be the alternatingK ⊕ K -form on Ãk determined by
�ŽŽ′.x̃i ; x̃ j / = .�Ž.x̃i ; x̃ j /; �Ž′.x̃i ; x̃ j // for all .i; j / ∈ Qk. Every alternatingK ⊕ K -
form on Ãk arises in this way from someŽ, Ž′.

The following two results are easily deduced from Lemma5.1 and Lemma5.2,
respectively.

LEMMA 5.3. Let Ž; Ž ′ ∈ 1k and� ∈ Aut.Ak/. TheneŽŽ′� = e"" ′ where"; "′ ∈ 1k

and�"" ′.ã1; ã2/ = �ŽŽ′.ã1�̃
−1; ã2�̃

−1/ for all a1;a2 ∈ Ak.

LEMMA 5.4. Let Ž; Ž ′ ∈ 1k and"; "′ ∈ 1l , wherek; l ∈ N. Let : Ak → Al be
a homomorphism which induces a homomorphism ofK ⊕ K -forms from. Ãk; �ŽŽ′/ to
.Ãl ; �"" ′/. Then.eŽŽ′ /e"" ′ = e"" ′.

Let N = n0.2n4
0 + n2

0/. By Lemma3.3, every K ⊕ K -form is N-regular with
respect to some basis. ForŽ; Ž ′ ∈ 1k, we say that�ŽŽ′ is regular if it is N-regular with
respect to the basis{x̃1; : : : ; x̃k} of Ãk.

LEMMA 5.5. Let Ž; Ž ′ ∈ 1k. Then there exists� ∈ Aut.Ak/ such thateŽŽ′� = e"" ′

where"; "′ ∈ 1k and�"" ′ is regular.

PROOF. By Lemma3.3, there is a basis{ã1; : : : ; ãk} of Ãk such that.Ãk; �ŽŽ′/ is
N-regular with respect to this basis. It is easily verified that there exists a generating
set{y1; : : : ; yk} of Ak such that̃yi = ãi for i = 1; : : : ; k. SinceAk is a finite relatively
free group of rankk, it follows that{y1; : : : ; yk} is a free generating set. Let� be the
automorphism ofAk satisfyingyi� = xi for i = 1; : : : ; k. By Lemma5.3, eŽŽ′� = e"" ′

where�"" ′.x̃i ; x̃ j / = �ŽŽ′.ỹi ; ỹj / for all .i; j / ∈ Qk. Thus�"" ′ is regular.
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LEMMA 5.6. Let Ž; Ž ′ ∈ 1k and"; "′ ∈ 1l , wherek; l ∈ N, and considerIŽŽ′ and
I"" ′ as subsets ofF.A × A/. ThenIŽŽ′ ∩ I"" ′ = {0} unlessk = l , Ž = Ž′ and" = "′.

PROOF. Suppose thatk < l . It is easily verified that.[xl−1; xl ]⊗1/w =∈ F.Ak × Ak/

for all w ∈ F.Ak × Ak/ \ {0}. On the other hand, for allv ∈ I"" ′, the element
.[xl−1; xl ] ⊗ 1/v is a scalar multiple ofv by (5.2). ThusIŽŽ′ ∩ I"" ′ = {0}. If k = l then
IŽŽ′ ∩ I"" ′ 6= {0} impliesŽ = Ž′ and" = "′ by (5.8).

A non-zero elementw of F.A× A/ will be calledregular if w ∈ IŽŽ′ for somek and
someŽ; Ž ′ ∈ 1k such that�ŽŽ′ is regular. (By Lemma5.6, k, Ž andŽ′ are then unique.)

LEMMA 5.7. Every9-closed left ideal ofF.A × A/ is generated, as a9-closed
vector space, by regular elements.

PROOF. Let J be a9-closed left ideal ofF.A × A/ and letJ0 be the vector space
spanned by all elementsv wherev is a regular element ofJ and ∈ 9. It suffices to
show thatJ = J0. ClearlyJ0 ⊆ J. Letw ∈ J. Thenw ∈ F.Ak × Ak/ for somek, and
we havew = (∑

Ž;Ž′∈1k
eŽŽ′

)
w = ∑

Ž;Ž′∈1k
.eŽŽ′w/, whereeŽŽ′w ∈ J ∩ IŽŽ′ . It suffices

to show thateŽŽ′w ∈ J0. Clearly we may assume thateŽŽ′w 6= 0. By Lemma5.5, there
exists� ∈ Aut.Ak/ such that.eŽŽ′w/� is regular. But.eŽŽ′w/� ∈ J, since� extends to
an automorphism ofA. ThuseŽŽ′w = .eŽŽ′w/��−1 ∈ J0.

Let Ž; Ž ′ ∈ 1k. Since the elementsxÞ1
1 · · · xÞk

k eŽ with Þi ∈ Z=nZ form a basis ofIŽ ,
the elements (

xÞ1
1 · · · x

Þk
k ⊗ xÞ

′
1

1 · · · x
Þ′

k
k

)
eŽŽ′ ;(5.9)

with Þi ; Þ
′
i ∈ Z=nZ, form a basis ofIŽŽ′ .

An element ofF.A× A/ will be called amonomialif it has the form (5.9) for some
k and someŽ; Ž′ ∈ 1k, and aregular monomialif �ŽŽ′ is regular. We writeM for the
set of all monomials,M ∗ for the set of all regular monomials, andMŽŽ′ for the set of
all monomials ofIŽŽ′ .

Let T = Z=nZ × Z=nZ, that is, the Cartesian square of the setZ=nZ. With the
monomial (5.9) we associate thek-tuple .t1; t2; : : : ; tk/ whereti = .Þi ; Þ

′
i / ∈ T for

i = 1; : : : ; k. Let ≤ be a total order onT which is arbitrary except that.0;0/ ≤ t for
all t ∈ T . Then the set of allk-tuples of elements ofT can be ordered lexicographically
from the right: if t = .t1; : : : ; tk/ andt ′ = .t ′

1; : : : ; t ′
k/ are two suchk-tuples, we set

t < t ′ if there existsq ∈ {1; : : : ; k} such thattq < t ′
q but ti = t ′

i for i = q + 1; : : : ; k.
Hence, forŽ; Ž ′ ∈ 1k, we obtain an order≤ on the finite setMŽŽ′ .

Each non-zero elementf of IŽŽ′ can be written (uniquely) in the formf = ½1w1 +
· · · + ½rwr , wherew1; : : : ; wr ∈MŽŽ′, w1 > · · · > wr , and½1; : : : ; ½r ∈ F \ {0}. The
largest monomialw1 is called theleading monomialof f , and we writew1 = lead. f /.
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We shall now define a quasi-order onM . Let Ž; Ž ′ ∈ 1k and "; "′ ∈ 1l . Let
v ∈MŽŽ′ andw ∈M"" ′, where

v = (
xÞ1

1 · · · x
Þk
k ⊗ xÞ

′
1

1 · · · x
Þ′

k
k

)
eŽŽ′ ; w = (

xþ1
1 · · · x

þl
l ⊗ xþ

′
1

1 · · · x
þ ′

l
l

)
e"" ′:

We write v 4 w if there is a one-one order-preserving map� : {1; : : : ; k} →
{1; : : : ; l } together with a homomorphism : Ak → Al with the following three
properties.

.i/ For i = 1; : : : ; k, we havexi = zi xi� for somezi ∈ 〈x1; : : : ; xi�−1〉.
.ii/  induces a homomorphism ofK ⊕ K -forms from.Ãk; �ŽŽ′/ to .Ãl ; �"" ′/.
.iii / For i = 1; : : : ; k, we haveÞi = þi� andÞ′

i = þ ′
i�.

It is straightforward to check that.M ;4/ is a quasi-ordered set. Thus.M ∗;4/ is
quasi-ordered. LetZ be the set of allN-regular.K ⊕ K ;T/-forms as defined in
Section3 with S = K ⊕ K . Thus, by Proposition3.7, .Z ;4/ is well-quasi-ordered,
where4 is as defined in Section3. Letv ∈M ∗, where

v = (
x
Þ1
1 · · · x

Þk
k ⊗ x

Þ′
1

1 · · · x
Þ′

k
k

)
eŽŽ′ ;

with Ž; Ž ′ ∈ 1k and�ŽŽ′ regular. Then we can defineZ.v/ ∈ Z by

Z.v/ = (
Ãk; �ŽŽ′ ; {x̃1; : : : ; x̃k}; t

)
;

wheret = ..Þ1; Þ
′
1/; : : : ; .Þk; Þ

′
k//. It is straightforward to verify that ifv andw are

elements ofM ∗ such thatZ.v/ 4 Z.w/ thenv 4 w. Hence Proposition3.7 gives
the following result.

PROPOSITION5.8. The set.M ∗;4/ is well-quasi-ordered.

If S is any set of elements ofF.A × A/ we writeL9.S/ for the9-closed left ideal
generated byS.

LEMMA 5.9. Let f ∈ IŽŽ′ \ {0} andg ∈ I"" ′ \ {0} whereŽ; Ž ′ ∈ 1k and"; "′ ∈ 1l .
Suppose thatlead. f / 4 lead.g/. Then there existsg∗ ∈ I"" ′ such thatL9{ f; g} =
L9{ f; g∗} and eitherg∗ = 0 or lead.g∗/ < lead.g/.

PROOF. Write f = ½1v1+· · ·+½rvr , wherevi ∈MŽŽ′ and½i ∈ F\{0} for all i , and
wherevi < v1 for all i ≥ 2. Similarly, writeg = ¼1w1+· · ·+¼sws, wherewi ∈M"" ′

and¼i ∈ F \ {0} for all i , and wherewi < w1 for all i ≥ 2. Writev = v1 = lead. f /
andw = w1 = lead.g/. Thusv 4 w. We use the notation forv andw given in the
definition of4. Let� and be as in that definition. Leth1 andh2 be the elements of
F.Al × Al / defined by

h1 = (
xÞ1

1� · · · xÞk
k� ⊗ xÞ

′
1

1� · · · xÞ
′
k

k�

) ((
xÞ1

1 · · · xÞk
k ⊗ xÞ

′
1

1 · · · xÞ
′
k

k

)−1
 

)
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andh2 = ∏
j ∈C xþ j

j ⊗ ∏
j ∈C x

þ ′
j

j , whereC = {1; : : : ; l } \ {1�; : : : ; k�}. Then

h1.v / = (
xÞ1

1� · · · x
Þk

k� ⊗ xÞ
′
1

1� · · · x
Þ′

k

k�

)
.eŽŽ′ /;

and so, by Lemma5.4,

h1.v /e"" ′ = (
x
Þ1
1� · · · x

Þk
k� ⊗ x

Þ′
1

1� · · · x
Þ′

k
k�

)
e"" ′ = (

x
þ1�

1� · · · x
þk�

k� ⊗ x
þ ′

1�

1� · · · x
þ ′

k�

k�

)
e"" ′:

Thereforeh2h1.v /e"" ′ = (
xþ1

1 · · · xþl
l ⊗ xþ

′
1

1 · · · xþ
′
l

l

)
.a ⊗ a′/e"" ′, wherea;a′ ∈ A′

l .
By (5.2), .a ⊗ a′/e"" ′ = ½e"" ′ where½ ∈ F \ {0}. Hence

h2h1.v /e"" ′ = ½
(
x
þ1
1 · · · x

þl
l ⊗ x

þ ′
1

1 · · · x
þ ′

l
l

)
e"" ′ = ½w:

Now letu be an element ofMŽŽ′ such thatu<v. Writeu =(
x
1
1 · · · x

k
k ⊗x

 ′
1

1 · · · x
 ′

k
k

)
eŽŽ′ .

Thus there existsq ∈ {1; : : : ; k} such that.q; 
′

q/ < .Þq; Þ
′
q/ but .i ; 

′
i / = .Þi ; Þ

′
i /

for i = q + 1; : : : ; k. We can write(
xÞ1

1 · · · x
Þk
k ⊗ xÞ

′
1

1 · · · x
Þ′

k
k

)−1(
x1

1 · · · x
k
k ⊗ x

′
1

1 · · · x
 ′

k
k

)
= (

x1−Þ1
1 · · · x

k−Þk
k ⊗ x

′
1−Þ′

1
1 · · · x

 ′
k−Þ′

k
k

)
.b ⊗ b′/

whereb;b′ ∈ A′
k. By (5.2), .b ⊗ b′/ e"" ′ = ¹e"" ′ where¹ ∈ F \ {0}. Hence

h1.u /e"" ′ = ¹.xÞ1
1� · · · xÞk

k� ⊗ x
Þ′

1
1� · · · x

Þ′
k

k�/..x
1−Þ1

1 · · · xk−Þk

k ⊗ x
 ′

1−Þ′
1

1 · · · x
 ′

k−Þ′
k

k / /e"" ′

= ¹.xÞ1
1� · · · xÞk

k� ⊗ xÞ
′
1

1� · · · xÞ
′
k

k�/..x
1−Þ1

1 · · · xq−Þq
q ⊗ x

′
1−Þ′

1
1 · · · x

 ′
q−Þ′

q
q / /e"" ′:

From the properties of we calculate that((
x1−Þ1

1 · · · x
q−Þq
q ⊗ x

′
1−Þ′

1
1 · · · x

 ′
q−Þ′

q
q

)
 

)
e"" ′

= ¹ ′(x
²1
1 · · · x

²q�−1

q�−1x
q−Þq

q� ⊗ x
² ′

1
1 · · · x

² ′
q�−1

q�−1x
 ′

q−Þ′
q

q�

)
e"" ′

where¹ ′ ∈ F \ {0} and²1; : : : ; ²q�−1; ²
′
1; : : : ; ²

′
q�−1 ∈ Z=nZ. Henceh1.u /e"" ′ has

the form

¹ ′′(x¦1
1 · · · x

¦q�−1

q�−1x
q

q�x
Þq+1

.q+1/� · · · xÞk
k� ⊗ x¦

′
1

1 · · · x
¦ ′

q�−1

q�−1x
 ′

q

q�x
Þ′

q+1

.q+1/� · · · xÞ
′
k

k�

)
e"" ′

where¹ ′′ ∈ F \ {0} and¦1; : : : ; ¦q�−1; ¦
′
1; : : : ; ¦

′
q�−1 ∈ Z=nZ. Thereforeh2h1.u /e"" ′

is a non-zero scalar multiple of a monomial of the form(
x
−1
1 · · · x

−q�−1

q�−1x
q

q�x
þq�+1

q�+1 · · · xþl

l ⊗ x
− ′

1
1 · · · x

− ′
q�−1

q�−1x
 ′

q

q�x
þ ′

q�+1

q�+1 · · · x
þ ′

l
l

)
e"" ′

where−1; : : : ; −q�−1; −
′
1; : : : ; −

′
q�−1 ∈ Z=nZ. Since.q; 

′
q/ < .Þq; Þ

′
q/ = .þq�; þ

′
q�/,

this monomial is smaller thanw.
Since h2h1. f /e"" ′ = ½1h2h1.v1 /e"" ′ + · · · + ½r h2h1.vr /e"" ′, we see that

h2h1. f  /e"" ′ has leading monomialw with coefficient½1½. Also, since extends to
an element of9, we haveh2h1. f  /e"" ′∈L9{ f }. Let g∗=g−¼1½

−1
1 ½

−1h2h1. f /e"" ′.
Theng∗ has the required properties.
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Now we are in a position to complete the proof of TheoremC. Let J be a9-closed
left ideal ofF.A× A/. It suffices to prove thatJ is finitely generated as a9-closed left
ideal. By Proposition5.8, there exists a finite setSof regular elements ofJ such that
for every regular elementg of J there existsf ∈ S such that lead. f / 4 lead.g/. We
claim thatJ = L9.S/. By Lemma5.7, it suffices to show that every regular element
of J belongs toL9.S/. Suppose, in order to get a contradiction, that this is not so, and
let g be a regular element ofJ such thatg =∈ L9.S/. Supposeg ∈ I"" ′. Chooseg with
the given properties such that lead.g/ is as small as possible in the finite set.M"" ′;≤/.
There existsf ∈ Ssuch that lead. f / 4 lead.g/. By Lemma5.9, there existsg∗ ∈ I"" ′

such thatL9{ f; g} = L9{ f; g∗} and eitherg∗ = 0 or lead.g∗/ < lead.g/. Since
g =∈ L9{ f }, we haveg∗ 6= 0. Sinceg∗ ∈ L9{ f; g} ⊆ J, the choice ofg gives that
g∗ ∈ L9.S/. Henceg ∈ L9{ f; g∗} ⊆ L9.S/ and we have the required contradiction.

6. Proof of TheoremD

Let n, A, 9, F and R be as in Section1, whereF is a field of characteristic not
dividing n. LetF be the algebraic closure ofF. The subalgebraF⊗F R of F.A × A/
corresponds toR in F.A × A/. If M is an.R;9/-submodule ofF.A × A/ which
containsR, thenF ⊗F M is an.F ⊗F R;9/-submodule ofF.A × A/ which contains
F ⊗F R, andM = F.A × A/ ∩ F ⊗F M . Therefore, to prove TheoremD, we may
assume thatF = F.

We shall use the notation of Section5. If n ≤ 2, then TheoremD follows from
Proposition4.5. Thus, as in Section5, we assume thatn > 2, so thatn0 > 1.

Let P be the subgroup ofA × A defined byP = {.c; c−1/ : c ∈ A′} and let
H = .A × A/=P. Note thatP is a9-closed subgroup ofA × A, so each element of
9 induces endomorphisms ofH andFH . For i; j ∈ N, let ci j be the element ofH
given byci j = .[xi ; xj ];1/P = .1; [xi ; xj ]/P.

For each positive integerk, let Hk be the subgroup ofH generated by the elements
.xi ;1/P and.1; xi /P for i = 1; : : : ; k. It is easily verified thatH ′

k is a free abelian
group of exponentn0 with basis{ci j : 1 ≤ i < j ≤ k}. Furthermore, there are
isomorphisms fromA′

k to H ′
k and fromFA′

k to FH ′
k given by [xi ; xj ] 7→ ci j for all

i; j . If  : Ak → Al is a homomorphism, wherek; l ∈ N, then the associated
homomorphism : Ak × Ak → Al × Al yields homomorphisms : Hk → Hl and
 : FHk → FHl .

Let K = Z=n0Z, and letQk and1k be as in Section5. For eachŽ ∈ 1k, let �Ž
andeŽ be defined as in Section5, but with respect toH ′

k rather thanA′
k. Thus�Ž is

a character ofH ′
k andeŽ is an idempotent ofFH ′

k. Results (5.2)–(5.5) apply just as
before. ForŽ ∈ 1k we defineJŽ = .FHk/eŽ. ThusJŽ is the ideal ofFHk generated by
eŽ, and we haveFHk = ⊕

Ž∈1k
JŽ.
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For eachk we write Q0
k = Qk \ {.1;2/; .3;4/; : : : }. An elementŽ of 1k will be

calledstandardif Ž.i; j / = 0 (equivalently,�Ž.ci j / = 1) for all .i; j / ∈ Q0
k. We write

1∗
k for the set of all standard elements of1k and10

k = 1k \1∗
k.

For eachŽ ∈ 1k, let �Ž be the alternatingK -form on Ãk defined as in Section5.
Thus.Ãk; �Ž/ is standard with respect to{x̃1; : : : ; x̃k} (in the terminology of Section3)
if and only if Ž is standard, that is,Ž ∈ 1∗

k.

LEMMA 6.1. Let Ž ∈ 1k. Then there exists� ∈ Aut.Ak/ such that, for the induced
automorphism� : FHk → FHk, we haveeŽ� = e" where" ∈ 1∗

k.

PROOF. By Lemma3.8 there is a basis{ã1; : : : ; ãk} of Ãk such that.Ãk; �Ž/ is
standard with respect to this basis. As in the proof of Lemma5.5, there is a free
generating set{y1; : : : ; yk} of Ak such thatỹi = ãi for i = 1; : : : ; k. Let � be the
automorphism ofAk satisfying yi� = xi for i = 1; : : : ; k. Note that� acts on
A′

k just as� acts onH ′
k. Thus Lemma5.1 shows thateŽ� = e", where" ∈ 1k

and �".x̃i ; x̃ j / = �Ž.ỹi ; ỹj / for all i; j . Thus . Ãk; �"/ is standard with respect to
{x̃1; : : : ; x̃k}, that is," ∈ 1∗

k.

SinceFH ′ is a subalgebra ofFH , we may regardFH as a leftFH ′-module.
Following the terminology of Section1, we shall consider.FH ′;9/-submodules of
FH . A non-zero elementw of FH will be calledstandardif w ∈ JŽ for somek and
someŽ ∈ 1∗

k.

LEMMA 6.2. Every.FH ′;9/-submodule ofFH is generated, as a9-closed vector
space, by standard elements.

PROOF. This is similar to the proof of Lemma5.7, with Lemma6.1taking the place
of Lemma5.5.

Let C be the subgroup ofH generated by all elementsci j for which i < j and
.i; j / =∈ {.1;2/; .3;4/; : : : }. Let² be the natural homomorphism² : H → H=C. We
also denote by² the associated homomorphismsHk → H=C andFHk → F.H=C/.
Clearly the kernel of² : Hk → H=C is the subgroup ofHk generated by allci j for
which.i; j / ∈ Q0

k. Thus the kernel of² : FHk → F.H=C/ is the ideal generated by the
elementsci j −1 for.i; j / ∈ Q0

k. We write.FHk/
∗ = ⊕

Ž∈1∗
k

JŽ and.FHk/
0 = ⊕

Ž∈10
k

JŽ.

LEMMA 6.3. The kernel of² : FHk → F.H=C/ is .FHk/
0.

PROOF. Let Ž ∈ 10
k. Then�Ž.ci j / 6= 1 for some.i; j / ∈ Q0

k. By (5.2), .ci j − 1/eŽ
is a non-zero scalar multiple ofeŽ. But clearly.ci j −1/eŽ ∈ ker.²/. ThuseŽ ∈ ker.²/.
It follows that JŽ ⊆ ker.²/ and so.FHk/

0 ⊆ ker.²/.
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Let .i; j / ∈ Q0
k. Then, for" ∈ 1∗

k, we have.ci j − 1/e" = .�".ci j / − 1/e" = 0.
Henceci j −1 = .ci j −1/

∑
Ž∈1k

eŽ = .ci j −1/
∑

Ž∈10
k

eŽ. Henceci j −1 belongs to the
ideal.FHk/

0. Since this holds for all.i; j / ∈ Q0
k we obtain ker.²/ ⊆ .FHk/

0.

For k ∈ N, let k be the endomorphism ofA defined byxi k = 1 for i > k and
xi k = xi for i ≤ k. Also write k for the induced endomorphisms ofH andFH .

LEMMA 6.4. Letu ∈ .FHk/
∗ and letl ≥ k. Then there existsv ∈ .FHl /

∗ such that
v k = u andv² = u².

PROOF. Let B be the subgroup ofH ′
l generated by all elementsci j for .i; j / ∈

Q0
l \ Q0

k. Let v = u.|B|−1
∑

h∈B h/. Clearlyv k = u andv² = u². To prove that
v ∈ .FHl /

∗ it is enough to show thatve" = 0 for all " ∈ 10
l .

Let " ∈ 10
l . Then there exists.i; j / ∈ Q0

l such that�".ci j / 6= 1. We consider two
cases. Suppose first that.i; j / ∈ Q0

k. Then the restriction of�" to H ′
k has the form

�Ž′ for someŽ′ ∈ 10
k. Then for allŽ ∈ 1∗

k we haveeŽe" = �Ž′.eŽ/e" = 0, by (5.2) and
(5.4). Henceue" = 0 and sove" = 0. Suppose secondly that.i; j / ∈ Q0

l \ Q0
k. Then∑

h∈B h can be written asw.1+ ci j + · · · + cn0

i j / for somew ∈ FH ′
l . Since�".ci j / is a

non-trivialn0-th root of unity,�".1+ci j +· · ·+cn0
i j / = 0. Thus.1+ci j +· · ·+cn0

i j /e" = 0
and sove" = 0.

LEMMA 6.5. Suppose thatM1 and M2 are .FH ′;9/-submodules ofFH such that
M1² = M2². ThenM1 = M2.

PROOF. Suppose, in order to get a contradiction, thatM1 6= M2. Without loss of
generality we may assume thatM1 6⊆ M2. By Lemma6.2 there existk andŽ ∈ 1∗

k

such thatM1 ∩ JŽ 6⊆ M2. Hence there existsu ∈ .FHk/
∗ such thatu ∈ M1 \ M2. By

hypothesis there existsw ∈ M2 such thatu² = w². Choosel ≥ k such thatw ∈ FHl .
Thenw = w∗ +w0 wherew∗ ∈ .FHl /

∗ andw0 ∈ .FHl /
0. SinceM2 is anFH ′-module,

w∗ ∈ M2. Also u² = w² = w∗². By Lemma6.4 there existsv ∈ .FHl /
∗ such that

v k = u andv² = u². Thusv² = w∗². By Lemma6.3, this givesv = w∗ ∈ M2.
Henceu = v k ∈ M2, which is a contradiction.

Now we return to the groupH=C. Recall thatH = .A × A/=P. For each
i ∈ N, let Gi be the subgroup ofH=C generated by the four elements..x2i −1;1/P/²,
..1; x2i −1/P/², ..x2i ;1/P/² and ..1; x2i /P/². Write G = G1. ThusG is a finite
group. It is easily verified thatH=C is the direct product of the groupsGi , and,
for eachi , there is an obvious isomorphism fromG to Gi . Thus we may identify
H=C with the direct powerD of G considered in Section4. Let 4 be the set of
endomorphisms ofD defined in Section4.
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LEMMA 6.6. Let M be a9-closed subspace ofFH . Then M² is a 4-closed
subspace ofFD.

PROOF. Let ¾ ∈ 4 and suppose that¾ is associated with�, X and¦ in the notation
of Section4. It suffices to show that there exists an endomorphism of A such
that the induced endomorphism ofH leavesC invariant and induces¾ on H=C. To
simplify the notation we rewrite the generators ofA by settingyi = x2i −1 andzi = x2i

for all i ∈ N. We define a homomorphism : A → A by

yi = yi�

∏
j ∈X

j¦=i�

yj ; zi = zi�

∏
j ∈X

j¦=i�

zj ;

for eachi . The products are taken over all those values ofj , if any, which lie inX and
satisfy j¦ = i�, and the termsyj andzj are taken in increasing order ofj (this is an
arbitrary choice). It is straightforward to verify that has the required properties.

By Proposition4.4together with Lemma6.5and Lemma6.6we obtain

LEMMA 6.7. The maximal condition holds for.FH ′;9/-submodules ofFH .

Consider the natural homomorphism³ : A × A → H with kernelP, and letI be
the kernel of the corresponding homomorphism³ : F.A × A/ → FH .

LEMMA 6.8. The maximal condition holds for.R;9/-submodules ofF.A × A/
which containI .

PROOF. By Lemma6.7 it suffices to show that ifM is an.R;9/-submodule of
F.A × A/ which containsI then M³ is an.FH ′;9/-submodule ofFH . It is clear
that M³ is9-closed, by definition of the action of9 onFH . Also, M³ is a left R³-
submodule ofFH . Thus it suffices to show thatH ′ ⊆ R³ . SinceR³ is an algebra, it
suffices to show thatci j ∈ R³ for all i; j . Note that.[xi ; xj ] ⊗ [xi ; xj ]/³ = c2

i j and
.[xi ; xj ] ⊗ 1 + 1 ⊗ [xi ; xj ]/³ = 2ci j . Hencec2

i j ∈ R³ and 2ci j ∈ R³ . If n0 is odd
thenc2

i j ∈ R³ givesci j ∈ R³ . But if n0 is even thenF does not have characteristic 2
and 2ci j ∈ R³ givesci j ∈ R³ .

In the notation of Section5, we can writeF.Ak × Ak/ = ⊕
Ž;Ž′∈1k

IŽŽ′ . Note that

.eŽ ⊗ 1/³ = .1 ⊗ eŽ/³ = eŽ ∈ FH ′
k:

Hence, forŽ 6= Ž′, we haveeŽŽ′³ = eŽeŽ′ = 0 and soIŽŽ′ ⊆ ker.³/ = I . It is easily
checked that

⊕
Ž∈1k

IŽŽ andFHk have the same dimension. Hence

I ∩ F.Ak × Ak/ =
⊕
Ž;Ž′∈1k
Ž 6=Ž′

IŽŽ′ :(6.1)
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LEMMA 6.9. LetM be an.R;9/-submodule ofF.A×A/ such thatR∩ I ⊆ M ⊆ I ,
and let T be the largest9-closed left ideal ofF.A × A/ contained inM . Then
M = T + .R ∩ I /.

PROOF. Let L be the subspace ofM spanned by all elements ofM which have
the formweŽŽ′ wherew ∈ F.A × A/ andŽ; Ž′ ∈ 1k for somek, with Ž 6= Ž′. Let
weŽŽ′ be such an element ofM . Let  ∈ 9 anda;a′ ∈ A. Choosel ≥ k so that
eŽ ;eŽ′ ∈ FA′

l . SinceeŽ andeŽ′ are idempotents, we can writeeŽ = ∑
½∈3 e½

andeŽ′ = ∑
½′∈3′ e½′ where3;3′ ⊆ 1l . But .eŽ /.eŽ′ / = .eŽeŽ′/ = 0. Thus3

and3′ are disjoint. For" ∈ 3 and"′ ∈ 3′,

..a ⊗ a′/e"" ′ + .a′ ⊗ a/e"′"/.w /.eŽŽ′ / ∈ M;

becauseM is an.R;9/-module. However,eŽŽ′ = ∑
½;½′ e½½′ . Hencee"′".eŽŽ′ / = 0

ande"" ′.eŽŽ′ / = e"" ′. Therefore.a⊗a′/.w /e"" ′ ∈ M , and so.a⊗a′/.w /e"" ′ ∈ L.
Since this holds for all"; "′, we have.a ⊗ a′/.w /.eŽŽ′ / ∈ L. ThereforeL is a
9-closed left ideal ofF.A × A/. We next prove thatM = L + .R ∩ I /, which will
give the required result.

Let u ∈ M and choosek so thatu ∈ F.Ak × Ak/. SinceM ⊆ I we can use (6.1) to
write u = ∑

wŽŽ′ eŽŽ′, where the sum is over allŽ; Ž ′ ∈ 1k with Ž 6= Ž′ and eachwŽŽ′
belongs toF.Ak × Ak/. Let Ž; Ž′ ∈ 1k with Ž 6= Ž′. SinceM is anR-module,

.eŽŽ′ + eŽ′Ž/u = wŽŽ′ eŽŽ′ +wŽ′ŽeŽ′Ž ∈ M:

Writev = wŽŽ′ andv′ = wŽ′Ž. Then it suffices to show thatveŽŽ′ +v′eŽ′Ž ∈ L +.R∩ I /.
Let − be the involutory automorphism ofF.A × A/ satisfying.a ⊗ a′/− = a′ ⊗ a

for all a;a′ ∈ A. Thenw +w− ∈ R for all w ∈ F.A × A/. We can write

veŽŽ′ + v′eŽ′Ž = .v − v′−/eŽŽ′ + v′eŽ′Ž + .v′−/eŽŽ′ :(6.2)

Here

v′eŽ′Ž + .v′−/eŽŽ′ = v′eŽ′Ž + .v′eŽ′Ž/− ∈ R ∩ I :

SinceR∩ I ⊆ M , (6.2) gives.v− v′−/eŽŽ′ ∈ M , and so.v− v′−/eŽŽ′ ∈ L. Therefore,
by (6.2), veŽŽ′ + v′eŽ′Ž ∈ L + .R ∩ I /, as required.

To complete the proof of TheoremD, let M1 ⊆ M2 ⊆ : : : be an ascending chain
of .R;9/-submodules ofF.A × A/ which containR. By Lemma6.8 the chain
M1 + I ⊆ M2 + I ⊆ · · · becomes stationary. Thus it suffices to show that the chain
M1 ∩ I ⊆ M2 ∩ I ⊆ · · · becomes stationary. For eachi , let Ti be the largest9-closed
left ideal ofF.A × A/ contained inMi ∩ I . By Lemma6.9it suffices to show that the
chainT1 ⊆ T2 ⊆ · · · becomes stationary. But this holds by TheoremC.
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