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Abstract

For each positive integerlet N, , denote the variety of all groups which are nilpotent of class at most 2
and which have exponent dividimg For positive integers andn, let N, N2, denote the variety of all
groups which have a normal subgrougNgy, with factor group inN . Itis shown that ifG € N2 wNa.p,
wherem andn are coprime, the® has a finite basis for its identities.

2000Mathematics subject classificatioprimary 20E10.

1. Introduction

The finite basis question for a gro@ asks whether the set of all identities Gfis
equivalent to some finite set of identities. (We referl@] for terminology and basic
results concerned with varieties of groups, but we use the term ‘identity’ rather than
‘law’.) Between 1970 and 1973 a number of examples were published of groups for
which the answer is negative: se# for references covering this period and sBE [

for an account of more recent results. In the majority of these examples, the groups
are metanilpotent (that is, nilpotent-by-nilpotent) and have finite exponent. In the
simplest cases the groups belong to the vaiBiN, 4: here, for any positive integer

n, N, , denotes the variety of all groups which are nilpotent of class at most 2 and have
finite exponent dividingn, and, for varietiet) andV, VU denotes the product variety,
consisting of all groups which have a normal subgroup iwith factor group inU.
However, there are also many positive results. In particular, Lyntiirshowed that
every nilpotent group has a finite basis for its identities and Krasil'nik@y$howed,
much more generally, that the same is true for every nilpotent-by-abelian group.
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In the negative examples mentioned above in wicis metanilpotent of finite
exponent there is no bound on the class of the nilpotent subgroups dif seems
still to be an open question whether a soluble group of finite exponent, in which the
nilpotent subgroups have bounded class, has a finite basis for its identities. Our mair
result gives a positive answer in many simple cases.

THEOREMA. LetG € N, N, , wherem andn are coprime positive integers. Then
G has a finite basis for its identities.

A special case of this result was proved by Brady, Bryce and Co&eyHey
showed thaG has a finite basis for its identities@ belongs toA N, ,, wherem and
n are coprime positive integers ard, denotes the variety of all abelian groups of
exponent dividingn. TheorenA solves a problem posed by Kaw$ and Newmar®].

The method adopted ir?] depends upon an analysis of the irreducible linear groups
in N2, in prime characteristic not dividing, and develops ideas of Higma#g][
However, at about the same time, Cohéhifitroduced a quite different method for
tackling the finite basis question, dependent on the combinatorics of ordered sets
Cohen used this method to prove that every metabelian group has a finite basis for its
identities, and the method was developed by others in later work suéh =g pnd

[12]. We apply similar methods here, for which we need the idea of a well-quasi-
ordered set, defined as follows.

A quasi-orderon a setW is a binary relation on W which is reflexive and
transitive. (We do not assume thatg y andy < x imply X = y, as in a partial order.
Furthermore, we give no meaning tq only to <.) As shown in p], the following
two properties of a quasi-ordered $&¥, <) are equivalent:

(i) for every infinite sequencey, w-, ... of elements oW there exist and j
with i < j such thatw; < wj;

(i) for every subseX of W there exists a finite subs¥tof X such that for every
elementx of X there existy/ € Y such thaty < X.

If (either of) these conditions hold thelV, <) is said to bewell-quasi-ordered If
the relation< is a total (or linear) order then we obtain the more familiar idea of a
well-ordered set.

We need to apply this idea to bilinear forms. Letbe a non-zero, finite, com-
mutative and associative ring, with identity element, andlbe a finitely generated
K-module. By anS-form we mean a pai(V, 6) consisting of a finitely generated,
non-zero, fre&k -moduleV and aK -bilinear mappin@ : V x V — S. If (V, ) and
(V’, 0") areS-formswe write(V, 6) < (V', 8") if there is aK -module monomorphism
&V — V/such that (vy, v,) = 0'(11€, v,€) for all vy, v, € V. The first step in the
proof of TheoremA is the following result (or, to be precise, a more technical version
of this result stated in Sectid).
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THEOREMB. The set of allS-forms is well-quasi-ordered under the relatigh

Strictly speaking, the class of éltforms is not a set. However, Theoréhtan be
rephrased to say that every set®forms is well-quasi-ordered undet.

A result like this for trilinear alternating forms over a finite field was obtained by
Atkinson [1] in order to prove a different finite basis result.

The finite basis question for a grow is equivalent to the finite basis question
for the varietyV generated byG (see [L3]). Furthermore, ifF is a free group of
countably infinite rank an® (F) denotes the verbal subgroup efcorresponding to
V then every subvariety df is finitely based if and only i is finitely based and
the maximal condition holds for fully invariant subgroups of the relatively free group
F/V(F). Much of the proof of Theorem is concerned with establishing that the
maximal condition holds in some closely related situations, typically for certain ideals
in group algebras.

Let n be a positive integer and le&X be a free group of countably infinite rank
in the varietyN,,. LetF be a field of characteristic which does not divide Let
U be the set of all endomorphisms éf and, for each positive integer, let A<
denote the -th direct power ofA. Each element, of ¥ acts ‘diagonally’ onA*"
by (a,....,a)¢y = (v, ...,a ) forall a,...,a € A, and this action can be
extended to the group algebfgA*") in the obvious way. Using the version of
TheoremB mentioned above we shall prove the following result.

THEOREM C. For each positive integer, the maximal condition holds fob -closed
left ideals ofF(A*").

If U is aleftC-module, for some algebf@, and if there is also an action éfonU,
we callu a(C, ¥)-module. The concepts ¢€, ¥)-submodule and homomorphism
of (C, ¥)-modules are defined in the obvious way.

The algebrd& (A x A) is isomorphic taF A® FA (where the tensor product is taken
over[) under the linear map which sen@s a') toa ® a foralla,a’ € A. We shall
identify these two algebras and write, @') or a ® &' interchangeably. LeR be the
subspace of (A x A) spanned by all elements of the foa@ aanda® 8 +a' ® a
fora,a € A. Itis easily verified thaR is a subalgebra df(A x A). Thus we may
regardF(A x A) as a leftR-module and, indeed, as &R, ¥)-module. ClearlyR is
an(R, ¥)-submodule off(A x A). The last main step in the proof of Theordms
the following resuilt.

THEOREMD. The maximal condition holds fdiR, ¥)-submodules of (A x A)
which containR.

The vector spacE(A x A)/R is isomorphic to the exterior squaFé& A FA, which
can therefore be given the structure of(&) ¥)-module. Thus Theorem gives the
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following result.

CoROLLARY. The maximal condition holds f@R, ¥)-submodules df A A FA.

TheoremsB, C and D will be proved in Section8, 5 and 6, respectively. In
Section2 we show how Theorer can be derived from TheorentsandD.

2. The derivation of TheoremA

In this section we assume Theore@andD, and we obtain Theore# from these
results.

One step in the proof of TheoreAis the special case proved ig][ We could,
of course, assume this result, but in order to illustrate our method in a comparatively
simple case we first prove this special case.

LetU andV be varieties of groups. Létbe a free group it on a free generating set
{x :i € N} andletB be afreegroupiV¥ on afreegeneratingsgt® :i e N, a € A}.
For eachi, the elemeny! is also written asy;. Each elemen&’ of A induces an
automorphism oB in whichy? — y2® foralli € N, a € A. Accordingly we can
form the semidirect produdB A, a split extension oB by A in which the original
action of A on B becomes conjugation. We denote this grd@ip by Fgpi(V, U).
The group has the following universal property implicit if] and straightforward to
prove directly.

LEMMA 2.1. LetG be a split extension of a grougy in V by a groupA; in U. Then
every pair of mapping$x, : i € N} — A, {y : i € N} — B; extendquniquely to
a homomorphisnfreyi(V, U) — G.

LEmMmA 2.2. LetU andV be locally finite varieties of groups of coprime exponents
and writeW = Fg,(V, U). LetSbe a subvariety o¥U. ThenSis generated by the
groupW/S(W), whereS(W) is the verbal subgroup &iV corresponding tc.

PrROOF. SinceSis locally finite it is generated by the finite groups it contains. By
the Schur-Zassenhaus Theorem, each such finite gBigpa split extension of a
group inV by a group inU. It follows, by Lemmaz2.1, thatG is a homomorphic
image ofW/S(W). ThereforeW/S(W) generate$S. O

LEMMA 2.3. LetF be arelatively free group and I&t be an abelian fully invariant
subgroup ofF of exponent dividing a positive integer. Suppose thdtl contains an
infinite strictly ascending chain of fully invariant subgroupsrof Then there exists a
prime p dividing m such thatU /U P contains an infinite strictly ascending chain of
fully invariant subgroups oF /U P.



[5] Metanilpotent varieties of groups 59

PrROOF. Let Q2 be the set of all endomorphisms Bf with Q regarded as a set of
operators. IV is any fully invariant subgroup of then, since the endomorphisms
of F/V are precisely those induced by element§0fF/V may be regarded as an
Q-group and the-subgroups of-/V are precisely the fully invariant subgroups of
F/V, each being of the formW//V for someQ-subgroupW of F containingV.
Observe that ifN is anQ-subgroup ofU then, sinceJ contains an infinite strictly
ascending chain aR-subgroups, eithe or U/N contains such a chain.

SinceU is abelian of exponent dividing, we may writeU as a finite direct
productU = U; x - - - x U, where eacly; is a non-trivialQ2-subgroup of prime-power
exponent dividingn. By repeated use of the previous observation and isomorphisms
of @-groups, we find that there exist {1, ..., k} suchthatl/ ], ; U; contains an
infinite strictly ascending chain a@@-subgroups. Thus it suffices to prove the lemma
in the case whert) has exponenp® for some primep and positive integes. By
the same observation applied to the chdire UP > ... > UP = {1}, there exists
r €{0,1,...,s—1} suchthaty? /UP " contains an infinite strictly ascending chain
of Q-subgroups. Thus there a®esubgroupdV,;, W,, ... of U satisfying

UP™" <W, < W < - < UP,
Let x : U — U” be the homomorphism defined by = u” for all u € U.
Note thaty is surjective. ThudJP < Wiy < Wox™! < --- < U. ltis easily
verified thaty is a homomorphism of2-groups. Thus eacl y ! is an Q-group
andWyx t/UP < W,ox~1/UP < ... is an infinite strictly ascending chain of fully
invariant subgroups df /U P contained inJ /UP. O

We shall now obtain the finite basis result @f.[For any varietyV, F (V) denotes
the free group oV of countably infinite rank.

THEOREM 2.4 ([2]). Letmandn be coprime positive integers. Then the subvarieties
of AnN,,, are finitely based.

PrROOF. SinceA N, is finitely based by T], it suffices to show thaF (A;N2,)
satisfies the maximal condition on fully invariant subgroups. Wte= F (AN,
andU = Ny,(H). ThusH/U = F(N,,). By [11], H/U satisfies the maximal
condition on fully invariant subgroups. Thus it suffices to show that the maximal
condition holds for fully invariant subgroups &f contained inJ. By Lemma2.3,
it suffices to show that for each pringedividing m the maximal condition holds for
fully invariant subgroups oH /U P contained inJ /UP. ButH/UP = F(A;N,,), SO
it suffices to show that the minimal condition holds for subvarietie& g, , which
containN, .

Let W = Fgyi(Ap, N2 ) and writeW = BAwhereA = (x : i € N) = F(Nyp)
andB = (y?:i e N, a e A). ThusBis free inA,. By Lemma2.2, the subvarieties
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of AN, , which containN,, are in one-one correspondence with the corresponding
verbal subgroups &&/, and these verbal subgroups are containd®l imhus it suffices

to prove that the maximal condition holds for fully invariant subgroup&/afontained

in B.

We can writeB additively as a vector space oy, the field withp elements, and
B has basiqy? : i € N, a € A}. LetT be the subspace with badig! : a € A}.
There is arfF,-space isomorphism : F,A — T satisfyingau = y; for alla € A.
Hence we can givd the structure of a leff, A-module in such a way that is a
module isomorphism. Le¥ be the set of all endomorphisms Af By Lemma2.1,
each elemeny of W can be extended to an endomorphismWoby takingy; v = v
for eachi. ThusW acts onW. ClearlyT is W-closed and the map : F;A — T is
an isomorphism ofF, A, ¥)-modules.

For eacha € A, let&, be the endomorphism & satisfyingx &, = x; for all i,
yiéa = Y3 andy &, = y; foralli > 1. ClearlyT is invariant under each, andé, acts
onT in the same way asacts (wherT is regarded as a left, A-module). It follows
that if V is a fully invariant subgroup o thenV N T is an(F, A, ¥)-submodule
of T.

For each, j € N, leté;; be the endomorphism &V determined byd;; = X, for
allk, yi6;; = y; andy,s;; = 1forallk e N\ {i}. LetV be a fully invariant subgroup
of W contained inB and letv € V. Then there exists € N such that belongs to the
spanofly? : 1 <i <r,a e A}. We havev = v811811 + v821812+ - - - +v8181, Where
v811, V821, ..., 081 € VN T. ThusV is generated as a fully invariant subgroup by
VvNnT.

Suppose that; < V, < ... is an ascending chain of fully invariant subgroups of
W contained inB. ThenV; N T <V,NT < ... is an ascending chain of , A, ¥)-
modules. HencéV;NT)u=t < (V,NT)ut < --- isan ascending chain df-closed
left ideals offF, A. By TheorentC, this chain becomes stationary. Therefore, so does
VinT <V,NT < ..., and so doe¥; < V, < ---, which completes the proof of
Theoren?.4. O

PrOOF OFTHEOREMA. Let m andn be coprime positive integers, and wrie=
F(N2mN2n). By [7], N2mNa2 , isfinitely based. Thusit suffices to show tiasatisfies
the maximal condition on fully invariant subgroups. Letbe the verbal subgroup of
F correspondingté\,N, .. ThusF/U = F(A,N,,) and, by Theorer.4, it suffices
to show that the maximal condition holds for fully invariant subgroups ebntained
in U. By Lemma2.3it suffices to show that, for each prinpadividing m, the maximal
condition holds for fully invariant subgroups &f/UP contained inU/UP. LetV
be the variety of all group& such thatG is nilpotent of class at most tw& has
exponent dividingn andG’ has exponent dividingp. ThusF/UP = F(VN,,). It
suffices to show that the minimal condition holds for subvarietie¥ N, which
containAy, Ny .
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LetW = Fg,i(V, N2jn) and writeW = BAwhereA = (x @i € N) = F(Nyp)
andB = (y*:i e N, ae A). ThusBis freeinV. By Lemma2.2, the subvarieties of
VN, which containA;N,, are in one-one correspondence with the corresponding
verbal subgroups o, and these verbal subgroups are containe®'in Thus it
suffices to prove that the maximal condition holds for fully invariant subgroup¥ of
contained inB’. If B" = {1} (as occurs whep = 2 andm is not divisible by 4) then
the result is trivial. Thus we may assume tBat~ {1}.

We can write B’ additively as a vector space ov&p spanned by{[y?, y?/] :
i,j € N,a,a € A}. LetT, be the subspace spanned fjy2, y¥] : a,a € A}
and letT, be the subspace spanned fy?, y¥] : a,a’ € A}. ThusT,; has basis
{[y2,y¥]:a,a € A, a > a’}, where> is an arbitrary total order oA, andT, has basis
{ly2, y&]:a,a € A}. Thus there aré,-space isomorphisms, : F,AAF,A— Ty
andu; : Fo(Ax A) — Ty satisfying@na)u, = [y2, y¥land@®@a)u, = [y2, ]
foralla,a € A. Hence, withR defined as in Sectioh, we can giveT; the structure
of a left R-module andr, the structure of a lef,(A x A)-module in such a way that
w1 andu, are module isomorphisms. L&t be the set of all endomorphisms Af
As in the proof of Theoremd.4, ¥ acts onW. Clearly T, andT, areW-closed,u; is
an isomorphism of R, ¥)-modules, andk, is an isomorphism ofF,(A x A), ¥)-
modules.

Fora € A let & be the endomorphism oN satisfyingx &, = x for all i,
yiéa = Y andy &, =y foralli > 1. Fora, a’ € A, let&, ., be the endomorphism of
W satisfyingx &..o = X foralli, y1&a,0 = Y2y andy.&,.o = Vi foralli > 1. Thus
T, is invariant under eacty and under eack,,,. Furthermoreg, acts onT; in the
same way aa ® a acts, while&,,, acts onT; in the sameway a@ + &) ® (a+ &)
acts. Itis easily verified tha& is spanned by the elemert® aand(a+a) ® (a+a)
fora,a € A. Itfollows thatif V is a fully invariant subgroup o#V thenV N T, is an
(R, ¥)-submodule off;.

Fora,a € A, let&, o be the endomorphism 0¥ determined by &, » = Xx; for all
i, Vifaa = Y2, Yobaa = Y2 andy.&,, = Vi foralli > 2. ClearlyT, is invariant under
eachg, 5. Furthermoreg, 5 acts onl, in the same way as ® &’ acts. It follows that
if V is a fully invariant subgroup ofV thenV N T, is an(F,(A x A), ¥)-submodule
of T,.

For eachi, j € N, letd;; be the endomorphism o determined by di; = X
for all k, y;6;; = y; andyé;; = 1forallk e N\ {i}. For each, j,i’, j’ € N with
i # |, letej;; be the endomorphism & determined byxs;i jj; = X, for all k,
Yigiivjir = Yin Yi&ijir = Yy andygeii g = Lforallk e N\ {i, j}.

LetV be a fully invariant subgroup o&/ contained inB’ and letv € V. Then, for
somer € N, we can writev = v; + v, wherev is in the span of[y?, y¥]: 1 <i <
r, a,a € A} andv; is in the span of[y?, y?/] :1<i<j<r,aa €A} Thenitis
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easily verified thav, = >, v818; and
V— V=V = Z V2€i1,j2€1i,2j -
15i|;]j§r

Herevd; € VN T, foralli anduyeiqj, € VN T, foralli, j. It follows thatV is
generated as a fully invariant subgroup®nN T)) U (V N To).

Suppose thaV; < V, < --. is an ascending chain of fully invariant subgroups
of W contained inB’. ThenV,;NT; < V,N T, < --- is an ascending chain of
(R, W)-submodules off; while V; N T, < V,NT, < --- is an ascending chain of

(Fo(A x A), W)-submodules oT,. Hence(V; N THut < (Vo NTut < -+~ isan
ascending chain afR, ¥)-submodules of ,A A F,Aand

MNTHut < (VuNTp,t < -+

is an ascending chain ob-closed left ideals off,(A x A). By TheoremC and

the Corollary to Theorend, both of the last two chains become stationary. Hence
MNTHUMNT,) < MmnNTHUMNT,) <--- becomes stationary. Therefore
V; <V, < -.. becomes stationary, which proves Theoem O

3. Bilinear forms

Let K be a non-zero, finite, commutative and associative ring, with identity
element 1. Unless otherwise stated leimodules are finitely generated (therefore
finite). Let Sbe aK-module. AnS-formis a pair(V, ) consisting of a non-zero free
K-moduleV and aK-bilinear mapd : V x V — S. A K-linear maps : V — V/,
where(V, 0) and (V’, ') are S-forms, is said to be Aomomorphism o&-formsif
0(vy, vp) = 0 (1€, v.€) for all vy, v, € V. We write¢ : (V,0) — (V',0"). The
termsisomorphismand monomorphisnare defined in the obvious way. We define
a quasi-order on the set of allS-forms by defining(V, 6) < (V’,8) if there is a
monomorphisng : (V,0) — (V’, 6"). The main result of this section is the following.

THEOREMB. The set of allS-forms is well-quasi-ordered under the relatigh

Let(V, 0) be anS-form. For any subséi of V we defineP (U) to be the subset of
S® SgivenbyP(U) = {(0(vy, v2), 8(v2, 11)) : vy, v, € U}, andwe defin@QU) C S
by QU) = {0(v,v) : v € U}. Also, forU,U’ € V we defined(U,U’) € Sby
AU,U") ={f(u,u):uelU, u eU’}. Subsetd) andU’ are said to b@rthogonal
if 9(U,U") =0U’,U) ={0}.
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LEMMA 3.1. Let V be a freeK-module and let,, ..., v, € V. Then there are
free K-submoduledJ,, U, of V such thatvV = U, & U,, rankU,) < |K]|l, and
Vi, ...,V € Ul.

PrROOF. Take elements;, ..., X, of V wherem is minimal such thafx, ..., Xm}
is contained in & -basis ofV andv; belongs to the submodule, ..., x,). Write
v, = Zi’“:laixi where eachy; is an element oK. If m > |K| then there exist
distinctj, k € {1,..., m} such thaty; = o and we may replace, andx, by x; + X,
contrary to the minimality om. Thusm < |K|. Let W be a freeK -submodule of
V such thatV = (X, ..., Xn) @ W and, fori = 2,...,1, write v; = v/ + w; where
vl € (X, ..., Xm) andw; € W. The result follows by applying an inductive argument
tow,, ..., w in W. O

LEMMA 3.2. Let (V, 0) be anS-form. Suppose that/ is a free K-submodule of
V and letvy, ..., v € V. Then there are fre& -submodule®V;, W, of W such that
W =W, & W,, rankW;) < 2|S|l andW, is orthogonal to{vy, ..., v }.

PrOOF. We assume thdt = 1 since the general case follows easily. We shall
find free submodule$);, U, of W such thatW = U; & U,, rankU;) < |S| and
0 ({v1}, Uy) = {0}. A similar argument givetl, = U’ & U” with rankU’) < |S| and
O(U”, {v1}) = {0}. The result follows withV;, = U; @ U’ andW, = U".

Take basis elements, ..., X, of W wherem is maximal subject t@ (v, x;) =0
fori =1,...,m. Let{Xy, ..., Xq} be abasis ofV containing{x, ..., Xyn}. Ifd—m >
|S| then there exist distingt, k e {m + 1, ..., d} such thab (v, Xj) = 6(vy, Xc) and
we may extendxy, ..., Xm} to {Xy, ..., Xm, X; — X}, contrary to the maximality ah.
Thusd — m < |S| and we may tak&); = (Xmi1, ..., Xg), Ua = (X, .. ., Xm)- O

Let N be a positive integer and defind'!, for each non-negative integey by
N = 0andNl = N+ N2+ ...+ N fori > 0. Let(V,6) be anS-form
and let{xy, ..., Xy} be aK-basis ofV. We shall assume, in such notation, that
the elementsq are distinct (that isd = rank(V)) and that the basis is ordered
as shown, corresponding to the orderktluple (X, ..., Xq). Let m be the non-
negative integer which satisfiéd™ < d < N™Y andwriteV; = (Xy, ..., Xym), ...,

Vin = (Xnmtggs - ooy Xnim), Vingr = (Xnimiga, ..., Xg).  Thus rankV;) = N' for

i =1,...,mand O< rankVy.1) < N™ Fori = 1,....,m+ 1, write VF =

Vi ® - & V. We say thatV, 0) is N-regular with respect to the ordered basis
X, ..., %} if P(V)) = P(VH) fori =1,....m+1, Q) = Q") fori =
1,...,m+1, andV,_; andV,*, are orthogonal for = 2, ..., m. A decomposition

V =V, ® - @ V1 With these properties, which is obtained from some ordered
basis in the way described, is called rregular decompositioof V. Note thatV,
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andV; are orthogonal whenevéir— j| > 2. AlsoP(Vy) 2 P(V,) 2 --- 2 P(Viny1)
andQ(Vy) 2 Q(V,) 2 -+ 2 Q(Vinya).

LEMMA 3.3. Let N > |K|(2|S|? + |S]). Then everyS-form is N-regular with
respect to some basis.

PrROOF. Write s = |S]. Let (V, 0) be anSform. Letd = rankV) and definem
by NI™ < d < NI™1, Suppose we can find free moduMs, Vi, V', Vs, ..., V.F,
Vi, Vi1 with the following propertiesV,” = V;fori =1,...,m,V;" =V, ® Vi1,
rankV)) = N', P(V)) = P(V") andQ(V) = Q(V/"); and, fori = 2,...,m, V,_;
andV,%, are orthogonal. Then, taking,.; = V,,,, weseethaV =V, @®--- & Vi1
and(V, 0) is N-regular with respect to a basis\éfcomposed of bases¥f, . .., V1.
We construct the required free modules inductively.

First defineV;” = V. If rank(V;") < N thenm = 0 and we have finished. So
suppose that raiik,") > N. Since|P(V,")| < s> and|Q(V;")| < s we can choose
elementy, . .., voe,s Of V;" (not necessarily distinct) such that

{0z 1, v20), O(vai, v21) i = 1,..., 8% = P(V}),
B(v,v):i=28%+1,...,28° +s} = Q(V;).

By Lemma3.1, we can find free submoduleg andU, of V" such thaV,” = U;®Us,
Vi, ..., Uazys € Up and rankU,) < |K|(2s? +s) < N. Choose free moduleg and
V," such thatV,” = V; @ V., rankV;) = N andV; 2 U;. By the choice of
V1, ..., Usxys, WE haveP (V) = P(V;") andQ(Vy) = Q(V,").

Suppose that for somewith 1 < k < m we have found free moduld4", Vi, V',
..., Vi, V&1 with the required properties for these modules. If iadfk,) < Nk
thenm = k and we have finished. So suppose that t¥fik) > N**. By the method
used in the first part of the proof we may find free submodulesdW of V%, such
thatV,, =U @ W, P(U) = P(V), QU) = Q(V, and rankU) = N. By
Lemmas3.2, there are free submodul®g andW, of W such thatw = W, & W,, W,

andV, are orthogonal and raW®;) < 2sN¥. Then
rankU @ W;) < N 4+ 2sN¢ < (14 2s)N* < N¥,

Choose free modulég, ; andV', suchthaV,/; = Vi1 ® Vi, rank Vi 1) = NK,
Vipr 2 U@ W, andV, |, € W,. ThenV,,; andV,’;, have the required propertiest]

LEMMA 3.4. Let(V, 0) be anS-form which has arN-regular decompositioV =
Vi® - @D Vs

(i) Letk € {1,...,m—1}. Suppose thaP (V) = PV and Q(Vy) =
Q(Vis2). ThenP(Vy) is an additive subgroup a6 @ S and Q(V) is an additive
subgroup ofS.
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(i) Letc be a positive integer and let(1) andr (2) be integers such that <
r(l) <r(2) <m+ 1. Suppose that

PMa)=PMap+)=-=PMp)=PC S®S
QM) = QVs1) = - =QVip) =QC S,

andr(2 —r(@) > cc+ 1 +2 WriteW = Viq),2® -+ ® Vipo. For all
i,j e{l,....,ciwithi < jletp; € Pandforalli € {1,...,c}letqg € Q.
Then there existyy, ..., w. € W such that(@(w;, w;), 6(w;, w)) = p;, for all
i,je{l,...,ctwithi < j,andf(w;,w;) =q,foralli € {1,...,c}.

PrOOF. (i) Let p, p’ € P(V). Then there exist,w € V andv’,w’ € Vi
such that@(v, w),8(w,v)) = p and @@, w'), 0w’ ,v)) = p. Write V! =
Vi ® -+ ® Viny1. SinceV andV,,, are orthogonal,

P+p =0@w+v,w+w),0w+w,v+0)) e PNV =PM).

Hence, since (V) is finite, it is a group. SimilarlyQ(Vy) is a group.

(ii) By (i), P and Q are additive groups. There acéc + 1)/2 modules in the
set{Vi w2, Viysas - - - » Veyreerny} @nd so these modules can be relabelled;a®r
1<i<candy; forl <i < j < c. These modules are pairwise orthogonal
submodules oW such thatP (U;) = P(U;;) = P andQ(U;) = Q(U;;) = Q for all
i,j.Fori,je{l,...,c}withi < j chooseu;j, vj; € Uj; such that

@ Wi, vij)), O(vij, Wij)) = .
Then foreach € {1, ..., ¢} chooseu; € U; such that

(Ui, Uj) =G — Ze(uij,uij) - Ze(vji’vji)‘

IBE IBE

Finally, fori =1,...,c, definew; = u + ;. Uj +>_;.,;; vji- Itis easyto check
that these elements have the required properties. O

For eachS-form (V, 6) we need to fix an ordered basis¥f Thus we define an
S-triple to be a triple(V, 6, X) where(V, 0) is anS-form andX is an ordered basis
of V.

Let (V, 0, X) and(V’, 6', X) be S-triples, where ran/) = d, rankV") = d’,
X = {Xg,..., Xg} and X' = {x{, ..., X3 }. We say thatV, 6, X) and(V’,¢’, X') are
isomorphicif d = d’ and there is ars-form isomorphismg : (V,0) — (V',8)
such thatx;é = x' fori = 1,...,d. We write(V, 6, X) < (V',0', X)) if there is a
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one-one order-preservingmap: {1,...,d} — {1, ..., d’} together with ar5-form
homomorphisnt : (V,60) — (V',6") such that, for =1,...,d,

(3.2) X& =X,+2z, forsomez e (xj, Xy ..., X, 1)

Clearly < is a quasi-order on the set of &ltriples. Also, if¢ satisfies 8.1) thené
is a monomorphism. Hena®, 6, X) < (V’,60’, X') implies (V,0) < (V',0). An
Striple (V, 0, X) is said to beN-regular if (V, 0) is N-regular with respect tX.

ProOPOSITION3.5. The set of allN-regular S-triples is well-quasi-ordered under
the relation<.

PROOF. Let Y®, Y@ Y® . be an infinite sequence &f-regularS-triples. It
suffices to show that there exist integérand j with i < j such thaty® < Y,
For each, letY® = (V©, 9 X®) whereV® hasN-regular decomposition,” &
@ Vi, di) = rankV©O) and X© = {x{", ..., x{) ). If {(m(2), m(2), ...}
is bounded then there are only finitely many isomorphism types in the sequence
YD, Y@ Y® . andthe resultis clear. Thus we assume {hatl), m(2), ...} is
unbounded. By passing to an infinite subsequence we may assumg(ithat 1 for
alli > 1. There are only finitely many possibilities for the valugs(x(”, x.") for
j.k € {1,...,NM}. Thus, by passing to an infinite subsequence, we may assume
that, for all j,k € {1,..., N}, the valued® (x", x{) is independent of. Then,
by passing to an infinite subsequence, we may assumentfiat> 2 for alli > 2
and that, for allj, k € {1,..., N®@}, the valued® (x{", x) is independent of for
alli > 2. Continuing in this way we may pass to an infinite subsequence with the
following property for alln € N:

m() >n forall i > n and,

(3.2)

forall j,ke{L...,NM}, 00", x") isindependentoi forall i > n.

LetV be a freeK -module with countably infinite bas¥ = {Xy, X,, ... }. Define
a K-bilinear mapd : V x V. — S by taking (X;, X) to be the limiting value
of 60 (x{", x{"). Furthermore, for each positive integer let P, and Q, be the
limiting values of P(V") and Q(V,"), respectively. Since®, > P, O --- and
Q2 Q2 -, thereexistP C S® S, Q C S, and a positive integer, such that
P=Piu=--=PandQ, = Q4 =--- = Q. ByLemma3.4 P andQ are
additive groups.

For eachi, letr (i) be the largest integer belonging td, ..., m(i)} such that
o0 (x", x) = 8(X;, %y for all j,k e {1,..., NI}, By construction, the set
{r(1),r(2),...}isunbounded. Hence, by passing to an infinite subsequence, we may
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assumethat <r(1) <r(2) < ---. Let

a@i) = NIro-1 — rank(Vl(” ®- B Vr<(ii))71)’
b(') = N[r(i)] = I’ank(Vl(i) D --P Vr((ii))) — a(l) + Nr(i)'

We may pass to an infinite subsequence so that, forieaodh have

di)—a@)<d@i+1 —a@i+1 and

(3.3) . i ) . . .
ri+1)—r@)>@)—a@)di)—a@)+1) + 2.

We now focus orY® andY @ and show tha¥® < Y@, By the choice of (1) and
r(2), we have

P(V'a)
QVi)

P(Vr((ZZ))) =P,
Q(Vr((zz))) = Q’

P(Vr((zl))) P(Vr((Zle) =
Q(Vr((zl))) = Q(Vr((zl))u) =

and
oW (xV, xM) = 0@ (x?,x?) forall i,je{l...,bD)}.

Sincea(l) < a(2) andd(l) — a(l) < d(2) — a(2) there exists a one-one order-
preserving mag :{1,...,d(1)}— {1,...,d(2)} such thai¢ =i fori=1,...,a(l)
and{a(l) +1,...,dD}¢o C{a@ +1,...,d2)}.

Writt W = V\Q,, ® --- & V.3 _, as in Lemma3.4. Note that, fori e {a(l) +
1,...,d@D)},

oW (Xi(l)7 Xi<1>) c Q(Vr((]i)) DD Vr%ﬂ) — Q(Vr((]i_))) - Q,
and

6@ (Xi(qzb)’ Xi(qzs)) €Q(V3 @ ®Vnp ) = QV3) = Q.
Similarly,

@ @ @ @ @ @ @ @

OV (7. 7). 0P (7. 7)) € P (0P(xg, xj5). 0P (xj5, %g)) € P,
foralli, j e {a(l) +1,...,d(1)} withi < j. Hence, by Lemma&.4, we can choose
elementsvygy,, - - ., wyaay Of W satisfying

—0@ ('3, x2) foriefa +1,...,bL)};

oD (x, x) — 0@ (xF, x2) forie{b@+1,....dD};

9(2)(Wi, wi) = {
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and

(0@ (wi, wy), 0% (wj, wy))
(0% (6. x2). 09 (X, X)) = (60 (X2, x12). 62 (x. X2))
fori < jwithi e{a() +1,...,bQD}, j e{b@® +1,...,dD};
~(0% (4. x2).6 (x2. X2)).
fori < jwithi,jef{a@ +1,...,bQ)};
(e(l)(xi(l)’Xj(l))79(l)(xj(l)’xi(l))) (9(2)( (2> X(2>) 9(2)( (2> X(;)))
fori < jwithi,je{b@ +1,...,d(D}.

Then we define & -linear mapt : V® — V@ py

x? fori e{1,...,al)};
Ve = Ix@ +u, +x2 foriefa@+1,...,bQD)};
w; + X2 for i € {b(1)+1,...,d(D)}.

Note that, in these equations” € V,? @ --- @ V3, while w; € W andx{}’
Vo e eVl  wherev? . -oV3,W andV(é)) @---®V2,,, are pairwise
orthogonal. It is straightforward to check th#® (x V&, xf”g) oD (™, xYy in all
the various cases forand j. Hence is a homomorphism o&-forms. Clearly¢ has
the form required in%.1). Thus we have ™ < Y@, as required. O

PROOF OFTHEOREM B. Take any positive integéd such thalN > |K [(2|S|%+]|9)).
Then, by Lemma&B.3, for eachS-form (V, 0) there exists an ordered bas{g, 5, of
V such thatV, 0, X)) is anN-regularS-triple. If (V, 0) and(V’, ') areS-forms
such that(V, 6, X)) < (V, 0", Xy then(V,0) < (V',0'). Hence the result
follows by PropositiorB.5. O

To prove our result about varieties of groups we need, in fact, not The®iiesalf
but the assertion stated below as Proposifioh
Let T be any non-empty finite set. We consider finite sequeidges. ., t,) of

elements ofT and write (t;, ..., t,) < (t,...,t) if (&, ..., t,) is a subsequence
of (t;,...,t), thatis, if there is a one-one order-preserving mpap{1, ..., n} —
{1,...,n’} such that; = t/, fori = 1,...,n. Clearly< is a quasi-order (in fact a

partial-order). The following result is a special case@®flTheorem 4.3].

LeEmMMA 3.6. The set of all finite sequences of elemen(§ of well-quasi-ordered
under the relationx.
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We define an(S, T)-formto be a quadruplé¢V, 6, X, t) where(V, 6, X) isan$S
triple andt is an ordered-tuple(ty, ..., ty) of elements ofl, with d = rank(V). We
say that(S, T)-forms (V, 6, X,t) and(V’, 8’, X', t") areisomorphicif the S-triples
(V,0, X)and(V’, 6, X") areisomorphic and=t'. LetrankV) =d, rankV’) = d’,
X ={Xy, ..., Xg}andX = {xq, ..., x5 }. Write (V, 0, X,t) < (V’,0', X', t') if there
is a one-one order-preserving map: {1,...,d} — {1,...,d’} together with an
S-form homomorphisng : (V, ) — (V',0") suchthat, for = 1,...,d,t; =t/, and

(3.4) X& = x{¢ +z, forsomez e (xi, Xy, ..., X{QH).

Clearly < is a quasi-order on the set of alf, T)-forms, and we observe that
(V,0,X,t) < (V', 0, X, t)implies(V, 0, X) < (V', 60, X).

An (S, T)-form (V, 0, X, t) is said to beN-regular if the S-triple (V, 6, X) is N-
regular. For givers, T andN we write 2 for the set of allN-regular(S, T)-forms.

PROPOSITION3.7. The se{( %, <) is well-quasi-ordered.

PROOF. Let Z®, 2@ Z® . be aninfinite sequence &f-regular(S, T)-forms.
It suffices to show that there exist integérand j withi < j such thatz® < ZW,
For eachi, letZ® = (V®, 90 XD t) and use further notation fg/ @, 60, X))
exactly as in the proof of Propositiéh5. Also, writet® = (t{”, ..., t5)).

As in the proof of Propositior3.5 we may assume tham(1), m(2), ...} is un-
bounded and we may pass to a subsequence with the proedfqr all n € N.

But, for eachn and eaclk € {1,..., NI}, there are only finitely many possibilities
for t.; thus we may also assume that, forkak {1,..., N}, t" is independent of
i foralli >n.

DefineV, X, 6, P, Q andr as before. Also, for eack € N, definef, to be the
limiting value oft.”. Then define (i) as before, but with the additional requirement
thatt” =T, forallk e {1,..., NIr®1},

Definea(i) andb(i) as before and pass to an infinite subsequence with profesty (
for eachi. Also, definet; = (t3)), 1, ti)12: - - - » taq,) for eachi. By Lemma3.6, there
existi and j with i < j such that; is a subsequence ¢f. Hence, by passing to
an infinite subsequence &®, Z@, ..., we may assume that is a subsequence
of t,. Thus there is a one-one order-preserving map{a(l) + 1,...,dQ)} —
{a +1,...,d2)} suchthat® =t fori = a(1) + 1,...,d(1). We may extend
¢ to a one-one order-preserving map {1,...,d(1)} — {1,...,d(2)} by defining
ip=ifori=1,...,a().

As in the proof of Propositior8.5, there is a homomorphism d-forms ¢ :
VD, 00y — (V@ 9@) such thaté has the form required in3(4). Fori =

1,...,a(D), we have!” = 2 =T;, sincea(l) < NI'® < NI'®], and sot” = 7,
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sincei = i¢. Also, fori = a(1) +1,...,d(1), we havet™ =t by the choice of
¢. Thusz® 5 2@, O

An alternating S-form is anS-form (V, 6) such that(v,v) = 0 for allv € V.
Consider now the case wheBe= K. An alternatingk -form (V, 0) is calledstandard
with respect to the ordered basis, ..., Xg} of V if 6(x, x;) = 0 for alli, j such
thatl<i < j <dand(, j) ¢ {(1,2), (3, 4),...,(2[d/2] — 1, 2[d/2])}.

LEMMA 3.8 (compared]). Letng be an integer, witng > 2, and letK = Z/nqZ.
Let (V, 0) be an alternatingk -form. Then there is & -basis{x, ..., X4} of V such
that (V, 0) is standard with respect tfx, ..., Xq}.

PrOOF. Chooseu,, U, € V such that the additive cyclic subgroif(u,, u,)) of K
has largest possible order. bgtbe an element o¥ of orderng such thau; € (x;).
Note thatx, belongs to some basis ®. By maximality, (8 (U1, Us)) = (0 (X1, Us)).
Hence we may replaag by x;. LetU be a submodule of suchthal = (x;)®U. If
U = {0} then{x,} is the required basis, so suppase# {0}. Writeu, = u,+u where
u, € (X;)andu € U. Clearly we may replace, byu. Then, as before, we may replace
u by an element, which belongs to a basis &f. Thus{x;, x,} is contained in a basis
of V. SetW = {w € V : (X1, w) = 6(X, w) = 0}. Letv € V. The choice ok; and
%> shows thab (xy, X,) is a generator of the cyclic groyp(x;, u) : u € V}. Hence
there exists. € K such that(x, v) = A0(x, X,). Similarly there existg € K such
thatd (v, Xo) = b (X, Xp). Itfollows thatv — ux; —Ax, € Wandsow € (Xq, Xo) +W.

ThereforeV = (x4, X) + W. Thus we may find a bas{xy, X», wi, ..., wg_»} of V
with wy, ..., wg_» € W. The lemma follows by an inductive argument applied to
(wl’---’wdfz)' D

4. Direct powers of finite groups

In this section we shall obtain some results which will be useful for both TheGrem
and Theorend.

Let G be a finite group and leb be the (restricted) direct produbt = [[;_ Gi
whereG; = G for all i. Thus the elements & may be regarded as sequences of the
form (g, 0z, ... ) Whereg; € G for alli and wherdi : g; # 1} is finite.

Lety : N — N be a one-one order-preserving function. Xebe a finite subset
of N\ N¢ and letos : X — N¢ be a function such thgt < jo forall j € X. Given
suchg, X ando, leté be the endomorphism @ defined by

(gl’ gZ’ )E = (gj/l_’ g/Z’ )1
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whereg; =g if j =i¢, g; =11if ] ¢ N U X, andg; =g, if ] € X. Let E be the
set of all such endomorphisms Df (for all possible choices af, X ando).

Let < be a total order o1& which is arbitrary except that £ g for all g € G.
Then the seD may be ordered lexicographically from the right:difd’ € D where
d= (01,0 ...)andd = (g}, 0, ...), we setd < d’ if there existd € N such that
O < g butg =g foralli > 1. Clearly (D, <) is well-ordered, and it is easy to
prove the following result.

LEMMA 4.1. Letd,d € D and leté € E. If d < d' thend¢ < d'&.

Ford € D, whered = (g, 0o, ... ), write
spard) = {g € G\ {1} : g = g for somei},

and, forg € spard), letiy(d) denote the largestsuch thag, = g.

Letd andd’ be elements oD, whered = (g;, Gz, ...) andd’" = (g;, 05, ...).
Write d < d’ if spand) = spartd’) and there is a one-one order-preserving function
¢ : N — Nsuch thatg = g, for all i andig(d)¢ = ig(d’) for all g € spand).
Clearly (D, %) is quasi-ordered (in fact, partially-ordered).

LEMMA 4.2. The sei D, <) is well-quasi-ordered.

PrOOF. Letm = |G \ {1}] and assumen > 1 (the result is trivial form = 0).
Write G\ {1} = {&, ..., an}. Ford € D andk = 1,..., m, definepc(d) = i, (d)
if a, € spand) and p(d) = 1 otherwise, so that we obtain am+ 1-tuples(d) =
(pe(d), ..., pm(d),d). Letd, d" € D, whered = (9, 0>, ... ) andd’ = (g;, G5, - - - ).
Following the notation ofJ], we write s(d) <4 s(d') if there exists a one-one order-
preserving mag : N — N such thatg, = g/, for all i and pi(d)¢ = p (d’) for
i=1,...,m By[3, Lemma 3.2], the set oh + 1-tupless(d) is well-quasi-ordered
under=<4. Buts(d) <4 s(d’) impliesd < d’. The result follows. O

Let F be any field. Then each non-zero elemertf the group algebr&D can
be written (uniquely) in the fornu = A,d; + --- + A,d, whered,,...,d, € D,
dp > --->d andiry, ..., A, € F\ {0}. The largest group elemedt is called the
leading group elemerdf u and we writed, = leadu). Since every endomorphism
of D extends tarD, each element o acts onFD. For S C FD we write (S)z for
the E-closed subspace 6D generated byb.

LEMMA 4.3. Letu and v be non-zero elements 6D with leadu) < leadv).
Then there exist®* € FD such that(u,v)z; = (u,v*)z and eitherv* = 0 or
leadv*) < leadv).
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PROOF. Writeu = A4d; + --- + A, d, andv = 1jd; + - - - 4+ A.d] where thed, and
d are elementsob, d; > --- > d,,d; > --- > d, and thex; and] are elements
of F\ {0}. Writed = d; = leadu) andd’ = d; = leadv). Thusd < d'. Let
d = (01,0, ...)andd = (g}, 0, ...), and letp : N — N be as in the definition of
d=xd. LetX ={j:]¢Ng¢andg; # 1}. By the definition ofd < d" we have
ig(d) € Ng for all g € spand’). For eachj € X let jo = ig(d") whereg = g.
Let & be the element oE corresponding tg, X ando. Then it is easy to check that
dé = d'. Hence, by Lemmd.1, leadu¢) = d’ = leadv). Letv* = v — A7 (Ug).
Then the result follows. O

PrOPOSITION4.4. The maximal condition holds f&-closed subspaces BD.

ProOOF. LetU be aE-closed subspace 6D. It suffices to prove thddl is finitely
generated as &-closed subspace. By Lemma2, there exists a finite subs&tof
U \ {0} such that for alb € U \ {0} there exista1 € Ssuch that leadl) < leadv).
We claim thatU = (S)z. Suppose, in order to get a contradiction, that there exists
v € U such thatv ¢ (S)g, and choose such so that leacv) is as small as possible
in the well-ordered setD, <). There existal € Ssuch that lea@) < leadv). By
Lemma4.3, there exista* € FD such that{u, v)z = (u, v*)z and eithen* = 0 or
leadv*) < leadv). Sincev ¢ (u)z, we havev* # 0. Sincev* € (u,v)g C U, the
choice ofv givesv* € (S)z. Hencev € (u, v*)z C (S)z, and we have the required
contradiction. O

Let n be a positive integer and I& be a free group of countably infinite rank in
the varietyA,. LetT" be the set of all endomorphisms 6f

ProPOSITION4.5. For each positive integer, the maximal condition holds for
I'-closed subspaces B{E*").

ProOF. Clearly we may assume > 1. Let{x;, X,, ...} be a free generating set
for E. For each € N, let G; be the subgroup oE*" generated by the elements
x,L....D, 4 x,1,....,0,...,1,...,1,%). Write G = G;. ThusG is a finite
group. ClearlyE*" is the direct product of the groug® and, for each, there is an
obvious isomorphism fror® to G;. Thus we may identifyfg <" with the direct power
D of G considered above. The result will follow from Propositid if we can show
that every element & is induced by some elementBf Leté € E and suppose that
& is associated withh, X ando, in the notation used before. Define a homomorphism
Yt E—= EbyXiy =Xs[]ex joui X, fOr eachi, where the product is taken over
all those values of, if any, which lie inX and satisfyjo = i¢. It is straightforward
to verify thaty inducest. O
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5. Proof of TheoremC

We use the notation of Sectidn In particular,n is a positive integerA is a free
group ofN,, of countably infinite ranky is the set of endomorphisms éfand[F
is a field of characteristic not dividing. We shall describe the proof of Theoréin
only in the case = 2. The proof for general is essentially the same, but greater
notational complexity is required for> 2.

Let F be the algebraic closure &f If | is aW-closed left ideal off (A x A) then
F ®; | is aW-closed leftideal off(A x A), andl = F(A x A)NF & |. Therefore
we may assume that= F. We write F* for the multiplicative grougf \ {0}.

Let{x :i € N} be afree generating set éfand, for each positive integér let
A be the subgrougx;, ..., X¢). Defineny by ng = nif nis odd andhy = n/2 if n
is even. For alh, b € A we have(ab)" = 1 and hencéa, b]™ = [a™, b] = 1. Thus
(A)™ = {1} and A™ is central inA. It is easily verified that the relationg' = 1
and[x;, x;]™ = 1, for alli, j € {1,...,k}, imposed on the free nilpotent group of
class 2 on free generataxs ..., X, give a group of exponemt, which is therefore
isomorphic toAy. It follows that A, is a free abelian group of exponentwith basis
{[x,x;]:1<i<j <k} Ifn<2 thenAis the free group of countably infinite
rank in the varietyA,, and, in this case, Theoreffollows from Propositiond.5.
Thus we assume that> 2, so thaing > 1.

Let K = Z/noZ and letw be a primitiveny-th root of unity inF. Thus e is
well-defined for allr € K, and{e* : A € K} is the cyclic subgroup of* consisting
of all ny-th roots of unity inF.

Let Qi be the set of all ordered paifs j) with 1 <i < j <k, and letAy be the
set of all functionss : Qy — K. For each§ € Ay there is a group homomorphism
X5 : A, — F* determined byx;([x, X;]) = »*"V for all (i, j) € Qx. Since the
elementgx;, x;] form a basis forA,, every homomorphisn#y, — [F* arises in this
way from somes. We extendy; by linearity to a functiony; : FA, — F. In
the language of representation theory, the functignsre the characters afforded
by the irreducible representations of the abelian gréymver [, all of which are
one-dimensional.

For eacls € Ay, lete; be the element df A, defined by

1
(5.1) € = A aEXA:k xs@ha.

The elements; have the following properties, which may be verified by elementary
representation theory or direct calculation.

(5.2) we; = xs(w)e forall § € Ay andall w € FA,.

(5.3) xs(&) =1 and e =g, forall § € A,.
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(5.4) Xs(€) =0 andeey; =0 forall 8,8 € A, with § £,

Thus the elements; are pairwise orthogonal idempotents. They form a basis
of FA, and eacle; spans a one-dimensional ideal o&,. Within the larger group
algebradr A, andFA, thee; are central idempotents. For eatHet |; = (FA)e;.
Thusl, is the (two-sided) ideal df A, generated by;. By (5.3), (5.4) and 6.5),

(5.6) FA=EP1;.

S€ Ak

It follows from (5.6) and 6.2) that FA, is spanned by all elements of the form
Xt xekes with 8 € Ay anda; € Z/nZ fori = 1,...,k. Itis easily checked that
there are exactlyA¢| such elements. Hence they form a basisFéy, and, for fixed
8, the elements;* - - - x;,“e; form a basis foil;.

If v : A« — A is a homomorphism, wherke,| € N, theny extends to a
homomorphisnf A, — FA, which we also denote by. In particulary : A — Ay
extends toy : FA, — FA,.

For eactk, write A, = A /A, (A)™ and, fora € A, writed = aA (A)™ € A,.
Thus A, is a free abelian group of exponemg with basis{%Xi, ..., %}. We shall
usually think of A, in additive notation: thus we may regard it as a fkeenodule.

If v : Ac > A is a homomorphism, we writ¢ for the induced homomorphism
from Acto A . In particular, ify € Aut(Ay) thenij € Aut(A,).

For eachs € Ay, let 65 be the alternatind< -form on A, satisfying0s (X, X;) =
8(i, j) forall (i, j) € Q. Clearly every alternating -form on A, arises in this way
from somes. Sincex;([x, x;1) = *®1 itis straightforward to verify that

(5.7) xs([an, a)) = 0" ®@® forall a, a, € A

LEMMA 5.1. Let§ € Ay andn € Aut(A). Thenegn = e, wheree € Ay and
0. (&1, &) = O5(&1n*, &n 1) for all ay, a, € Ax.

PROOF. The mapa — x;(an~') is @ homomorphism frond, to F*. Hence there
existse € Ay such thaty.(a) = xs;(an™?) for alla € A,. By direct calculation we
obtaine;n = e,. Also, for alla;,a, € A, (5.7) giveso”@® = yx ([a, a]) =
xs([ar, aln™) = x;([ain L, an~1]) = @7 21 The result follows. O

LEMMA 5.2. Let§ € Ay ande € A, wherek,| € N. Lety : A, > A bea
homomorphism which induces a homomorphisr{ ébrms from(A,, 65) to (A, 6,)
(that is,fs(&,, &) = 6. (&, &) for all a,, a, € Ay). Then(esy)e, = e..
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ProoOF. For alla;, a, € A,

Xs([an, o)) = wh @& — o @I&D) — ¥ ([, aP]) = X.([ay, Bl¥).
It follows that x s (w) = x.(wy) for all w € FA,. Therefore, by%.2) and 6.3),

(eévf)es = Xs(eéw)es = XB(eB)es = es- O

For eachk, we consideiF (A, x Ay), identified withFA, ®; FA.. If ¥ : Ay —> A
is a homomorphism, thetr yields homomorphismg : A, x Ac - A x A and
v F(ACx A) — F(A x A). Foré, 8 € Ay, we writeey ® ey asey andly ® Iy
aslsy. Thus, by b.6),

(5.8) F(Ax A) = @B Ly

8,8'e A

Also, lss is the ideal ofF(A, x Ay) generated by the central idempotegt, and
25 Gy =1

For 8,8’ € Ay, let 65 be the alternatindk @ K-form on A, determined by
Oss (Xi, X)) = (05(Xi, X)), 0y (%, X)) for all (i, j) € Q. Every alternating & K-
form on A, arises in this way from somg §'.

The following two results are easily deduced from LemBnhand Lemmab.2,
respectively.

LEMMA 5.3. Lets, 8" € Ay andn € Aut(Ay). Theneyn = e, wheres, &’ € Ay
ando,. (&, &) = Oy (&4 *, &n 1) for all a;, @, € Ax.

LEMMA 5.4. Lets, 8’ € Agande, &’ € A, wherek,| € N. Lety : A, — A be
a homomorphism which induces a homomorphisid @ K -forms from( Ay, 6;5) to
(ANq N 985/). Then(e&g/'(//)e&/ = e&/.

Let N = ng(2n§ + n3). By Lemma3.3, everyK & K-form is N-regular with
respectto some basis. R’ € Ay, we say thab,y is regularif itis N-regular with
respect to the basi{&y, .. ., X} of A..

LEMMA 5.5. Lets, 8’ € Ax. Then there exists € Aut(A,) such thatezn = e,
wheree, ¢’ € A¢ andé,,. is regular.

PROOF. By Lemma3.3, there is a basi¢a,, ..., &} of A, such that(A, 6;5) is
N-regular with respect to this basis. Itis easily verified that there exists a generating
set{y, ..., Yk} of Ay suchthaty, = § fori =1,...,k. SinceA,is afinite relatively
free group of rank, it follows that{y, ..., v} is a free generating set. Letbe the
automorphism o, satisfyingy,n = x; fori =1, ..., k. By Lemma5.3 esn = €,/
whered,. (X, X;) = 055 (¥, ¥;) forall (i, j) € Qk. Thusé,.. is regular. O
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LEMMA 5.6. Lets, 8’ € Ay ande, ¢’ € A, wherek,| € N, and consideds; and
l..- as subsets df(A x A). Thenlg N1, = {0} unlessk =1,8 = § ande = ¢'.

PROOF. Suppose thdt < |. Itis easily verified that[X_1, X 1® Dw ¢ F(A x Ay)
for all w € F(Ax x A \ {0}. On the other hand, for alk € I,,, the element
([%-1, %1 ® Dv is a scalar multiple ob by (5.2). Thuslsy N 1, = {0}. If k =1 then
lss N 1. 7 {0} impliess = 8’ ande = ¢ by (5.9). O

A non-zero element of F(A x A) will be calledregularif w € |55 for somek and
somes, 8’ € A such thabss is regular. (By Lemm&.6, k, § ands’ are then unique.)

LEmMMA 5.7. EveryW-closed left ideal off(A x A) is generated, as &-closed
vector space, by regular elements.

PrOOF. Let J be a¥-closed left ideal off(A x A) and letJ, be the vector space
spanned by all elements wherev is aregular elementaf andy, € W. It sufficesto
show that) = J,. ClearlyJ, C J. Letw € J. Thenw € F(A, x Ay) for somek, and
we havew = ()55 ca, 85)W = D5 5ca, (B5w), Whereegyw € J N 1y, It suffices
to show that;; w € Jy. Clearly we may assume that w # 0. By Lemmab.5, there
existsn € Aut(Ay) such thatle;sw)n is regular. But(ess w)n € J, sincen extends to
an automorphism oA. Thuse;;w = (gyw)nn~t € . O

Lets, 8’ € Ay. Since the elementg” - - - x;*e; with o € Z/nZ form a basis of;,
the elements

(5.9) (Xfl---ka ®Xfi"'xzé)ess/,

with o, o/ € Z/nZ, form a basis of ;s .

An element off (A x A) will be called amonomialf it has the form 6.9 for some
k and somé, §' € Ay, and aregular monomialf 6s5 is regular. We write# for the
set of all monomials,#* for the set of all regular monomials, and;; for the set of
all monomials ofly .

LetT = Z/nZ x Z/nZ, that is, the Cartesian square of the 2gnZ. With the
monomial 6.9 we associate thk-tuple (t;, t,, ..., t) wheret, = (o, /) € T for
i =1,...,k. Let< be atotal order off which is arbitrary except tha0, 0) <t for
allt € T. Thenthe setof ak-tuples of elements df can be ordered lexicographically
from the right: ift = (t;, ..., t) andt’' = (1], ..., t;) are two sucltk-tuples, we set
t < t'ifthere existyy € {1, ..., k} such thaty <t butt; =t/ fori =q+1,...,k
Hence, fors, 8’ € Ay, we obtain an ordex on the finite set#;; .

Each non-zero elemeritof 155 can be written (uniquely) in the formh = A w; +
<o+ Arwyp, Wherews, ..., wy € My, wy > -+ > wy,andiq, ..., A, € F\ {0}. The
largest monomial; is called thdeading monomiabf f, and we writew; = lead f).
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We shall now define a quasi-order off’. Lets, 8 € Ay ande, e’ € A. Let
v € My andw € #,,., where

V= (Xi‘l .. Xl‘z‘k @ Xt lek)e&g/, w = (xf1 . Xlﬂ' ® Xfl .. X|ﬂ|)esa/~

We write v < w if there is a one-one order-preserving map: {1,...,k} —
{1,...,1} together with a homomorphismr : A, — A with the following three
properties.
(i) Fori=1,...,k wehavexy = zXx, forsomez € (X, ..., Xig_1).
(i) ¥ induces a homomorphism & @ K -forms from(A,, 6s5) to (A, 6,.).
(i) Fori =1,...,k, we havey; = gj, ande = Bis-

It is straightforward to check that#, <) is a quasi-ordered set. Thys7*, <) is
quasi-ordered. Let# be the set of alN-regular(K & K, T)-forms as defined in
Section3with S= K & K. Thus, by PropositioB.7, (%, <) is well-quasi-ordered,
where< is as defined in Sectioh Letv € .#*, where

V= (X:ll)[1 ce XILZk Q Xf/l . Xzé)ess/’
with 8, 8" € Ay andfss regular. Then we can defir&(v) € # by
Z(U) - (Aki 985/7 {)‘Zl’ ceey )Zk}, t)7

wheret = ((ag, «g), ..., (o, @p)). Itis straightforward to verify that ib andw are
elements of#* such thatZ(v) < Z(w) thenv < w. Hence PropositioB.7 gives
the following result.

PrROPOSITIONS.8. The sel(.#*, <) is well-quasi-ordered.

If Sis any set of elements 6 A x A) we write L (S) for the U-closed left ideal
generated bys.

LEMMA 5.9. Let f € I35 \ {0} andg € I, \ {0} wheres, §’ € A ande, ¢’ € A,.
Suppose thalead f) < leadg). Then there existg* € |, such thatLy{f, g} =
L¢{f, g*} and eitherg* = 0 or lead g*) < leadq).

PrOOF. Write f = Av1+---+A v, Wherey, € .#;y andr; € [\ {0} foralli,and
wherev, < vy foralli > 2. Similarly, writeg = pwywi+- - - + pusws, Wherew; € 4.,
andu; € F\ {0} for alli, and wherew; < w, foralli > 2. Writev = v, = lead f)
andw = w; = leadg). Thusv < w. We use the notation far andw given in the
definition of <. Let¢ andys be as in that definition. Ldt, andh, be the elements of
F(A x A) defined by

/ / / .
hl:(Xf;...xg;g,xﬁ...xgq;)((Xfl...xgkg,xfl...xgk) 1//)
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andh, = ]_[J.Ec xf"' ® ]_[J.Ec xfi, whereC = {1,...,1}\ {1¢,...,k¢}. Then

ha(Ui) = (X53- - Xeb @ X5 -+ Xk ) (@ ¥0),
and so, by Lemma.4,

o a o} ay B By B Bk
hi(vy)e. = (X1$ e X @ Ky qu;)ese/ = (le o Xy ® Xy quj‘b)esa“

Thereforeh,h;(vy)e, = (x'---x' @ x* ... x")@® a)e.., wherea,a’ € A.
By (5.2, (a® a)e,, = re,., wherex € [\ {0}. Hence

hohi e, = A(x - X @ x* - x)e. = aw.

Now letu be an element of;, such thati < v. Writeu = (xI* - - - X' @X1* - - - x;¥) sy
Thus there existg € {1, ..., k} such thatlyy, v,) < (g, o) bUt (vi, ) = (o5, )
fori =q+1,...,k. We can write

’ /y—1 ’ ’
(Xfl---sz@)Xfl---sz) (Xi/l...xll(/k@)(i/l...xzk)

— (X:Jl/lfal L. Xll(/k*“k ® Xiﬁ*“l L. Xll/k*“k)(b ® b/)
whereb, b’ € A.. By (5.2, (b ® b)ye.. = ve.,. wherev € F\ {0}. Hence
hi(uy)e, = I)(Xﬁ R XIZ; R XE R Xl‘z‘;)((xi/lfal - Xll(/k*ak ® Xiﬁ*dl - le(/kiak)l/f)e&/

= V0K X B Xy X (O X @ X g Y8
From the properties of we calculate that
- Vq—¢, —v yi—aof
(0 X @ e
(P Pas-1,,74—0q o} Pap-1,,Ya =%
= V(" XgiaXgy @ Xyt X 1Xgh )€

wherev’ € F\ {0} andpy, ..., Pgg-1, P31, - - - » Pyy_y € Z/NZ. Hencehy(uy)e,. has
the form

" o Tqp-1,Yq ,%q+1 o o4 ‘7/¢>71 Yq 0‘/+1 o

V(X0 X 1 X0 Xt T X © X X 1 X0 Xt g X ) Eer
wherev” € F\ {0} andoy, ..., 0qs-1,074, ..., 0q, 1 € Z/NZ. Thereforeh;h; (uy)e..
is a non-zero scalar multiple of a monomial of the form

2 Tap-1, Va y Bap+1 B 2 Tao-1 ., Ya o Pas+1 B
(X2 - - Xy Xqp Xagin - X @ Xy - - X I Xgg Xad 1 - X ) €
H / /AN /

wherets, ..., Tqp 1, T3, -+ Tgy_1 € Z/NZ. SiNCe(Yy, V) < (s ag) = (Bag» Byy):

this monomial is smaller thai.

Since h,hy(f¥)e., = Ahhi(vi)e, + -+ + A hohi(v¥)e,., we see that
h,h,( fy)e... has leading monomial with coefficienti;A. Also, sinceyr extends to
an element ofv, we haven,h;(fy)e,.eLy{f}. Letg*=g—uirA; A" thoh (Fy)e,, .
Theng* has the required properties. O
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Now we are in a position to complete the proof of Theo@nh.et J be av-closed
leftideal of F(A x A). Itsuffices to prove thal is finitely generated asw#-closed left
ideal. By Propositiors.8, there exists a finite s&of regular elements aJ such that
for every regular elemem of J there existsf € Ssuch that leadf) < leadg). We
claim thatd = Ly (S). By Lemmabs.7, it suffices to show that every regular element
of J belongs td_y (S). Suppose, in order to get a contradiction, that this is not so, and
let g be a regular element df such thag ¢ Ly (S). Supposeg € I.... Chooseg with
the given properties such that l€¢gglis as small as possible in the finite ge#,,., <).
There existsf € Ssuch thatleadf) < leadg). By Lemmab.9, there existg* € |,
such thatLy{f, g} = Ly{f, g*} and eitherg* = 0 or leadg*) < leadg). Since
g ¢ Ly{f}, we haveg* # 0. Sinceg* € L{f, g} € J, the choice ofy gives that
g* € Ly(S). Henceg € Ly{f, g*} C Ly (S) and we have the required contradiction.

6. Proof of TheoremD

Letn, A, ¥, F andR be as in Sectior, whereF is a field of characteristic not
dividing n. LetT be the algebraic closure &f The subalgebr ®; R of F(A x A)
corresponds tdR in F(A x A). If M is an(R, ¥)-submodule off(A x A) which
containsR, thenF ®; M is an(F ®; R, ¥)-submodule off (A x A) which contains
F®r R, andM = F(A x A)NF ® M. Therefore, to prove Theorem, we may
assume thak = F.

We shall use the notation of Sectién If n < 2, then Theorend follows from
Proposition4.5. Thus, as in SectioB, we assume that > 2, so thaing > 1.

Let P be the subgroup oA x A defined byP = {(c,c™) : ¢ € A’} and let
H = (A x A)/P. Note thatP is aWw-closed subgroup o x A, so each element of
V¥ induces endomorphisms &f andFH. Fori, j € N, letc;; be the element oH
given byci; = ([x, X1, DP = (1, [xi, x; ) P.

For each positive integés, let H, be the subgroup dfl generated by the elements
x,DHPand(l,x)P fori = 1,...,k. Itis easily verified thaH, is a free abelian
group of exponenh, with basis{c; : 1 <i < j < k}. Furthermore, there are
isomorphisms fromA, to H, and fromFA, to FH, given by[x;, X;] — ¢;; for all
i,j. If v : Ac > A is a homomorphism, where | € N, then the associated
homomorphismy : A, x Ac — A x A yields homomorphismg : H, — H, and
U FH — FH,.

Let K = Z/ngZ, and letQ, and A be as in Sectiol. For each’ € Ay, let x;
ande; be defined as in Sectids) but with respect tdH, rather thanA,. Thusy; is
a character oH, ande; is an idempotent ofH,. Results .2)—(5.5 apply just as
before. FoB € A, we defineJ; = (FH,)e;. ThusJ; is the ideal ofFH, generated by
e;, and we havéH, = @(Mk Js.
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For eachk we write QY = Qx \ {(1,2), (3,4),...}. An element of A, will be
calledstandardif &(i, j) = 0 (equivalently,x;(c;) = 1) forall (i, j) € Q). We write
A; for the set of all standard elements®df andAQ = Ay \ A;.

For eachs € Ay, let6; be the alternating< -form on A, defined as in Sectioh.
Thus(Ay, 65) is standard with respect{&,, . . ., %} (in the terminology of Sectiof)
if and only if § is standard, that i$, € A}.

LEMMA 6.1. Lets € A,. Then there exists € Aut(Ay) such that, for the induced
automorphisny : FH, — FHy, we havessy = e, wheree € A}.

PROOF. By Lemma3.8 there is a basi¢a,, ..., &} of A, such that(A, 6;) is
standard with respect to this basis. As in the proof of Lenfima there is a free
generating sety, ..., Y} of A, such thaty, = & fori = 1,...,k. Letn be the
automorphism ofA, satisfyingyin = x fori = 1,...,k. Note thaty acts on
A, just asi acts onH,. Thus Lemmab.1 shows thatesn = €., wheree € Ay
and 0. (%, X;) = 0s5(%,Y,;) foralli, j. Thus (A, 6,) is standard with respect to
{Xi, ..., X}, thatis,e € A}. O

SinceFH’ is a subalgebra oFH, we may regardFH as a leftFH’-module.
Following the terminology of Sectiof, we shall conside¢FH’, W)-submodules of
FH. A non-zero element of FH will be calledstandardif w € J; for somek and
somes € Aj.

LEMMA 6.2. Every(FH’, ¥)-submodule oFH is generated, as &-closed vector
space, by standard elements.

PrOOF. This is similar to the proof of Lemmfa 7, with Lemma6.1taking the place
of Lemmab.5. O

Let C be the subgroup oH generated by all elements for whichi < j and
(,)) ¢1{1,2),(3,4),...}. Letp bethe naturalhomomorphispn: H — H/C. We
also denote by the associated homomorphistg — H/C andFH, — F(H/C).
Clearly the kernel op : H — H/C is the subgroup oH, generated by ait;; for
which(i, j) € Q. Thusthe kernelgf : FH, — F(H/C)isthe ideal generated by the
elements; —1for(, ) € Q. Wewrite(FH)* = @;.; J and(FH)® = D po -

LEMMA 6.3. The kernel op : FH, — F(H/C) is (FH,)°.
PROOF. Lets € A. Theny;(cij) # 1 for some(i, j) € Qp. By (5.2, (c; — 1)&;

is a non-zero scalar multiple ef. But clearly(ci; —1)e; € ker(p). Thuse; € ker(p).
It follows that J; € ker(p) and so(FH,)° C ker(p).
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Let (i, j) € Q). Then, fore € A}, we have(c; — 1)e. = (x.(c;) — D)e. = 0.
Hencec; — 1= (¢; —1) X, & = (Cj —1) X0 &. Hencec;; — 1 belongs to the
ideal (FHy,)°. Since this holds for alii, j) € QP we obtain kefo) < (FH)°. O

Fork € N, let ¢ be the endomorphism ok defined byx; v, = 1 fori > k and
X = X fori < k. Also write ¢ for the induced endomorphisms bf andFH.

LEMMA 6.4. Letu € (FH,)* and letl > k. Then there exists € (FH,)* such that
vy = u andvp = up.

PROOF. Let B be the subgroup oH,/ generated by all elementg for (i, j) €
QP \ QY Letv =u(|BI™t)Y , zh). Clearlyvyy = u andvp = up. To prove that
v € (FH)* itis enough to show thate, = O for all e € A.

Lete € AY. Thenthere existé, j) € Q such thatx,(c;) # 1. We consider two
cases. Suppose first th@t j) € QY. Then the restriction of, to H, has the form
x5 forsomes’ € AY. Then for alls € A; we havesse, = x5 (e5)e. = 0, by (5.2) and
(5.4). Henceue = 0 and sowe, = 0. Suppose secondly that j) € Q°\ Qp. Then
Y hes hcan be written as) (14 ¢ + - - - +¢’) for somew € FH/. Sincex.,(c;) is a
non-trivialne-th root of unity,x . (1+c;; +- - -+Ci'}°) = 0. Thus(1+cj+- - -Jrci'}")e(8 =0
and sove, = 0. O

LEMMA 6.5. Suppose thai; and M, are (FH’, W)-submodules ofH such that
Mlp = sz Thean = Mz.

PROOF. Suppose, in order to get a contradiction, tMat = M,. Without loss of
generality we may assume thil, ¢ M,. By Lemma6.2there exisk ands € A
such thatM; N J; £ M,. Hence there exists € (FHy)* such thau € M; \ M,. By
hypothesis there exists € M, such thatip = wp. Choosd > k such thatv € FH,.
Thenw = w*+w® wherew* e (FH,)* andw® e (FH,)°. SinceM, is anFH’-module,
w* € My, Alsoup = wp = w*p. By Lemma6.4there existey € (FH,)* such that
vy = U andvp = up. Thusvp = w*p. By Lemma6.3 this givesv = w* € M,.
Henceu = vy, € M,, which is a contradiction. O

Now we return to the grougdi/C. Recall thatH = (A x A)/P. For each
i € N, letG; be the subgroup dfi /C generated by the four elemerit,_1, 1) P)p,
(L, Xi_1)P)p, (X, DP)p and ((1, X5)P)p. Write G = G;. ThusG is a finite
group. It is easily verified thaH /C is the direct product of the grougs;, and,
for eachi, there is an obvious isomorphism fro@ to G;. Thus we may identify
H/C with the direct poweD of G considered in Sectiod. Let E be the set of
endomorphisms ob defined in Sectio#.
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LEMMA 6.6. Let M be a W-closed subspace dfH. ThenMp is a E-closed
subspace of D.

PROOF. Let&é € E and suppose thgtis associated witkh, X ando in the notation
of Section4. It suffices to show that there exists an endomorphysraof A such
that the induced endomorphism Hf leavesC invariant and induces on H/C. To
simplify the notation we rewrite the generatorsfoby settingy, = X5_; andz = xy
foralli € N. We define a homomorphisgn : A — A by

v =Y [[ v z2v=2 ][]z
jeX jeX
jo=i¢ jo=i¢
for eachi. The products are taken over all those valuef, @fany, which lie inX and
satisfy jo = i¢, and the termg; andz; are taken in increasing order pf(this is an
arbitrary choice). Itis straightforward to verify th#thas the required properties]

By Propositiord.4together with Lemm&.5and Lemma5.6 we obtain

LEMMA 6.7. The maximal condition holds fgifH’, ¥)-submodules dfH.

Consider the natural homomorphism: A x A — H with kernelP, and letl be
the kernel of the corresponding homomorphismF(A x A) — FH.

LEMMA 6.8. The maximal condition holds farR, ¥)-submodules of (A x A)
which containl .

PrOOF. By Lemma6.7 it suffices to show that iM is an (R, ¥)-submodule of
F(A x A) which containsl then Mz is an(FH’, ¥)-submodule offH. It is clear
thatM is W-closed, by definition of the action d@f onFH. Also, Mx is a leftRx-
submodule offH. Thus it suffices to show thad’ € Rx. SinceRx is an algebra, it
suffices to show that; € Rz for all i, j. Note that([x;, X;] ® [X, X;)7T = c,zj and
(%, X1 ®14+1® [x, X7 = 2¢;. Hencec; € Rr and Z;; € Rr. If ny is odd
thencizj € R givesc; € Rr. Butif ng is even therf does not have characteristic 2
and Z; € Rr givescj € Rrr. O

In the notation of SectioB, we can writeF (A, x Ay) = @M/EM ls. Note that

Hence, fors # &', we haveessm = ese5 = 0 and solss C ker(r) = |. Itis easily
checked thagp;_,, 1ss andFH, have the same dimension. Hence

(6.1) I NF(Ax A = @ lss.
8,8'e Ag
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LEMMA 6.9. LetM be an(R, ¥)-submodule of (Ax A) suchthaRNl € M C I,
and letT be the largest¥-closed left ideal off(A x A) contained inM. Then
M=T+(RNI).

PrOOF. Let L be the subspace dfl spanned by all elements &f which have
the formwe;y wherew € F(A x A) and$, 8’ € A, for somek, with § £ §'. Let
wesy be such an element . Lety € ¥ anda,a’ € A. Choosd > k so that
eV, ey € FA. Sinceesy andeyy are idempotents, we can wriggyy = ), _, €
andeyy =) ..., & WhereA, A’ C A. But(ey)(eyy) = (6&€)y = 0. ThusA
andA’ are disjoint. Fore € A ande’ € A/,

(a@a)e., + @ ae.) (wy)(eyy) € M,

becauséM is an(R, ¥)-module. Howevers;y = ), ,, €. Hencee,,(gy) =0
ande,. (e3¥) = €.... Thereforga®a)(wy)e, € M,andsaa®a’)(wy)e, € L.
Since this holds for alk, ¢’, we have(a ® a)(wy)(es ) € L. Thereforel is a
W-closed left ideal off(A x A). We next prove tham = L + (RN 1), which will
give the required result.

Letu € M and choosé& so thatu € F(Ac x Ay). SinceM C | we can useq.1) to
write U = ) w5 €55, Where the sum is over all §' € Ay with § # 8 and eachw;y
belongs tar(Ac x Ay). Lets, 8 € Ay with § # 8. SinceM is anR-module,

(&5 + €ys)U = Wiy €55 + Wys€ys € M.

Write v = w;y andv’ = wys. Thenit suffices to show thak; +v'eys € L+ (RN1).
Let t be the involutory automorphism &{ A x A) satisfying@a® a)r =a ® a
foralla,a € A. Thenw + wt € Rforall w € F(A x A). We can write

(62) V655 + v/e” = (U — U/T)eLng/ + U/eg/g + (U/T)655/.
Here
U/es/s + (U/T)655/ = v/e” + (U/e“)‘t (S RN I

SinceRN| € M, (6.2 gives(v — v'1)65 € M, and so(v —v't)ess € L. Therefore,
by (6.2), vess + v'eys € L + (RN 1), as required. O

To complete the proof of TheoreB, let M; € M, C ... be an ascending chain
of (R, ¥)-submodules off(A x A) which containR. By Lemma6.8 the chain
M;+ 1 € M+ | C--- becomes stationary. Thus it suffices to show that the chain
M;Nl € M,N1 C--. becomes stationary. For edachet T; be the largest-closed
leftideal of F(A x A) contained inMVi; N 1. By Lemma6.9it suffices to show that the
chainT, C T, C --- becomes stationary. But this holds by Theot@m
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