J. Austral. Math. Soc.  73 (2002), 221-250
The Lindelöf principle and angular derivatives in convex domains of finite type

Marco Abate
  Dipartimento di Matematica
  Università di Roma `Tor Vergata'
  Via della Ricerca Scientifica
  00133 Roma
  Italy
  abate@mat.uniroma2.it
and
Roberto Tauraso
  Dipartimento di Matematica
  Università di Roma `Tor Vergata'
  Via della Ricerca Scientifica
  00133 Roma
  Italy
  tauraso@mat.uniroma2.it


Abstract
We describe a generalization of the classical Julia-Wolff-Carathéodory theorem to a large class of bounded convex domains of finite type, including convex circular domains and convex domains with real analytic boundary. The main tools used in the proofs are several explicit estimates on the boundary behaviour of Kobayashi distance and metric, and a new Lindelöf principle.
Download the article in PDF format (size 244 Kb)

TeXAdel Scientific Publishing ©  Australian MS