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Abstract

We characterise the strongly dualisable three-element unary algebras and show that every fully dualisabls
three-element unary algebrais strongly dualisable. It follows from the characterisation that, for dualisable
three-element unary algebras, strong dualisability is equivalent to a weak form of injectivity.
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The theory of natural dualities is a study of quasi-varieties of the fis$f(M),
whereM is a finite algebra. We aim to set up a natural dual equivalence between
the categorys := ISP(M) and a category?” of structured topological spaces. This
duality can often provide a practical representation of the algebrag in terms

of simpler objects. Priestley’s duality for the quasi-variety of distributive lattices is
a prime example of a very useful duality (se#)[ As well as finding and using
practical dualities, natural-duality theoreticians tackle more esoteric problems. We
are interested in understanding which finite algeliviaallow us to set up a natural
duality for ISP(M), and what the existence (or non-existence) of this duality can tell
us about the quasi-varietgP(M).

The theory of natural dualities is well developed and contains some powerful theo-
rems for creating dualities. Nevertheless, our understanding of what makes an algebr:
dualisable, fully dualisable or strongly dualisable is rather limited. In this paper,
we aim to gain some insight into strong and full dualisability by investigating three-
element unary algebras. Unary algebras, especially three-element unary algebra:
may seem very simple. But, from the point of view of natural-duality theory, they
are rather complicated. This study complements the palpeoy Clark, Davey and
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Pitkethly, which classifies the dualisable three-element unary algebras. We give a
characterisation of the strongly and fully dualisable three-element unary algebras. In
particular, we show that strong and full dualisability are equivalent within this class. In
general, it is not known whether every fully dualisable algebra is strongly dualisable.
The strong dualisability of an algebra seems to depend on how close the algebra i
to being injective. We show that, for dualisable three-element unary algebras, strong
dualisability is equivalent to a weak form of injectivity. Iid][ Hyndman and Willard

give an example of a three-element unary algebra that is dualisable but not fully dual-
isable. It follows from our characterisation that there are many three-element unary
algebras that are dualisable but not fully dualisable.

The (strong) dualisability of a three-elementunary algebra is related to the number
of different patterns of its unary term functions. Consider a finite unary algébra
We shall define &ernel of M to be an equivalence relation &M that is the kernel of
a unary term function o which is not a constant map or a permutation. We jgall
ann-kernel unary algebrdf n is the number of kernels ¢fl .

The following theorem gives the classification of dualisable three-element unary
algebras from4]. This classification is most complicated within the family of two-
kernel algebras. To simplify the statement of the theorem, we use the fact that every
two-kernel three-element unary algebra is isomorphic to a unary algebra, on the se
{0, 1, 2}, with kernels{01|2} and{02/1}. (See Lemma 4.14].) We denote a unary
operatioru : {0, 1, 2} — {0, 1, 2} by the stringu(O)u(L)u(2).

DUALISABLE THREE-ELEMENT UNARY ALGEBRAS. LetM be a three-element unary
algebra.

(i) If M is a zero-kernel or one-kernel algebra, thighis dualisable.
(i) Assume that! is atwo-kernel algebra, on the s, 1, 2}, with kernel§01|2}
and{02|1}. ThenM is dualisable if and only if none of the following conditions hold

(@) ppgand pgp are term functions oM, for somep, g € M with p # q,
but 0100r 002is not a term function o ;

(b) 010 00landl1lOare term functions oM, but222isn't;

(c) 002 020and?202are term functions oM, but11lisn't.

(i) If M is athree-kernel algebra, thev is not dualisable.

Inthis paper, we shall establish the characterisations of strongly and fully dualisable
three-element unary algebras given below.

STRONGLY DUALISABLE THREE-ELEMENT UNARY ALGEBRAS. Let M be a three-
element unary algebra.

(i) If M is a zero-kernel or one-kernel algebra, thighis strongly dualisable.
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(i) Assume that! is atwo-kernel algebra, on the s, 1, 2}, with kernel§01|2}
and{02/1}. ThenM is strongly dualisable if and only if bot®10and 002 are term
functions ofM and neither of the following conditions holds

(&) ppgandgpg are term functions oM, for somep, q € M with p # q;
(b) 10land220are term functions oM.

(i) If M is athree-kernel algebra, thev is not strongly dualisable.

Explicit examples of strongly dualisable two-kernel three-element unary algebras
may be obtained from Lemnta6.

FULLY DUALISABLE THREE-ELEMENT UNARY ALGEBRAS. LetM be athree-element
unary algebra. TheM is fully dualisable if and only ifM is strongly dualisable.

We have given an algorithm for deciding whether or not a particular three-element
unary algebra is strongly dualisable. However, this algorithm does not really give us a
feel for what makes a three-element unary algebra strongly dualisable. We shall show
that, for dualisable three-element unary algebras, strong dualisability is equivalent to
a weak form of injectivity. To make this more precise, we first need to give some
definitions. (Many of the concepts we use throughout this paper are introduced in
more detail, and with examples, in the papén)|

Let M be a finite unary algebra and choose an algébfeom the quasi-variety
& = ISP(M). Thecentre ofA is defined to be the subuniverse

Ca := {M* | m € M is the value of a constant term function\f

of A. There is a directed graph naturally associated withWe define the graph
G(A) = (A Ea) by

EA:={(a,b) |a e Aandb € sg,(a)},

where sg(a) denotes the subuniverse Af generated by, for eacha € A. The
relationE, is reflexive and transitive, and so is a quasi-ordeAoibet G*(A) denote
the induced subgraph @ (A) with vertex setA\C,. For everya,b € A\C, and
n € N U {0}, we say that there isfence froma to b in A of lengthn if there are edges
X1, Y1, -+ - » Xn, Yo Of G*(A) such that

X1 V1 X5 N
a b

in G*(A). A subalgebr of A is called apetal of A if P\C, is the vertex set of a
connected component of the graBh(A). Soa, b € A\C, belong to the same petal
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of A if and only if there is a fence from to b in A. It is easy to check that every
non-trivial algebra ineZ is the coproduct of its petals.

Now let P be a petal ofA and letn € N. Define the distance functiod- on
P\Cx such thatds(a, b) is the length of the shortest fence frarto b in A, for all
a,b e P\C,. For eacta € P\C,, the ball inA with centrea and radiusy, given by

Na(@) :={b e P\Ca|de(a,b) <nfUCx,

determines a subalgebra &f Fora € C,, we setna(@) := C,. Now define
Na(B) := J{na(b) | b € B}, for all B € A. The algebraV is said to ben-quasi-
injectiveif, for all finite algebrasA, B € ¥ such thaB < A, every homomorphism

X : B — M that extends t,(B) also extends tA. We shall show that the
theorem below follows from our description of strongly dualisable three-element
unary algebras.

QUASI-INJECTIVITY THEOREM. LetM be a dualisable three-elementunary algebra.
ThenM is strongly dualisable if and only i is n-quasi-injective, for some € N.

1. Natural dualities

This section provides a quick introduction to duality theory. A more detailed
account can be found in the textf[ by Clark and Davey. LeM = (M; F) be a finite
algebra and defineZ := ISP(M). An alter ego of M is a structured topological
spaceM = (M; G, H, R, .7), on the same underlying setls such that:

(i) Gisasetoflgebraic operations oM, thatis, eacly € Gis ahomomorphism
g:M" — M, for somen € N U {0};
(i) H is a set ofalgebraic partial operations oM, that is, eacth € H is a
homomorphisnh : D — M, for somen € N andD < M";
(i) Ris asetoflgebraic relations oM, that is, eaclhh € Ris the underlying set
of a subalgebra df1", for somen € N,;
(iv) 7 isthe discrete topology oNl.

Let M be an alter ego oM and define2” := IS.,P*(M) to be the class of all
isomorphic copies of closed substructures of non-zero powelks.of here is a pair
of contravariant functors D&/ — 2 and E: 2" — /. For everyA € </, define
D(A) to be the homse# (A, M) viewed as a closed substructure\NA)‘f‘. The structure
D(A) is called thedual of A, for eachA € «. For everyX € %7, define EX) to be
the homset2" (X, M) viewed as a subalgebra®F*. It remains to define D and E on
morphisms. Fop : A — Bin </, define Op) : D(B) — D(A) by D(¢)(X) := Xo ¢,
and fory : X — Y in 2", define By) : E(Y) — E(X) by E(¥) (@) := a o .
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For eachA € «/, there is a natural embeddirgg : A — ED(A), given by
en(@(x) := x(@), foralla € Aandx € «(A,M). Similarly, for eachX € .27,
we can define an embedding : X < DE(X) by ex(X)(«) := a(X). If e is an
isomorphism, for alA € </, then we say tha¥l yields a duality one/. In this case,
we have a representation far: each algebrd € </ is isomorphic to the algebra
ED(A) of all morphisms from its dual DA) into M. If ey andey are isomorphisms,
forallA € &/ andX € .27, then we say tha¥l yields a full duality one/. In this case,
the categoriesy and.Z" are dually equivalent. The algehlvais (fully) dualisableif
there is an alter ego &fl that yields a (full) duality ore7.

As we shall see in Section 5, full dualities are rather complicated. There is a
simpler, stronger notion that we often use instead. Firs ke a non-empty set and
let Fy (S) denote the set of aB-ary term functions oM. A setX < M*Sis term
closedif

X =("\edo.7) | 0.7 € Fy(S) ando [ = ]y}.

Itis known thatM yields a full duality one if and only if M yields a duality one’

and every closed substructure of a non-zero powst afisomorphic to a term-closed
substructure of a power & (see [l]). We now say thaM yields a strong duality on

</ if M yields a duality oneZ’ and every closed substructure of a non-zero power of
M is term closed. So every strong duality is also a full duality. At present, it is not
known whether every full duality is also strong. The algeldr#s strongly dualisable

if there is an alter ego d¥l that yields a strong duality o%'.

By the First Strong Duality Theoreni]], the structureéM yields a strong duality
on.« if and only if M yields a full duality oneZ andM is injective in.2". There are
close connections between the injectivityMfin .2~ and the injectivity ofM in </

(see [, Section 3.2]). The strong dualisability of an algebra seems to be related to
how close the algebra is to being injective. Certainly, every dualisable algebra that
is injective in the quasi-variety it generates is strongly dualisable. This follows from
results of Willard [LC], but it can also be proved directly using the resultslijp [

LEmmA 1.1. LetM be a finite algebra that is injective it5P(M). If M is dualis-
able, therM is strongly dualisable.

ProOOF (Sketch).Assume thaM is dualisable. Then there is a relational structure
M = (M;R,.7) that yields a duality oneZ := ISP(M). Define the seG :=
Uf«(M" M) | n € NU {0}} and define the alter egd’ := (M; G, R, .7) of M.
ThenM' also yields a duality or/. SinceM is injective in</, every algebraic partial
operation orM is the restriction of an algebraic operation ®h It now follows
thatM’ yields a strong duality or/ by Exercise 3.1 and the Second Strong Duality
Theorem, in ]. (For the solution to Exercise 3.1, refer to the proof of Theorem 3.1.3
in[1].) O



192 J. G. Pitkethly 6]

In this paper, we make use of two general methods for showing that a dualisable
algebra is strongly dualisable. The first method is due to Clark, ldziak, Sabourin,
Szalw and Willard P].

THEOREM 1.2 ([2, Lemma 4.8]).Let M be a finite algebra and leM be an alter
ego of M. ThenM yields a strong duality or7 := ISP(M) if and only if

(i) M yields a duality one/, and

(i) for everyA € «/ and each proper closed substructiteof D(A), the maps
in X do not separate the elements/Af

The second method was introduced by Lampe, McNulty and WilBjtd{is based
on a result of Willard L0]. For asety € «/(M", M), with n € N, define the natural
product magY : M" — MY by nY(a)(y) := y(a). We say thaM has enough
algebraic operationsf there is a mapf : N — N for which the following condition
holds:

for alln € N, all algebra8 < A < M" and all homomorphismk : A — M,

there exists a seY € &/ (M", M), with |Y| < f(|B|), and a homomorphism

h": Y (A) — M such that the diagram below commutes.

B A M"

hlg MY [
M <« H - nY(A)

Although the definition of enough algebraic operations appears technical, it often
provides a relatively easy way to lift dualisability to strong dualisability.

THEOREM 1.3 ([8, Theorem 4.3]) LetM be a finite algebra with enough algebraic
operations. IfM is dualisable, theM is also strongly dualisable.

2. Zero-kernel and one-kernel unary algebras
are strongly dualisable

The quasi-variety generated by a zero- or one-kernel unary algebra is especially
simple. Consider a finite (not necessarily three-element) zero- or one-kernel unary
algebraM and definew := ISP(M). There is a finite set? of algebras that
encapsulates the quasi-variey. each finite algebra in7 is ‘nearly isomorphic’ to
a coproduct of algebras fro®. The finiteness of the quasi-variety suggests that
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the algebravl should be dualisable. This is the case, and it is proved]inTo show
thatM is strongly dualisable, it now suffices to show tidthas enough algebraic
operations. We begin by describing the finiteness/gbrecisely, using the definition
of a gentle basis from].

Let A be a finite unary algebra. An element A is called arouter element oA
if sg, (@) is @ maximal one-generated subalgebrAoDtherwise, we say thate A
is aninner element oAA. Let A,,; denote the set of all outer elementsfofind letA;,
denote the set of all inner elementsfof ThenA;, is a subuniverse dk. A surjection
¢ : A — Bis said to begentleif ¢, sq @ IS ONE-tO-0NE, for alh € Aoy,

Let M be a finite unary algebra and define := ISP(M). An algebraP is called
apetal of < if P is a petal of an algebra belonging #8. Let % be a set of finite
petals of<. Then# is agentle basis for if, for every finite petaP of «/, thereis a
gentle surjectiow : P — B, for someB € #. The following three results are proven
in [4]. The first lemma shows that gentle surjections are ‘nearly’ isomorphisms.

LEMMA 2.1 ([4, Lemma 3.3]).Let A be a finite unary algebra and let: A — B
be a gentle surjection. Themis a retraction and, for each subalgeb@of A such
that ¢ [ is one-to-one, there is a coretractigh: B — A for ¢ with C < ¢ (B).

LEMMA 2.2 ([4, Corollary 3.8]).Let M be a finite unary algebra. Thel6P(M)
has a finite gentle basis if and onlyM is a zero-kernel or one-kernel algebra.

THEOREM 2.3 ([4, Theorems 2.7 and 3.9]Every finite zero-kernel or one-kernel
unary algebra is dualisable.

We shall also use the following general lemma due to Hyndrfan |

LEMMA 2.4 ([6, Lemma 2.2]).LetM be a finite algebra and defing := ISP(M).
LetB < M", for somen € N. Then there is a seZ € «/(M", M) of projection
functions such thaZ separates the elements Bfand|Z| < |B| — 1.

Using the results above, we now prove that finite zero- and one-kernel algebras
have enough algebraic operations.

LEmMMA 2.5. Every finite zero-kernel or one-kernel unary algebra has enough al-
gebraic operations.

PrOOF. LetM be afinite zero-kernel or one-kernel unary algebra. By Lerfirfia
there is a finite gentle basi® for &/ := ISP(M). Choose somé& € N such that
k > |« (P,M)|, forall P € #. Define the magf : N — Nby f(n) :=k’n+n— 1.
Now letn € N, letB < A < M"andleth: A — M.
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Define Z to be the set of all petals ®". Let #%g denote the set of all petasof
M" suchthatPN B # Cy». For eachP € 22, thereis a gentle surjectign : P — P,
whereP* ¢ £, and we can write# (P*, M) = {Xp1, ..., Xp¢}. For eachP? € &2 and
alli, j € {1,...,k}, we can define the algebraic operatg)r;pj :M" — M by

Opj = (Xm0 @p) U |_|{ng opq | Q € Z\{P}},

asM" is the coproduct of its petals.
By Lemmaz2.4, there is a seZ € «/(M", M) of projection functions such that
separates the elements®fand|Z| < |B| — 1. Define

Y:=Zu{gpij |Pe Zgandi, jef{l, ..., k}}.

Then|Y| < |B| — 14 k?|B| = f(|B]). Definex : M" — MY by 1 := rY. We wish
to find a homomorphism’ : ©(A) — M such thaty o u[g = h[g. We can assume
that the selY is not empty. (Otherwise, we hayB| = 1 = |1 (A)| and so we can
defineh’ to have the same value h§g.)

The setD := | J{P | P € 22\ %} determines a subalgebiaof M". We will
show thatu(A) is the coproduct ofu(PNA) | P e 2} U{u(D NA)}in <. To do
this, it suffices to prove that

{(P N ANC,n) | Pe Pt U{(DNANC, ;)

is a partition ofu(A)\C, ). Leta € (P N A)\C, and leth € (Q N A)\Ca, for some
P e 253 andQ € Z\{P}. Itis now enough to show that(a) # u(b).

As a # bin M", there is a homomorphism: M" — M such thatz(a) # z(b).
By Lemmaz2.1, there is a coretractiofr, : P* < P for ¢p with sg.(a) € ¥, (P*).
It follows thaty, o pp(a) = a. The homomorphisnz o ¥, : P* — M belongs to
& (P*,M) = {Xp1, ..., Xpx}. S0 thereis somee {1,...,k} suchthazo y, = Xp;
and thereforexp; o pp(@) = Z o ¥, 0 pp(@) = z(a). Similarly, there exists some
j € {1, ..., k}with Xq; 0 po(b) = z(b). Thus

Upij (@) = Xpi 0 pp(@) = 2(a) # z(b) = Xqj 0 po(b) = gy (D),

whenceu(a) # u(b). We have shown that the algebnaA) is the coproduct of
(n(PNA)|Pe ZglUu{ndDnA)in «.

Now letP € 2. To see that the surjectiqn[p, : PN A — w(PNA)is gentle,
leta € (PN A)andleth,c e (PN A), Usg (@) withb # c. As(PNA), C Py,
andgp is gentle, we haver(b) # ¢p(c). There must be somee {1, ..., k} with
Xpi 0 pp(D) # Xpi 0 p(C). S0Q,,(b) # g,,(C) and thereforgu(b) # w(c). Thus
Wlena - PNA — n(PNA)is gentle. SinceY separates the elements Bf the
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map ulpsg is One-to-one. It follows by, Lemma.1, that there is a coretraction
vp: u(PNA) — PNAforulp,asuchthatt N B C vpo (P N A).

Since u(A) < MY and the setY is non-empty, there exists a homomorphism
X : u(A) — M. We can now define the homomorphism ©(A) — M by

W = X],orn U|_Jthove | Pe ).

To see thah’ o ufg = hlg, letP € %z and letb € P N B. Sincevp is a coretraction
for ulpnasuchthaP N B € vpou(PNA), we havevpo it [png = idpng and therefore

h" o u(b) =hovp o u(b) = h(b).

ThusM has enough algebraic operations. O

The next theorem follows straight from TheorérB, Theoren?.3and Lemm&.5.

THEOREM 2.6. Every finite zero-kernel or one-kernel unary algebra is strongly
dualisable.

We finish this section by considering quasi-injectivity.

LEMMA 2.7. Every finite zero-kernel or one-kernel unary algebradiguasi-injec-
tive, for somen € N.

PrOOF. LetM be afinite zero-kernel or one-kernel unary algebra. By Lerfiria
there is a finite gentle basi® for v := ISP(M). Every algebrainZ is a finite petal
of /. For each finite petd of </, define

we := max({ds(a, b) | a,b € P\Cp}).
Now define
n:= max({ws | B € Z} U {2}).

Let P be a finite petal ofeZ. There is a gentle surjection : P — B, for some
B € #. To see thatvp < n, leta, b € P\Cp with a # b. Define the subuniverse
Pap := P Usgs({a, b}) of P.

Case(a): ¢[p, is one-to-one. By Lemma.1, there is a coretractiopy : B < P
for ¢ with a, b € ¥(B). Sods(a, b) < dy) (@, b) < wyE =ws < N.

Case(b): ¢[p, is not one-to-one. Since is gentle, we have, b € Py, and
sg(a) # sg(b). There isc, € sg-(@)\ P, andc, € sg-(b)\ P, with ¢(C,) = ¢(Cy).
We must have sga) = sg.(c,) and sg(b) = sg(cp), sincec, andc, are outer
elements oP. Asc, andc, are connected by a fence it there must be a unary
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term functionu of A such thatu(c,) € P,,\Cp. This gives usu(c,) = u(c,), since
p(u(cy)) = p(u(c,)) andy is gentle. Therefords(a, b) < 2 < n, asa € sg.(c,) and

b € sg.(cy).

We have shown thate < n, for all finite petaldP of <. To see thaM is n-quasi-
injective, choose a pair of finite algebrAsB € & with B < A. Letx : B - M
and assume that extends tm, (B). LetP be a petal oA with PN B # C,. Then
P € na(B), sincewp < N. SOX[pg €Xtends tdP. SinceA is the coproduct of its
petals, it follows thak extends toA. O

3. Two-kernel three-element unary algebras
that are strongly dualisable

The family of two-kernelthree-element unary algebras is surprisingly complicated.
It contains strongly dualisable algebras, dualisable algebras that are not fully dual-
isable, and non-dualisable algebras. We begin this section by giving two different
classifications of the two-kernel three-element unary algebras. To give the classifica-
tions, we require the following easy lemmas frofh [

LEMMA 3.1 (4, Lemma 4.1]).LetM be a two-kernel three-element unary algebra.
There is an isomorphic copy dfl, on the sef0, 1, 2}, that has kernel$01/2} and
{0211}

LEMMA 3.2 (4, Lemma 4.2]).Let M be a two-kernel unary algebra, on the set
{0, 1, 2}, with kernels{01]2} and {02/1}. Then the unary term functions of all
belong to the se012 021} U {ppq, pap| p,q € M}.

We can now restrict our attention to those two-kernel algebras, on the, 4dep},
that have kernel$01|2} and{02]1}. The most complicated algebra of this kind is
M* = ({0, 1, 2}; F*), whereF* := {012 021} U {ppq, pap | p,q € M}. Define the
idempotent operation$; := 010 andf, := 002 in F%. The next result divides the
two-kernel three-element unary algebras up into four types.

THEOREM 3.3 ([4, Theorem 4.3]) LetM be a two-kernel unary algebra, on the set
{0, 1, 2}, with kernels{01]2} and {02/1}. Let F be the set of unary term functions
of M. Then at least one of the following is true

(2o each map irF preserves the ordeg with1 < 0 < 2;

(e {f1, T2} ¢ F,and{ppq, pgp} < F, for somep, q € M with p # q;
(2v {010 001 110 € F and222¢ F, or {002 020, 202 € F and111¢ F;
Qr {f1, T2} € F, and condition(2), fails.
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In [4], it is shown that the algebras of ty2), and type(2)r are dualisable, and
thatthe algebras of tyg@)r and type(2), are non-dualisable. We shall use a different
classification for our characterisation of strong dualisability.

THEOREM3.4. Let M be a two-kernel unary algebra, on the 4€t 1, 2}, with
kernels{01|2} and {02|1}. Let F be the set of unary term functions M. Then at
least one of the following is true

(2p {f1, f2} € F,and{ppa, pgp} < F, for somep, q € M with p # q;
(2o {ppa,qpg < F, for somep,q € M with p # q;

(2)c {101,220t C F;

(2)s {f1, fo} € F, and conditiong2)q and (2)c both fail.

PROOF. First assume thaM has type(2)o but not type(2)q. We will show
that {010, 002 € F C {012 010 002 000,111, 222. Since{01|2} and{02/1} are
kernels ofM, there arep, g, r, s € M, with p # g andr # s, such thatppq € F and
rsr € F. AsM does not have typ@)q, we musthavepqg ¢ F andssr ¢ F. The only
non-constant maps iM™ that preserve the ordet are 012, 110, 112, 002, 010, 212
and 202. Assrol110=rsroll2=ssr¢ Fandppgo212= ppge202=qpq ¢ F,
it follows that{010, 002 € F C {012 010,002 000 111, 222.

To see that the four types in the statement of the theorem are exhaustive, assume th
M has neither typ€2),, type (2)q, nor type(2)c. We need to prove thaff,, f,} < F.
SinceM does not have typ€2),, we have{110 010, ¢ F and{202 002 ¢ F.
ThereforeM does not have typ€2),. So, by Theoren3.3 we can assume thd
has type(2)o. We have just shown that this implies tHdt, f,} C F. O

Throughout the rest of this paper, we shall prove that the algebras of(®pe
are strongly dualisable, and that the algebras of t@pe and type(2)c are not fully
dualisable. This will provide us with plenty of examples of dualisable algebras that are
not fully dualisable: for instance, each algelf@, 1, 2}; F) such that101, 220} C
F C F&.

In [3] (see also 4]), it is shown that a finite unary algebra is dualisable if its
operations form a set of lattice endomorphisms. The proof is particularly short and
elegant. So it is slightly surprising that not all of these lattice-endomorphism unary
algebras are fully dualisable. In fact, most of the two-kernel three-element lattice-
endomorphism unary algebras are not fully dualisable. In the proof of Thedrem
we showed that a two-kernel unary algebra whose operations preserve theorder
with 1 0 < 2, must have typ&2)q unless it is polynomially isomorphic to
({0, 1, 2};010 002.

Every algebra of typ€2)s also has typ&€2)r, and is therefore dualisable. We shall
prove that every algebra of tyg2)s has enough algebraic operations and is therefore
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strongly dualisable. The following lemma has nearly the same proof as that of Lemma
4.7in [4].

LEMMA 3.5. Assume thaM has type(2)s. LetA € ISP(M), let A, < A such
that f;(A) U fo(A) € A, and letx : A, — M be a homomorphism. Thenhas
an extension td\ if and only if x(fy(@)) = 0 or x(f,(@)) = 0, for all a € A\A..
Moreover, ifx has an extension t4, then that extension is unique.

Assume thaM has type(2)s and letF be the set of unary term functions lf.
Then{101 220} ¢ F, sinceM does not have type)c. We shall consider the two
cases 101220 ¢ F and 101 F separately. The case 220F is symmetric, under
conjugation by 021, to the case 1@1F. To see this, assume that 220F. We can
create an isomorphic copy M by interchanging the labels 1 and 2. More precisely,
there is a unary algebrsl’, on the set{0, 1, 2}, such that 021 M — M’ is an
isomorphism. The seff’ := {0210 u 0021 | u € F} is the set of all unary term
functions ofM’. Itis easy to check thadl’ has type(2)s and that 101 F'.

LEMMA 3.6. LetM be a unary algebra with typ€)s.

(i) Ifneitherl0lnor220is aterm function oM, then all the unary term functions
of M belong to{012 021, 010, 020, 001, 002 000, 111, 222.

(i) If 101is aterm function oM, then all the unary term functions & belong
to {012 101,010, 002 000,111, 222}.

PrOOF. Let F denote the set of all unary term functions Mf and assume that
220¢ F. Since 010002 € F andM does not have typ€),, we know that 11G¢ F
and 202¢ F. Letppg € F with p # . Then01® ppg € F and 002 ppg € F. As
110 220 ¢ F, this implies thatp = 0. We have 212 F, as 002 212 = 202¢ F.
SinceF C F*, by Lemma3.2, it now follows that

F € {012 021, 010,020, 101, 121, 001, 002, 000, 111, 222}.

To prove (i), assume that 1G4 F. Then121¢ F,as01®121=101¢ F. So claim
(i) holds. To prove (ii), assume that 1&LF. We must have 02D01 ¢ F, since
1010021 = 1010001= 110¢ F. As020101=202¢ Fand 12b101=212¢ F,
we have 020121 ¢ F. Thus claim (ii) holds. O

Given a sefS, for eachm € M we usefm to denote the constant map * with
valuem.

LEMMA 3.7. Let M be a unary algebra with typ€)s. Assume that neithet01
nor 220is a term function oM. LetB < Ain ISP(M) and letx : B — M. Then the
following are equivalent
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(i) x extends tdA;
(i) x extendstd, (B);
(iii) whenevewu; € {010, 020} andu, € {002 001} are term functions oM and
a € Awithu;(a), u,(a) € B, we havex(u;(a)) = 0 or x(ux(a)) = 0.

In particular, the algebraM is 1-quasi-injective.

ProOF. DefineF to be the set of all unary term functionsMf We can assume that
A < M3, for some seB. Clearly (i) implies (ii). To see that (i) implies (iii), assume
thatX : 1,(B) — M is an extension ok. Leta € A and letu; € F N {010, 020}
andu, € F N {002 001}, withu,(a), u,(@) € B, such thak(u,(a)) # 0. We wantto
show thatx(u,(a)) = 0. First assume that;(a) € C, < {0, 1, 2}. Thenu,(@) # 0,
and soa = 1. Since 000= f, o f, is a constant term function ofl, this implies
that x(u,(a)) = x(0) = 0. Now assume that, (a) ¢ Cp. Thena € 1,(B) and
u;(X(a)) = x(uy(a)) # 0. Sox(a) = 1 and therefore(u,(a)) = u,(X(@)) = 0.

It remains to show that (iii) implies (i). So assume that condition (iii) holds. By
Lemma3.6 (i), the setA, := AN ({0, 1}5 U {0, 2}°) determines a subalgebra Af
We want to define, : A, — M by

2 ifu(a) e xX(u(2)), for someu € F N {002 001};
x. (@ =11 ifu@ e x*u()), for someu € F N {010 020};
0 otherwise.

To see thaik, is well defined, letu; € F N {010 020}, u, € F N {002 001} and
a € A, withu;(a), u,(@) € B. Thenx(ui(a)) = 0 # u; (1) or x(uy(a)) = 0 # uy(2),
by (iii). So x, is well defined.

Now letb € BN A,. Thenx,(b) = 2 impliesx(b) = 2, and

x(b) =2 = 002(x(b)) =2 = x(002b)) = 0022) —> x.(b) = 2.

Similarly, we havex,(b) = 1 if and only ifx(b) = 1. Thusx, extendsx[g,, . Using
Lemmag3.6(i), it is easy to check that, is a homomorphism.

We shall prove that, extends to a homomorphisr: A — M using Lemma3.5.
Choose soma € A\ A, and suppose that (fi(@)) # 0 andx.(f,(@)) # 0. Sincef;
and f, are both idempotent, we must haxg f;(a)) = 1 andx,(f,(@)) = 2. There
existu; € F N {010 020} andu, € F N {002 001} such that; o fi(a) € x *(u,(1))
andu,o fy(a) € x 1(u,(2)). Thisimplies thak(u; o fi(@)) # 0andx(u,o f(a)) # 0,
which contradicts (iii). So there is an extension A — M of x,. By Lemma3.5,
the extensiorx : B — M of X[z, is unique. ThusX is an extension ok, as

Xl gna, = X[gna,- O

THEOREM 3.8. LetM be a unary algebra, with typ@)s, such that neithet01nor
220is a term function oM. ThenM is strongly dualisable.
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PrOOF. By [4], the algebraM is dualisable. So, using Theoren, it will follow
that M is strongly dualisable once we have shown thathas enough algebraic
operations. Defind : N — N by f(n) :=n. Letn e N, letB < A < M" and let
h:A— M.

By Lemma3.6 (i), the setf;(M™ U f,(M") = {0, 1}" U {0, 2}" determines a
subalgebra oM". Letm € {1,2} and letb ¢ fu(B)\{O}. Using Lemma3.5
and Lemma3.6 (i), there is a homomorphisrg, : M" — M such that, for all
ac f,(MM U f,(M™), we have

m ifa=bora=m;
Op(@) = { 021(m) if a =021b) ora = 021(M);
0 otherwise.

Define
Y :={gy | b e (fy(B) U fo(B)\{0}).

ThenlY| < [Bl -1 < f(IB]).

Define the homomorphism : M" — MY by u := nY. To see thafu|g is
an embedding, we need to show tiaseparates the elementsBf Letb,c € B
with b #£ c. Then f,(b) # f,(c), for somem € {1,2}. We can assume that
fu(b) # 0 and f,(c) # M. So 91,0 (fm(0)) = M # gy, m (fm(c)), which implies
thatu(fn (b)) # u(fn(c)) and thereforgu(b) # w(c).

We shall use Lemma.7to prove thah o (u]g)~t: u(B) — M extends tqu(A).
Choose any € A. Letu; andu, be unary term functions dfl, with u; € {010, 020}
andu, € {002 001}, such thau,(u(a)), u,(u(a)) € u(B). Definem, := u,(1) and
m, := Uy(2). Thenf, ou; = u; andf,, ou, = u,. So there is somb, € f., (B)
andb, € f,(B) with n(ui(a)) = u(by) andu(uyx(@)) = n(b). We want to show
thath(b;) = 0 or h(b,) = 0. So we can assume thb{, b, # 0. Sinceu |y is
one-to-one, we havg(b,), u(b,) # (). This implies thata ¢ {1,2}, and so
ui(a), Ux(a) ¢ {1,2}. For eachi € {1,2}, we havem; = g, (b) = g, (U (@)
and thereforay(a) = b. As h|; extends toA, it follows, by Lemma3.7, that
h(b,;) = h(u;(@)) = 0 orh(b,) = h(u,(a)) = 0. We have shown that

ho (1) (U (k@) = ho (u]g) (b)) = h(b) =0,

for somej € {1,2}. Henceho (u]g)~* extends tou(A), whenceM has enough
algebraic operations. O

To make the next two proofs easier to read, we introduce some notation. Assume
thatM has type(2)s and letA € ISP(M). There is a natural binary relatien, on A
that reflects part of the structure Af For alla, b € A, we seta —~, b if and only if
there is some € A such that = f,(c) andb = f,(c).
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LEMMA 3.9. LetM be a unary algebra with typ€)s. Assume thatOlis a term
function of M. LetB < Ain ISP(M) and letx : B — M. Then the following are
equivalent

(i) xextendstd;
(i) x extends td, (B);
(iii) the following conditions both hoid
(1) x(b) =00r x(c) =0, forall b,c e Bsuchthath ~4 c;
(2) x(b) =00rx(c) =0, forall b,ce Banda € Asuch thata ~, b and
10k(a) —~x C.
In particular, the algebraM is 1-quasi-injective.

PROOF. Assume thatA < M3, for some setS. To prove that (i) implies (iii),
assume thak extends to a homomorphism: 1,(B) — M. We first prove two
claims.

(¥); Leta,be A, witha e C,orb e C,, suchthaa —~, b. Thena =0orb = 0.

There is some& € A with f;(c) = a and f,(c) = b. Since either or b belongs to
the set{0, 1, 2}, we must have < {0, m}S, for somem e {1, 2}. Soa = f,;(c) =0or
b= f,(c)=0.

(x¥), Leta e Aandb e B\C, suchthath —~, b. ThenX(a) = 0 orx(b) = 0.

There is some& € A such thatf,(c) = a and f,(c) = b. Sinceb ¢ C,, we have
a, ¢ € 14(B). Assume thak(b) # 0. Thenfy(X(c)) = x(b) # 0 and sox(c) = 2.
Thereforex(a) = X(f.(c)) = f1(X(c)) =0.

We can now show that (iii) holds. Since 000 is a term functioiMgfwe have
x(0) = 0. So (1) follows straight from claimér); and(x),. To see that (2) holds,
lethb,c € Banda € A, witha —~, b and 101a) —~, ¢, such thatx(b) # 0. First
assume thalh, c ¢ C,. By (x),, we must hav&(a) = 0 and therefor&(101(a)) =
101(X(a)) = 1. Using (%), again, we gei(c) = 0. Now assume thah € C,.
Thenb # 0, sincex(b) # 0. Soa = 0, by (x);, and therefore 10&) = 1. As
101(a) —~a C, it follows thatc = 0, whencex(c) = 0. Finally, assume that € C,.
Sinceb # 0 anda —~, b, we havea = 1. This implies that 10() # 0, whence
¢ =0, by (x);. Thus (iii) is satisfied.

To prove that (iii) implies (i), assume that (iii) holds. By Lemrd# (ii), the sets
A, := f1(A)UC, andA; := f,(A)UC, both determine subalgebras®fLet.7 be a
transversal of{a, 101(a)} | a € f;(A)} and define the homomorphisxa: A; - M
such that, for ala € .7, we have

x(a) ifae B;
x1(@) =10 if a ¢ B anda —~4 b, for someb € x71(2);
1 otherwise.
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We can define, : A, — M by

x(a) ifae B;
Xp(a) = .
0 otherwise.

Now defineA, := AU A, andx, := X UX, : A, — M.

To see thak, extends toA, using LemmaB.5, leta € A\ A, with x.(f,(@)) = 2.
Then f,(a) € x"1(2). First assume that,(a) € B. Thenx.(f,(a)) = x(f,(a)) =0,
by (1). Nowassumethdt(a) ¢ Bandf,(a) € 7. Thenx,(f.(a)) = x(f;(a)) = 0.
Finally, assume thaf;(a) ¢ B and 101a) € 7. We must havex,(101a)) =
Xx;(104@)) = 1, by (2), and thereforg,(f;(a)) = 101(x.(101(a))) = 0. So there
is a homomorphisnX : A — M that extend,. By Lemma3.5, the extension
X :B — M of X[g s = X[gna IS Unique, whencg extendsx. O

THEOREM 3.10. LetM be a unary algebra, with typ€)s, such that eithef 01 or
220is a term function oM. ThenM is strongly dualisable.

PrROOF. By symmetry, we canassume that 101 is a term functidvi oThe algebra
M is dualisable, by4]. So, using Theorerh.3, it suffices to show tha#l has enough
algebraic operations. Defing’ := ISP(M) and define the mag : N — N by
f(n):=3n—-2. Letne N,letB <A <M"andleth: A - M.

Now letbh e fz(B)\{ﬁ}. By Lemma3.6 (ii), the setf,(M") U Cy~ determines a
subalgebra oM". Using Lemma3.6 (ii) and Lemma3.9, there is a homomorphism
O : M" — M such that, for ala € f,(M"), we have

o~

2 fa=bora=2;
0 otherwise.

O(a) = {

The setf;(M") U Cy» determines a subalgebra M". By Lemma3.6 (ii) and
Lemma3.9, there is a homomorphisig : M" — M such that, fo € f;(M"), we

have
, Oh(@) if a ~a bor10l(a) —~a b;
gb(a) = .
101(gy(a)) otherwise.

By Lemma2.4, thereisaseZ € «/(M", M) of projections such tha separates the
elements oB and|Z| < |B| — 1. Define

Y :=ZU{gy g, | be f(B)\{0}}.

Then|Y| < [B|—1+2(B| -1 < f(IB]).
Definep : M" — MY by u := nY. Thenu| g is an embedding, aé separates the
elements oB. We shall begin by proving the following claim.
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(x) Leta e Aandb e B with u(a) ~,n) 1(b). Thenfy (@) —~a b.

Since f,(a) ~a 0, we can assume thhte B\{0}. Thereisc € Awith f,((c)) =
w(@) and fo(u(c)) = w(b). As f; is idempotent, this implies that(f;(c)) =
u(fi(@)). We haveu(f(b)) = u(b) and thereford € f,(B), asu |y is one-to-one.
This gives usgb(fg(c)) = gv(b) = 2, which implies thag,(c) = 2, and also that
fo(c) =borc=2. Sog;(f;(a)) = g,(f1(c)) = gy(f1(C)) = gyu(f1(a)), which tells
us thatf,;(a) —~a bor 101(a) ~, b. We haveg,(b) = 2 and

0n(101(@)) = 10X(gy( f1(a))) = 10X (f1(c))) = 10X(gy(c)) = 101(2) = 1.

As g, preservesf; and f,, it follows that 10%a) /A b. Thus fi(a) —~a b, and(x)
holds.

We will use LemmaB.9to prove thah o (u]g) ! : u(B) — M extends tqu(A).
To see that (1) holds, ldt, c € B such thatu(b) —~, @, n(c). Thenfi(b) —~a C,
by (x). We havef;(b) = b, as f;(u(b)) = n(b) andu|g is one-to-one. Sh(b) =0
orh(c) =0, by Lemma3.9, sinceh|g extends tdA.

To check that (2) holds, ldi,c € B anda € A such thatu(a) —~,,, n(b) and
101((a)) —~ua) m(c). Thenfi(@) ~a band 101a) —~a c, by (x), which implies
thath(b) = 0 orh(c) = 0. It now follows thath o (1 [5) ! extends tqu(A). O

4. Dualisable three-element unary algebras
that are not strongly dualisable

In this section, we will show that every algebra that has t§®e or type (2)c
is not strongly dualisable. This will complete our characterisation of the strongly
dualisable three-elementunary algebras. Our proof is based on the proof by Hyndmar
and Willard [7] that the unary algebrg0, 1, 2}; 001, 122 is not strongly dualisable.
Most of the results in this section will also be used in the following section to finish
the classification of fully dualisable three-element unary algebras. In our proof, we
make use of a special pair of ordered sets.

LEMMA 4.1 ([7, Lemma 4.1]).There is a chainl = (I"; <) and an ordered set
I'" = (I'; <) such that« is strictly contained in< and the following condition holds
forall c,d € I" withc < dandc 4 d, there exist§c, [ n e N} U{d, | ne N} C I
such thatc <1 ¢, andd, <1 d andc, < d, < ¢y, fOr everyn € N.

Throughout the rest of this papdr,andI’” will denote a fixed pair of ordered sets
satisfying the conditions of Lemm&l The following lemma gives a general method
for proving that a finite algebra is not strongly dualisable. Zetenote the category
of directed graphs.



204 J. G. Pitkethly [18]

LEMMA 4.2. LetM be a finite algebra and |eB < A in & := ISP(M) such that
I' € B. Assume there is a chald = (C; <), with C € M, for which the maps
I, dAM) > 9T,C)and -, : &4 (B,M) - ¥4I, C) are well-defined
bijections.

(i) The setX := {x[z | X € &/ (A, M)} forms a closed substructure & ®, for
each alter egdvl of M.

(i) The algebraM is not strongly dualisable.

PROOF. LetM = (M; G, H, R, .7) be an alter ego d¥l. There arec, d € I" with
c < dandc ¢ d. There also exist,dl € C such that 0% 1 and 0< 1. Define the
mapw : I' — C by

{1 if c < a;

w(@) = .

0 otherwise.

Thenw € ¢(I'",C) and so there is a homomorphism € «/ (B, M) for which
wl, =w. Asw ¢ 4(T',C), we must havér ¢ X and thereforeX # </ (B, M).
We will show thatX forms a closed substructure ofB) < M B. As X separates the
elements ofB, it will follow by Theorem1.2thatM does not yield a strong duality
on.« .

Let: : B — A denote the inclusion map. Thefiis the image of the morphism
D() : D(A) — D(B). This implies thatX is topologically closed in [B) and that
X is closed under the operations@ It remains to check thaX is closed under
the partial operations itd. So leth € H be ak-ary partial operation, for some
k e N, and letxy, ..., X € X with (X, ..., X0) € domh)°®. We will show that
Z:=h(Xy, ..., %) € X.

To show thatz € X, it is enough to prove that|, € 4 (T, C). So letc,d € I
with ¢ < d. Now we wish to show that(c) < z(d). Sincez € & (B,M), we
know thatz], € 4(I’,C). So we can assume thatg d. There exists a subset
{c, | ne Nyu{d, | n e N} of I" such thatt < ¢, andd, < d andc, < d, < Cnp1,
foralln € N. We havex; [ € ¢4(T, C), for eachi € {1,...,k}. AsC is finite,
there aren,m € N, with n < m, such thatx,(c,) = x(c,), foralli € {1,...,k}.
Sincec, < d, < ¢y, We getx (c,) = x(dy), foralli € {1,...,k}, and therefore
z(c,) = z(d,). As z[, € 4I’,C), withc < ¢, andd, < d, it follows that
z(c) € z(c,) = z(d,) < z(d). Thusz € X, whenceX is a closed substructure
of D(B). O

Now letM be a unary algebra on the 46t 1, 2}. In order to apply Lemméd.2,
we shall give a method for constructing algebras in the quasi-vagiety: ISP(M)
using ordered sets.
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DEFINITION 4.3. Let M be a unary algebra on the 46t 1, 2}, letP = (P; <) be
an ordered set and let be a subset of. Define the seP* := P U {T, L}. For all
a,b e P suchthata < b, defineab € MP" by ab(L) = 2,ab(T) =1 and

2 ife<a
ab(c)={0 ifc<bandc £ &
1 otherwise,

for all c € P. Define the algebrﬁ<1 = sgﬂw({gb | a,b e Panda « b}). If the
relation<t on P is reflexive, we can define the injection: P — ’I3<1 by p(a) := aa.
If < isequal tog, then we write P instead of/l34.

The following lemma describes the structure@j under some special conditions
on< andM. For each se§and eacta < {0, 1, 2}5, define the partition

Z(a) = {a '(0),a (1), a ')\ {D}

of S. For every algebrad < M°®, the setAp, :=f{ae A | |#@ < 2}isa
subuniverse oA.

LEMMA 4.4. Let M be a unary algebra with typ€2),. LetP = (P;<) be an
ordered set, letl be a reflexive subset af and defineA := P.

() ThensgA(?a\b)\{?a\b, 021(ab)} < sg, ({aa, bb}), foralla,b € P witha < b.
(i) The set of petals oA, is {sg,(aa) | a € P}.

PrOOF. Leta, b € P suchthat < b. For all unary term functions; andu, of M,
with ker(u;) = {02/1} and ketu,) = {01/2}, we havau, (ab) = u,(bb) andu,(ab) =
u(@a). Using LemmaB.2, it follows that sg(gb)\{gb, 021(ab)} € sg, ({aa, bb}).
So claim (i) holds and\; = | J{sg.(aa) | a € P}.

To prove (ii), it is enough to show that sgta) N sg, (bb) = Ca, foralla,b e P
with a # b. Assume thati(aa) = v(bb), for somea, b € P with a # b and some
unary term functions andv of M. Since the two-block partitions’ (aa) and@(ﬁb)
of P+ are different, we have(aa) < {0,1,2). Butaa e {1, 2} andM does not
have any unary term functions with ker{6|12}. Sou is a constant term function
of M, which implies that(aa) € Ca. O

To illustrate Lemmat.4, we consider a particular example.

EXAMPLE 4.5. LetM be a unary algebra with typ@). Define the three-element
chainP = ({a, b, c}; <), such thata < b < ¢, and define the ordered st =
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({a, b, c}; <), such thatq = <\{(a, b)}. Denote each element € M"" by the

5-tuple(x(L), x(a), x(b), x(c), x(T)). Then
bc=(2,220,1),

ac=(2,20,01),
bb=(2,221,1).

aa=(2,2111), t=(22221),

The structure of the algebra := ’54 is shown in Figurel. The three petals oA |,

aresg, (aa), s%(ﬁb) andsg, (CTt).
The following lemma shows thatthe algeﬁ?\g and the grapkP; <1) are intimately
connected. Define the two-element chaia- ({1, 2}; <) such that 1< 2. For each

setSands € S, letws : M® — M denote thesth projection function.

LEMMA 4.6. LetM be a unary algebra with typ€2)q and defineZ := ISP(M).
Let P = (P;<) be an ordered set, letq be a reflexive subset of and define

P = (P; ).
(i) Forall x e #(P,, M) anda,b e P such thata <1 b, we havex(ab) = 2if

and only ifx(aa) = 2, andx(gb) = lifand only if x(’l;b) =1
(i) Themap—owp: & (P,,M)— 9P, 2) is awell-defined bijection.

PROOF. As M has type(2)o, there arep, g € M, with p # g, such that botlppq
andqpq are term functions oM. DefineA := P_. For allx € «/'(A,M) and

a, b € P with a < b, we have
x(ppg(ab)) = q

x(gb) =2 — ppq(x(gb)) =q —
<~  x(ppg@a)) =q = ppa(x(@a)) =q
— x(aa) =2

and, similarlyx(ab) = 1 if and only ifx(bb) = 1. So (i) holds.
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We want to define the map : & (A,M) — 4 (P, 2) by n(x) := X op. TO S€E
that this will work, letx € ./ (A, M). For eacha € P, we have

ppa(x(aa)) = x(ppg@a)) = x(gpg(aa)) = qpax(aa)),

which implies thatx(aa) € {1, 2}. Thereforex o (p(P) C {1,2}. Foralla,b e P
such thatn < bandx(aa) = 2, we have<(§b) =2and therefora(ﬁ\b) =2, by (i).
Thusx o 1p € 4 (P, 2) andy is well defined.

Letx,y e & (A, M) such thaty(x) = n(y) and leta, b € P with a <t b. Then

x(ab) =2 < x(@a) =2 < y(@aa) =2 < y(ab) =2,

by (i), and, similarly,x(ab) = 1 if and only if y(gb) = 1. Sox = yandnpis
one-to-one.

It remains to show thaj is onto. Letz € ¥ (P, 2). By Lemma4.4 (ii), there is a
homomorphisnz, : A, — M, given by

z. = [mrlsgem la€ 2 D) u| [l em) 2 € 272,

such thatz, o ;p = z. We will show thatz, extends to a homomorphism: A —
M. Leta,b € P such thata # b anda < b. We want to findc € P* with
Z g B = Telsgua b))~ We will then definez(ab) := ab(c) and, if 021 is
a term function oM, we will definez(021(ab)) := 021(ab)(c). It will follow by
Lemma4.4 (i) thatz, extends toA.

We can assume thata) # z(b). Thereforez(a) = 1 andz(b) = 2, asz(a) < z(b).
We havez,(aa) = 7+ (aa) = 1 = aa(b) andz,(bb) = 7, (bb) = 2 = bb(b), which
implies thatz, [, -z Bb 1) = Tolsg. @ by THUSH is a bijection. O

THEOREMA4.7. LetM be a unary algebra with typ&),. ThenM is not strongly
dualisable.

ProOF. Definew = ISP(M). Using Lemma4.1 and Definition4.3, we have
algebras/f“<1 < T in« and aninjectiony : I' — T,. By Lemma4.6(ii), the maps
—our: /(T ,M) > %(T,2 and—our : /(T ,, M) - %I, 2) are well-defined
bijections. It follows by Lemma.2 (ii) that M is not strongly dualisable. O

The algebraM® = ({0, 1, 2}; F*), defined near the beginning of Section 3, has
type(2)q. Every two-kernelalgebra, with kerng31/2} and{021}, is a reduct oM.
We will useM* to prove that none of the algebras of ty@&: are strongly dualisable.

LEMMA 4.8. Let M be a unary algebra with typ€2)c. Let A be an algebra in
/* .= ISP(M?) and letA’ be the reduct oA in & := ISP(M). Thena (A, M) =
A, MF).
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PROOF. We begin by proving that the only homomorphisms frbthto M are the
two projections. Lek : M?> — M be a homomorphism. Theq(0, 1) € {0, 1}, since
x preserves 016- 1010 101. First assume thai0, 1) = 1. InM?, we have

101 101 220 220 220

0,1 <— 1,0 <+«— 21 — 02 <«— 2,00 <«~— 12.
Applying the homomorphism gives us

101 101 220 220 220
<~ 0 <« 1 — 2 <~ 0 Rana 2

in M. The constant operations 000, 111 and 222 are all term functiokk do it
follows thatx = m,. Now assume that(0, 1) = 0. Thenx(1, 0) = 101(x(0,1)) =1
and, by symmetry, we have= ;.

We can assume th#&t < (M%)S, for some non-empty s&. Leta € A such that
2 (a) has two blocks. Then s@a) = {b € M®| Z(b) = #(a) or Z(b) = {S}}, as
every map inF* is an operation ofl*. Letsg, (a)” denote the reduct afg, (a) in ..

It now follows thatsg, (a)” is isomorphic taV?, via repetition of coordinates. Since
the only homomorphisms froml? to M are the projections, every homomorphism
from sg, (a)” to M is the restriction of a projection.

Now lety € &/ (A’, M) and leta € A. To prove thaty € &/*(A, M?), it suffices to
show thaty|, ,, is the restriction of a prOJectlon The constant maps 000, 111 and
222 are all term functions d¥l. So, ifa € {0, 1, 2}, theny|, @ is the restriction of
a projection. Ifa € Aiz\{o 1,2}, then Z(a) has two blocks and so we know that
Ylsq.(a IS the restriction of a projection. Therefore we can assumeahatA\ A ;.
For eachm € {1, 2}, defineP,, := sg,(fm(a)). Thensg(a) = P,U P, U{a, 021(a)}.
Since| # (a)| = 3, we can choose sonses a*(y(a)). For eachm € {1, 2}, we have
y(fn(@) = fn(y@) = fn(a(s)) and soy|, = ms[p , asy|p is the restriction of
a projection and all the elements Bf,\{0, 1, 2} determine the same partition &f
For eachm € {1, 2}, we havef, o 021(a) € P, U P, and so f,(y(021(a))) =
y(fn(0214(@))) = f,(021(a(s))). Thereforey(021(a)) = 021(a(s)), sincef; and f,

separateM. We have shown that|y, o, = 7s[sq, @), Whencey € &/#(A, M. O

THEOREM4.9. Let M be a unary algebra with typ&)c. ThenM is not strongly
dualisable.

PrOOF. Define &/ := ISP(M) and </ := ISP(M"). Using Lemma4.1 and
Definition 4.3, we have T, < T in &% and an injection; : I" — T',. The maps
— o 4T ,M%) — %T,2) and— o ir ,q/t(? ,MH) — 9T, 2) are well-
deflned bijections, by Lemm&6 (ii). Let T'and F > denote the reducts of and
F in the quasi- vanetyz/ Then, by Lemmal.8, the maps- o iy : & ( T M) —
g(r,g) and— o i : 4/ ( l“j, M) — 4 (I, 2) are bijections. So LemmaZ2 (ii) tells
us thatM is not strongly dualisable. O
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We have now finished establishing the classification of strongly dualisable three-
element unary algebras given in the introduction. Part (i) of the characterisation
follows from Theoren®.6. It is shown in B] that each unary algebra with tyg2)s
is not dualisable. So part (ii) of the characterisation follows from Theozhs$.8,

3.10 4.7and4.9. The three-kernel three-element unary algebras are shown to be not
dualisable, and therefore not strongly dualisabled]n [

LEMMA 4.10. LetM be a unary algebra with typ€)q or type(2)c. ThenM is not
n-quasi-injective, for alh € N.

PROOF. First assume thd#l has type(2)q. Letn € N and definek := 2n+ 1. Let

= ({0, ..., k}; <) be a(k+1)-element chain with & - - - < k. Define the relations
«:={(,i)|i e D)U{G,i+1) |i e D\{k}} and<1 := <«\{(n,n + 1)} on D.
Using Definition4.3, we can definé\ := /54 andC := ’54, whereC is a subalgebra
of A. By Lemmad4.4 (ii), the coproducB := sgL\(’O\O) + s, (kk) is also a subalgebra
of A. Define the homomorphism : B — M by X = 7 [sq B0y U 7T [SQA( %)
Thenx o 15(0) = x(00) = 2 andx o ip(k) = x(kk) = 1. To prove thaM is not
n-quasi-injective, we shall show thatextends tm, (B) but not toA.

The mapx o ip[ gy : {0, k} — {1, 2} does not extend to a morphism frqiD; «)
to 2. So, by Lemmat.6 (i), the homomorphisnx : B — M does not extend té.
There is an extension : (D; <) — 2 0of X o tp [y Using Lemma4.6 (ii) again
thereis a homomorphlsm C — M suchthalyoip =y. We havey(OO) = x(OO)
andy(kk) = x(kk). SoYy is an extension ok. We have shown that extends taC
but not toA. It remains to prove thati,(B) C C.

Definen’ := n+ 1. ThenA\C C {hn’,021(hn")}, by Lemma4.4 (i). Using
Figure2 and Lemmat.4, the reader can check thdit(a, b) > n+ 1, foralla € A\C
andb € B\C,. Thusn,(B) C C, whenceM is notn-quasi-injective.

Now assume tha¥l has type(2)c and letn € N. We have just shown tha* is
not n-quasi-injective. So there are finite algebBagl A in ISP(M¥) for which there
is @ homomorphisnx : B — M* that extends tma (B) but not toA. Let A’ denote
the reduct ofA in ISP(M). The algebragd andM* have the same constant term
functions. SaCp = C,. It follows thatna (B) € na(B). Thusx extends tana (B)
but not toA’, using Lemmat.8. O

The Quasi-injectivity Theorem, given in the introduction, now follows from Lem-
maZ2.7, TheorenB.4, Lemma3.7, Lemma3.9and Lemmalt.10

5. Dualisable three-element unary algebras that are not fully dualisable

In this section, we prove that each unary algebra with #g or type(2)c is not
fully dualisable. It will then follow that every fully dualisable three-element unary
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FIGURE2. Lemma4.10

algebrais strongly dualisable. Our proof is an extension of that given by Hyndman and
Willard [7] to show that the unary algeb(¢0, 1, 2}; 001, 122 is not fully dualisable.
The proof in [/] used the fact that both the operations 001 and 122 preserve the total
order with 0< 1 < 2. Our proofis more complicated since it must work, in particular,
for the algebravi®, and there is no total order df, 1, 2} that is preserved by every
operation inF?,

A full duality for a quasi-variety := ISP(M) is more subtle than either a duality
or a strong duality. At the moment, we have no reason to believe thist, i§ a
structure that yields a full duality on/, then every extension d#l, via algebraic
relations, also yields a full duality o&'. However, there are some relations that can
always be added to a structuvé without destroying a full duality. The following
lemma is proved inq], by Hyndman and Willard.

Let n € N and consider am-ary algebraic relatiom on M. Thenr is the
underlying set of a subalgebraof M". The relationr is said to bebalancedif
G (0,M) = {m], |i e{l,...,n}}, andr;|, # x;[,, foralli, j € {1,...,n} with
i #j.

LEmMMA 5.1. [7, Lemma 4.7] Let M be a finite algebra and assume that the
structureM = (M; G, H, R, .7) yields a full duality oriISP(M). Letr be a balanced
algebraic relation orM. ThenM’ := (M; G, H, RU{r}, .7) also yields a full duality
onlisSP(M).

Now assume tha¥l is a unary algebra of typ@)q or type(2)c. Let< denote the
orderon{0, 1, 2} with 1 < 0 < 2. We will define some algebraic relationsin The
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definitions of these relations will depend on the typéofIf M has type(2)q, then
we define the algebraic relations bhby

<n=sgp({faeM"|1=al) < --- 5 amn =2},
for alln € N\{1}, and
pai=sge(fae M®|1=a) < - 5 al) =21\{(1,1,0,0,2,2)}).

If M has type(2)c but not type(2)o, then, sinceM is a reduct oM*, we can define
the algebraic relations avl by

<n:=Sqy:p(faeM"[1=a() < -~ g an) =2)),
for alln € N\{1}, and
<= SQyss({ae M8 1=a(l) < --- g a6) = 2)\{(1,1,0,0,2,2)}).

The relations<, andws< will play an important role in our proof tha#l is not fully
dualisable.

LEMMA 5.2. Let M be a unary algebra with typ&)q or type(2)c. The relations
<, ande<onM are balanced.

PROOF. First assume tha¥l has type(2)q and defines := ISP(M). Define the
three-elementchai@ = ({0, 1, 2}; <) such that 0< 1 < 2. Using Definitior4.3, we
have

C =sg,e(fae M [1=a(T) x a@ < ad) < a0 =a(l) = 2)).

SoC is isomorphic to the algebrd ,. By Lemma4.6 (ii), we have|</ (4, M)| =
m/(?; ,M)| = |94(C, 2)| = 4 and therefores, is balanced.

Define the five-element chald = ({0, 1, 2, 3, 4}; <) with 0 < --- < 4. Define
the graphD’ = (D; <), where< := <\{(1, 3)}. Write each elemerd € MP" as the
7-tuple(@(T), a4, ...,a0),a(l)). Then

D, =sge(laeM® [1=a(T) sa < - < a0) = a(L) = 2)\
{(1,1,0,0, 2, 2, 2)}),

and/B<1 is isomorphic to the algebnss. Using Lemma4.6 (i), this implies that
|/ (b2, M)| = |/ (D ,,M)| = |4(D, 2)| = 6. Thus=< is balanced.

Now assume thaMl has type(2)c but not type(2)q. The relations<, andps<,
defined orM, are algebraic oM*. We have just shown that, ands< are balanced
onM*. So<, ands< are balanced oNl, by Lemma4.8. O
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We will work with the relationsg,,, for eactn € N\ {1}, and>< using the properties
given in the following lemma.

LEMMA 5.3. LetM be a unary algebra of typ@)q or type(2)c. Letm, n € N\ {1}
and letay, ..., a, € {0, 1, 2.
(i) Leti,j,ke{l,...,nfsuchthat < j < k. If 3 =a,anda # a;, then
@g,...,a) ¢ <pand(@y, ..., a,) ¢ o<
(i) Leto : {1,...,m} — {1,...,n} such thato(l) = 1, o(m) = nando
preserves the natural order. lfy, ..., a,) € <n then@, ), ..., 8 m) € <m
(i) We have<g\p< € {(1,1,0,0,2,2),(2,2,0,0,1, 1)} € M8\r<.

PrOOF. The three claims follow from the definitions, since all the unary term
functions ofM belong to the sef*. O

Assume thaM has type(2)q. The algebrasT’ and T, in & := ISP(M) are
given by Lemmat.1and Definition4.31in the previous section. L&l be an alter ego
of M that has<, ands<in its s type. By Lemmat.2 (i) and Lemma&4.6 (i), we know
that X := {X|5_ | X € &( T ,M)} determines a closed substructiteof M
To show thatVl does not yield a full duality or7, we shall prove, via a sequence of
technical lemmas, that is not isomorphic to the dual of any algebradh

Now assume tha¥l has type(2)q or type (2)c. We will associate a graph with
each algebra iiSP(M). Let A < M5, for some non-empty se8. Recall that
Ap={ae Al |Z(a)] < 2} determines a subalgebra Af where we define the
partition #(a) := {a (0),a*(1),a1(2)}\{D} of S, for eacha € A. For each
two-block partition2 of S, we define thesubuniverse of |, determined by to be

Ag:=lacA| Z@ =20 Z@ ={S}
Define the set
P = {As | 2 = P(a) for somea e A,\(0, 1,2} }.

ThenZ?, contains all the partition-determined subuniverses gthat do notlie in the
set{0, 1, 2}. There are unary term functionsandu, of M such that keju,) = {021}
and ketu;) = {01/2}. Lett € Sand define the reflexive binary relatier>, on
Z, such thatP —>, Q if and only if P = Q or there existaa € A\Aj,; and
{m, M} = {1, 2} with un(@) € P, ux(a) € Q anda(t) = m. The definition of—>4

is independent of our choice of andu,. Let —» , denote the transitive closure
of —>a. Then—> 4 is a quasi-order o?,. To illustrate the definition of— », we
revisit the algebra constructed in Examplé.

EXAMPLE 5.4. Let M be a unary algebra with typ@)o. Define the ordered set
P and the algebrd := P_ as in Example4.5. We shall show thatZs; —>a)
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is isomorphic toP’. Letu; andu, be unary term functions g1 with ker(u;) =
{0211} and kefu,) = {01]2}. The partitions#?(aa), 2 (bb) and 2 (Tt) of P+ are
distinct. So, using Lemmé.4 (ii), we have.Z, = {sg,(aa), s%(ﬁb), sg,(tt)}. By
Lemma4.4(i), we get

A\A,, C {ac, bc, 021(ac), 021(bc)}.

Now act(l) = 2, with uy(at) = u,(ada) € sg,(da) andu;(ac) = uy(Ce) €
sg, (Tc), which implies that sg(@a) —>a sg,(TC). If 021 is a term function oM,

then we have 02&¢)(L) = 1, with u;(021(ac)) € sg,(aa) anduz(OZJ(ac)) IS
sgL\(”b) which also |mpI|es that sgaa) —>a sg,(Tc). Similarly, usmg bc and
021(bc) we have sg(bb) —> 4 S0, (TC). So there is anisomorphisth: (P; <) —
(Za; —>a) given byd (x) = sg, (XX).

Now define.#;(A) to be the set of al— »-increasing subsets @P,.

LEMMA 5.5. Let M be a unary algebra of typ&)q or type (2)c, and define the
quasi-varietye/ := ISP(M). LetA < M®, with 22, # @, and lets, t € S. Assume
thatx|p = 7s[p Or X[p = ¢ [p, forall x € &/ (A, M) and allP € #2,. Then the map
n:ZA,M)— Z(A), givenbyn(x) :={P € P | X|p = ;[ p}, is a well-defined
bijection.

PrROOF. There are unary term functiong andu, of M with ker(u;) = {02/1}
and kefu,) = {01]2}. To see thayp is well defined, letx € </ (A, M) and choose
P,Q € P, with P # Q, such thatP € n(x) andP —> Q. We want to show
that Q € n(x). As P —>a Q, there is some € A\A, and {m, M} = {1,2}
such thatu,(@) € P, ux(a) € Q anda(t) = m. We must haveu,(x(a)) =
X(Un(@) = up@at)) = un(m), sincex|p, = m|p. Thereforex(@a) = m = a(t)
andx(uz(a)) = ug(x(@)) = ux(a(t)). Since.Z (uz(a)) has two blocks, we have
7s(Us (@) # m(Um(@)) and therefore | = m[o. Thusn(x) € #(A) andy is well
defined.

To show thatn is a buectlon letz € Z(A). As{P\{O 1,2} | P e 2,) forms a
partition ofAlz\{O 1,2}, we can define the homomorphism A, — M by

x:=|Jimlp | P e ZyU| Jimslp | P € 2a\Z).

We want to prove thax has a unique extension: A — M. Leta € A\Aj; and let
Qm be the subuniverse &, determined by? (u,(a)), for eachm € {1, 2}. Then
sg, (@) € Q;UQ,U{a, 021(a)}, since every unary term function bf belongs ta~*.
We want to find someé < Ssuch thatx[q, o, = 7 [q,u0,- We shall then define
X(a) := a(r) and, if 02Xa) € A, we shall definé&x(021(a)) := 021(a)(r). It will
follow thatx extends toA.
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For eachm € {1, 2}, we haveu,(a(s)) = ms(Un(@)) # m(Un(a)) = up@(t)).
This implies thata(s), a(t)} = {1, 2}. Now definem := a(t) andf := a(s). Then
Qm —a Qm. We can assume th@g € Z andQ,,, ¢ Z. Choose some € a *(0).
We have

Un(&(S)) = Un(M) = up(a(r)) and um(@(t)) = ux(m) = um(@(r)).

The elements 0\ {0, 1,2} all determine the same partition & So x|, =
sl o, = T lo, @nd, similarly,xo. = mlq, = 7 [q, Thusx extends to a ho-
momorphismX € & (A, M). Sincens|, # m[p, for all P € #2,, we must have
n(x) = Z.

Lety : A — M be an extension of. For alla € A\A; andm € {1, 2}, we have

X(@) =m <  Un(X(@) = un(m) —  X(Un(a)) = un(m)
—  YUn(d) = un(m) < Un(y(@) = un(m)
= y@) =m.

SoX is the unique extension afto A. It follows thatn is a bijection. O

We say that the algebra < M*® is locally balancedif x| is the restriction of a
projection, for each homomorphism: A — M and each finite subs& of A. For
allB < M®ands € S, define the homomorphism : B — M by ps := 7] .

LEMMA 5.6. Let M be a unary algebra of typ€2)q or type (2)c, and define
o = ISP(M). LetB < A < M®such thatA, = By, andA is locally balanced.
Define the seK := {x]; | X € &/ (A, M)} and lets, t € S. Assume that the relation

<={(X,y) € X2 | (ps, X, ¥, p) € <a}

on X is reflexive.

(i) Forallx e XandP € &5, we havex|p = 7t5[p OF X[p = 7y [ p-
(i) There is a well-defined order-isomorphigm (X; <) — (%4 (A); C) given by
nX) :={P e P | X[p = m]p}.
(i) Foralln € Nandallx,,...,x, € X such thatx; < --- < Xx,, we have
(Ps, X1, « s Xny Pt) € o

PrROOF. There are unary term functioms andu, of M with ker(u,) = {02/1} and
ker(up) = {01)2}. We must have?, = P, sinceA, = Bj,. To prove (i), letx € X
andP € #,. Thereis soma < P suchthat#?(a)| = 2. The relatiorg is reflexive,
S0 (ps, X, X, pp)(a) € <4. SinceA is locally balanced, the may|, is the restriction
of a projection. Thereforgx(a), a(s), a(t)}| < 2. By Lemmab.3 (i), this implies
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thatx(a) = a(s) or x(a) = a(t). Since all the elements ¢f\ {0, 1, 2} determine the
same partition o5, we must havex |, = 75[p Or X[ = 71 [p. Thus (i) holds and the
mapn, given in (i), is a well-defined bijection, by Lemnta5. (Note thaty is still a
bijection even if2?, = @ and we cannot use Lemn3a5, as the algebra is locally
balanced.)

We now want to show thaj is an isomorphism. Lex,y € X and assume that
x < y. To see that)y(x) C n(y), let P € n(x). There is some& € P such
that|. 2 (@)| = 2. We have(ps, o1, Y, p)(@) = (ps, X, Y, p)(@) € <4 and therefore
y(@) = a(t), by Lemma5.3(i). ThusP € n(y), which implies that)(x) < n(y).

Now assume)(x) € n(y) and letb € B. We will show thatb(s) = x(b) or
x(b) = y(b) or y(b) = b(t). It will then follow that (s, X, Y, pr)(b) € <4, since
(s, Y5 Ys p)s (ps, X, X, p) € <4 and thereforeps, ps, Y, o), (0s, X, pr, p1) € <a,
by Lemmab.3 (ii). Assume thatb(s) # x(b) andy(b) # b(t). There is some
m € {1, 2} such thatu,(x(b)) # u,(b(s)). Define Q, to be the subuniverse of
A, determined byZ (un(b)). Thenx[q = mq,, by (). Asn(x) S n(y), this
implies thaty[q, = m[q, and thereforai,(y(b)) = un(b(t)) = un(x(b)). Define
m := 021(m) and letQy denote the subuniverse #f, determined byZ (us(b)).
We must havels(y(b)) # ux(b(t)), sincey(b) # b(t). Now n(x) € n(y) implies
thatx|o, = 7s[q, = Ylq, and thereforeiz;(x(b)) = ux(b(s)) = um(y(b)). So
x(b) = y(b), asu; andu, separateM. Thusx < y. We have proven thaf is an
isomorphism, and so (ii) holds.

To prove (iii), letn € N andx,, ..., X, € X with x; < --- < x,. Letb € B. We
will show that there arg, k € {1, ..., n}, with j <k, such that

ps(b) ifi < j;
x() = 1x(b) if j<i<k
oeb) ifk<i,
foralli € {1,...,n}. As < is reflexive, it will then follow, by Lemm&.3 (ii), that

(Ps, X1y« oy Xy p) (D) € <o, Leti € {1,...,n} Ifi 5 nandx;(b) = p(b), then
(Pss P> Xiv1, p)(B) = (ps, X, Xiy1, o) (D) € =, and thereforeq,1(b) = pi(b), by
Lemmab.3(i). Similarly, ifi # 1 andx; (b) = ps(b), thenx,_1(b) = ps(b). Since the
algebraA is locally balanced, we know thafx(b) | x € X}| < 3. Thus (iii) holds.
O

For each ordered s¢K; <), define.Z(X) to be the set of alk € X that have a
unique lower covek' in (X; <).

LEMMA 5.7. Let M be a unary algebra of typ€2)q or type (2)c, and define
o = ISP(M). LetB < A < M®such thatA, = B, andA is locally balanced.
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Define the seK := {x|g | X € &/ (A, M)} and lets, t € S. Assume that

<={(X,y) € X2 | (ps, X, ¥, p) € <a}

is an order onX and define

> = {(X, y) € Z(X)? | x = yand(ps, Y', Y, X', X, pp) ¢ o<}
Then the structure§Z(X); >*, >) and(Px; —>s, —> a) are isomorphic.

PrROOF. There are unary term functioms andu, of M with ker(u,) = {02/1} and
ker(u,) = {01)2}. We must have?, = g, sinceA; = Bj,. Lemmab.6tells
us thatx|p = 7s[p Or X[p = m[p, forall x € X andP € #2,, and also that the
mapn : (X;<) = (A(A); ), given byn(x) := {P € Za | X[p = m[p}, Is an
order-isomorphism.

For eachP € Z,, define the—> a-increasing subset

={Qe Zn|IP—aQ}

of Z,. ThenZ (S (A)) = {Zp | P € Z,} and so we can defing: 22, — Z(X)
by ¢(P) := n~%(Zp). Sincen is an isomorphism, the mapis onto. To see that
£ is one-to-one, suppose thet Q € %2, such thatP # Q andZ(P) = £(Q).
ThenZp = Zy. For allx € X, we havex|p o = 7s[pyg OF X[pug = 7t [pygs S
n(X) € £ (A). This is a contradiction, since and Q determine different partitions
of S. Thus¢ is a bijection.

We will show thatz is an isomorphism between the structufé,; —>s, —> a)

and(Z(X); 2%, 2). LetP, Q € Z, such thatP # Q. Definexp := ¢(P) and
Xq :=¢(Q). Then

P—oaQ & Zp2Zy < nNZp) 2 Uﬁl(ZQ) <= Xp 2= Xg.

S0 —> A Is an order on,.

By Lemmab5.3 (i), the relation>* on Z(X) is reflexive. So it remains to prove
thatP —>g Qifand only if xp >* Xq. First assume tha® —=g Q. There is some
b € B\B; and{m, m} = {1, 2} with u,(b) € P, ux(b) € Q andb(t) = m. We have
X[q = 7s[q OF X[ = m[q, forall x € X. Soux(b(s)) # ux(b(t)) = ux(m) and
thereforeb(s) = M. Since—> 4 is an order onZ,, we havey(xp) = Zp = Zp\{P}
andn(Xq) = Zo = Zo\{Q}. AsP —» 4 Q, it follows that

Un(Xg(0)) = Xg(Un(b)) = Un(b(s)) = un(M),
Un(Xo () = X4 (Uw (b)) = um(b(s)) = um(M),



[31] Strong and full dualisability 217

and, similarly,

Un(X (D)) = Um(b(s)) = Un(0), U (Xq(0) = um(b(t)) = ux(0),
Un(Xp (0)) = U (D(S)) = Un(0), U (Xp (b)) = Uz (b(1) = Ux(0),
Un(Xp (0)) = Un(b(t)) = Um(M), U (Xp (D)) = Um(b(t)) = Ux(M).

This implies that(ps, Xg, Xq, Xp, Xp, p)(0) = (M, M, 0,0, m, m), sinceu; andu,
separate the elements . So(ps, Xg, Xq, Xp, Xp, pr) ¢ ><, by Lemmab.3 (iii). As
P —>a Q and therefores > Xq, we have shown thate >* Xq.

Now assume thake >* Xq. Thenx, < Xo < Xp < Xp, Which implies that
(0s» Xg» XQ» Xps Xp, 1) € <6, Dy Lemmab.6(iii). Since(ps, Xg, Xq, Xp, Xp, o) & b<,
there is soméb € B and{m, M} = {1, 2} such that(ps, Xo, Xq, Xp, Xp, pr)(0) =
(M, M, 0,0, m, m), by Lemmab5.3 (iii). As A is locally balanced, this implies that
b ¢ Bj,. We have

Xp (Un(D)) = Un(0) = um(b(s)), Xq(Um(b)) = Ux(M) = um(b(s)),
Xp (Um(D)) = Un(M) = un(b(t)), XqUm(D)) = Ux(0) = um(b(t)).

It follows that the subuniverse @& |, determined by#’(u,(b)) belongs toZp but
not to Zp\{P}. Thereforeu,(b) € P and, similarly,us(b) € Q. ThusP —5 Q,
whences is an isomorphism. O

The next lemma will complete the preparation for our proof that algebras with
type (2)q or type(2)c are not fully dualisable. The algebrds and I', come from
Lemma4.1and Definition4.3.

LEMMA 5.8. LetM be a unary algebra with typ€2), and defineZ := ISP(M).
ThenT, < T < M' suchthat(T),, = (T,),, and T is locally balanced.
Define the seK := {x[rF<1 | x € & (T ,M)}. Then the relation

<=6 Y) € X2 (o1, X, Y, p1) € <a)

on X is reflexive. The structures?+ ; —>7 ,, —> 7 ) and (I'; 4, <) are iso-
morphic.

PROOF. It follows by Lemma4.4 (ii) that (T"),, = (T',),.. To see thail is
locally balanced, lex (T ,M)andletB € T be finite. There is a finite subset
Io of I' such thaB € sgp ({gb |a,be Ipanda < b}). Themapxou : T — 2
is order preserving, by Lemmaé6 (ii). First assume that(bb) = 1, forallb e Ip.
By Lemmad.6 (i), we havex(ab) = 1, for alla, b € I'; with a < b, and therefore
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X[g = 71 [g. Now we can assume that there is a minimum elemefit/; in T such
thatx(CTt) = 2. For alla, b € I, with a < b, we have

2 ifc<a;
x(ab)y=1{0 ifa<cghb;
1 ifb<c,
= ab(c),

by Lemma4.6(i). Thusx|g = m.[g andT is locally balanced.

Foralla,b € I" with a < band allx € X, we haveo(ab) = 1 < x(ab) < 2 =
pl(?a\b) and thereforép, X, X, ,ol)(?a\b) € <4. So< is reflexive. Itis easy to check
that(Z+¢ ; —> 7., —> 7 ) and(I"; <, <) are isomorphic; see Exampie4. [

An algebraA < M? is calledbalancedif </ (A,M) = {ns[, | s € S}, and
sl A # | foralls,t € Swith s # t. Itis easy to check that every algebra in
ISP(M) is isomorphic to a balanced algebra.

THEOREMS5.9. LetM be a unary algebra of typ€)q or type(2)c. ThenM is not
fully dualisable.

PROOF. First assume thd#l has type(2)o. Suppose there is an alter elgoof M
that yields a full duality onez := ISP(M). By Lemma5.1and Lemmab.2, we can
assume thak, ande< are in the type oM. Using Lemma4.1 and Definition4.3,
there are algebraff<1 andT in <. The setX := Xl7, Ixe (T ,M)} forms a
closed substructure %?4, by Lemma4.2 (i) and Lemmad.6(ii). SinceM yields a
full duality on.<7, there is an isomorphisg: X — D(A), for some balanced algebra
A < M3, with Sa non-empty set.

As A is balanced, there existt € Swith ¢(pt) = ps ande(p,) = p;. By
Lemmab.6(ii) and Lemmab.8, the relation< := {(X, y) € X? | (o7, X, Y, p1) € <4}
is an order orX. Sinceg is an isomorphism ang, is in the type ofM, we have

P(<) =X, y) € (A MY | (ps, X, ¥, po) € Sa).
Define
> = {(X,y) € Z(X)* | x > yand(pr, ¥, Y, X", X, p1) & <.

Then (%) = {(X, y) € L) (& (A, M))? | xp(>) y and(ps, y*, Y, X", X, py) ¢ <}
Using Lemmab.7twice and Lemm&.8§, it follows that

(Za; = ) = (Lo (G (A M) 0(27), 9(2))
= (LX), 27, 2)

=(PP DT, T )
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SO (Pp; — s —7>A) is isomorphic to(I"; <, <), by Lemma5.8. But this implies
that < is the transitive closure ofl, which is a contradiction. Thul is not fully
dualisable.

Now assume thaM has type(2)c but does not have typ€),. Recall that
M*® = ({0, 1, 2}; F*). We can show thal is not fully dualisable, using Lemm&s,
by following the proof given above with the aIgebfi’sj and T’ in &/, which are
the reducts of the algebras_ and T in ISP(M?). O
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