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Abstract

We characterise the strongly dualisable three-element unary algebras and show that every fully dualisable
three-element unary algebra is strongly dualisable. It follows from the characterisation that, for dualisable
three-element unary algebras, strong dualisability is equivalent to a weak form of injectivity.
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The theory of natural dualities is a study of quasi-varieties of the formISP.M /,
whereM is a finite algebra. We aim to set up a natural dual equivalence between
the categoryA := ISP.M / and a categoryX of structured topological spaces. This
duality can often provide a practical representation of the algebras inA in terms
of simpler objects. Priestley’s duality for the quasi-variety of distributive lattices is
a prime example of a very useful duality (see [9]). As well as finding and using
practical dualities, natural-duality theoreticians tackle more esoteric problems. We
are interested in understanding which finite algebrasM allow us to set up a natural
duality for ISP.M /, and what the existence (or non-existence) of this duality can tell
us about the quasi-varietyISP.M /.

The theory of natural dualities is well developed and contains some powerful theo-
rems for creating dualities. Nevertheless, our understanding of what makes an algebra
dualisable, fully dualisable or strongly dualisable is rather limited. In this paper,
we aim to gain some insight into strong and full dualisability by investigating three-
element unary algebras. Unary algebras, especially three-element unary algebras,
may seem very simple. But, from the point of view of natural-duality theory, they
are rather complicated. This study complements the paper [4], by Clark, Davey and
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Pitkethly, which classifies the dualisable three-element unary algebras. We give a
characterisation of the strongly and fully dualisable three-element unary algebras. In
particular, we show that strong and full dualisability are equivalent within this class. In
general, it is not known whether every fully dualisable algebra is strongly dualisable.
The strong dualisability of an algebra seems to depend on how close the algebra is
to being injective. We show that, for dualisable three-element unary algebras, strong
dualisability is equivalent to a weak form of injectivity. In [7], Hyndman and Willard
give an example of a three-element unary algebra that is dualisable but not fully dual-
isable. It follows from our characterisation that there are many three-element unary
algebras that are dualisable but not fully dualisable.

The (strong) dualisability of a three-element unary algebra is related to the number
of different patterns of its unary term functions. Consider a finite unary algebraM .
We shall define akernel ofM to be an equivalence relation onM that is the kernel of
a unary term function ofM which is not a constant map or a permutation. We callM
ann-kernel unary algebraif n is the number of kernels ofM .

The following theorem gives the classification of dualisable three-element unary
algebras from [4]. This classification is most complicated within the family of two-
kernel algebras. To simplify the statement of the theorem, we use the fact that every
two-kernel three-element unary algebra is isomorphic to a unary algebra, on the set
{0;1;2}, with kernels{01|2} and{02|1}. (See Lemma 4.1 [4].) We denote a unary
operationu : {0;1;2} → {0;1;2} by the stringu.0/u.1/u.2/.

DUALISABLE THREE-ELEMENT UNARY ALGEBRAS. LetM be a three-element unary
algebra.

.i/ If M is a zero-kernel or one-kernel algebra, thenM is dualisable.
.ii/ Assume thatM is a two-kernel algebra, on the set{0;1;2}, with kernels{01|2}

and{02|1}. ThenM is dualisable if and only if none of the following conditions hold:

(a) ppq and pqp are term functions ofM , for somep;q ∈ M with p 6= q,
but 010or 002 is not a term function ofM ;

(b) 010, 001and110are term functions ofM , but222 isn’t;
(c) 002, 020and202are term functions ofM , but111 isn’t.

.iii / If M is a three-kernel algebra, thenM is not dualisable.

In this paper, we shall establish the characterisationsof strongly and fully dualisable
three-element unary algebras given below.

STRONGLY DUALISABLE THREE-ELEMENT UNARY ALGEBRAS. Let M be a three-
element unary algebra.

.i/ If M is a zero-kernel or one-kernel algebra, thenM is strongly dualisable.
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.ii/ Assume thatM is a two-kernel algebra, on the set{0;1;2}, with kernels{01|2}
and {02|1}. ThenM is strongly dualisable if and only if both010and 002are term
functions ofM and neither of the following conditions holds:

(a) ppq andqpq are term functions ofM , for somep;q ∈ M with p 6= q;
(b) 101and220are term functions ofM .

.iii / If M is a three-kernel algebra, thenM is not strongly dualisable.

Explicit examples of strongly dualisable two-kernel three-element unary algebras
may be obtained from Lemma3.6.

FULLY DUALISABLE THREE-ELEMENT UNARY ALGEBRAS. LetM be a three-element
unary algebra. ThenM is fully dualisable if and only ifM is strongly dualisable.

We have given an algorithm for deciding whether or not a particular three-element
unary algebra is strongly dualisable. However, this algorithm does not really give us a
feel for what makes a three-element unary algebra strongly dualisable. We shall show
that, for dualisable three-element unary algebras, strong dualisability is equivalent to
a weak form of injectivity. To make this more precise, we first need to give some
definitions. (Many of the concepts we use throughout this paper are introduced in
more detail, and with examples, in the paper [4].)

Let M be a finite unary algebra and choose an algebraA from the quasi-variety
A := ISP.M /. Thecentre ofA is defined to be the subuniverse

CA := {mA | m ∈ M is the value of a constant term function ofM }
of A. There is a directed graph naturally associated withA. We define the graph
G.A/ = 〈A; EA〉 by

EA := {.a;b/ | a ∈ A andb ∈ sgA.a/};
where sgA.a/ denotes the subuniverse ofA generated bya, for eacha ∈ A. The
relationEA is reflexive and transitive, and so is a quasi-order onA. Let G∗.A/ denote
the induced subgraph ofG.A/ with vertex setA\CA . For everya;b ∈ A\CA and
n ∈ N ∪ {0}, we say that there is afence froma to b in A of lengthn if there are edges
x1; y1; : : : ; xn; yn of G∗.A/ such that

sa �
�
��x1

s

s@
@

@@ y1

s

s�
�
��x2

s

@
@ : : :

s b@
@
@@ yn

s

�
�

in G∗.A/. A subalgebraP of A is called apetal of A if P\CA is the vertex set of a
connected component of the graphG∗.A/. Soa;b ∈ A\CA belong to the same petal
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of A if and only if there is a fence froma to b in A. It is easy to check that every
non-trivial algebra inA is the coproduct of its petals.

Now let P be a petal ofA and letn ∈ N. Define the distance functiondP on
P\CA such thatdP.a;b/ is the length of the shortest fence froma to b in A, for all
a;b ∈ P\CA. For eacha ∈ P\CA , the ball inA with centrea and radiusn, given by

nA.a/ := { b ∈ P\CA | dP.a;b/ 6 n} ∪CA ;

determines a subalgebra ofA. For a ∈ CA, we setnA.a/ := CA . Now define
nA.B/ := ⋃{nA.b/ | b ∈ B}, for all B ⊆ A. The algebraM is said to ben-quasi-
injectiveif, for all finite algebrasA;B ∈ A such thatB 6 A, every homomorphism
x : B → M that extends tonA.B/ also extends toA. We shall show that the
theorem below follows from our description of strongly dualisable three-element
unary algebras.

QUASI-INJECTIVITY THEOREM. LetM be a dualisable three-element unary algebra.
ThenM is strongly dualisable if and only ifM is n-quasi-injective, for somen ∈ N.

1. Natural dualities

This section provides a quick introduction to duality theory. A more detailed
account can be found in the text [1], by Clark and Davey. LetM = 〈M ; F〉 be a finite
algebra and defineA := ISP.M /. An alter ego of M is a structured topological
spaceM∼ = 〈M ; G; H; R;T 〉, on the same underlying set asM , such that:

.i/ G is a set ofalgebraic operations onM , that is, eachg ∈ G is a homomorphism
g : M n→ M , for somen ∈ N ∪ {0};
.ii/ H is a set ofalgebraic partial operations onM , that is, eachh ∈ H is a

homomorphismh : D→ M , for somen ∈ N andD < Mn;
.iii / R is a set ofalgebraic relations onM , that is, eachr ∈ R is the underlying set

of a subalgebra ofMn, for somen ∈ N;
.iv/ T is the discrete topology onM .

Let M∼ be an alter ego ofM and defineX := IScP
+.M∼/ to be the class of all

isomorphic copies of closed substructures of non-zero powers ofM∼ . There is a pair
of contravariant functors D: A → X and E: X → A . For everyA ∈ A , define
D.A/ to be the homsetA .A;M/ viewed as a closed substructure ofM∼

A. The structure
D.A/ is called thedual of A, for eachA ∈ A . For everyX ∈ X , define E.X/ to be
the homsetX .X;M∼/ viewed as a subalgebra ofM X. It remains to define D and E on
morphisms. For' : A → B inA , define D.'/ : D.B/→ D.A/ by D.'/.x/ := x ◦',
and for : X → Y inX , define E. / : E.Y/→ E.X/ by E. /.Þ/ := Þ ◦ .
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For eachA ∈ A , there is a natural embeddingeA : A ,→ ED.A/, given by
eA.a/.x/ := x.a/, for all a ∈ A andx ∈ A .A;M/. Similarly, for eachX ∈ X ,
we can define an embedding"X : X ,→ DE.X/ by "X.x/.Þ/ := Þ.x/. If eA is an
isomorphism, for allA ∈ A , then we say thatM∼ yields a duality onA . In this case,
we have a representation forA : each algebraA ∈ A is isomorphic to the algebra
ED.A/ of all morphisms from its dual D.A/ into M∼ . If eA and"X are isomorphisms,
for all A ∈ A andX ∈X , then we say thatM∼ yields a full duality onA . In this case,
the categoriesA andX are dually equivalent. The algebraM is (fully) dualisableif
there is an alter ego ofM that yields a (full) duality onA .

As we shall see in Section 5, full dualities are rather complicated. There is a
simpler, stronger notion that we often use instead. First, letSbe a non-empty set and
let FM.S/ denote the set of allS-ary term functions ofM . A set X ⊆ M S is term
closedif

X =
⋂
{eq.¦; −/ | ¦; − ∈ FM.S/ and¦ �X = −�X}:

It is known thatM∼ yields a full duality onA if and only if M∼ yields a duality onA
and every closed substructure of a non-zero power ofM∼ is isomorphic to a term-closed
substructure of a power ofM∼ (see [1]). We now say thatM∼ yields a strong duality on
A if M∼ yields a duality onA and every closed substructure of a non-zero power of
M∼ is term closed. So every strong duality is also a full duality. At present, it is not
known whether every full duality is also strong. The algebraM is strongly dualisable
if there is an alter ego ofM that yields a strong duality onA .

By the First Strong Duality Theorem [1], the structureM∼ yields a strong duality
onA if and only if M∼ yields a full duality onA andM∼ is injective inX . There are
close connections between the injectivity ofM∼ in X and the injectivity ofM in A
(see [1, Section 3.2]). The strong dualisability of an algebra seems to be related to
how close the algebra is to being injective. Certainly, every dualisable algebra that
is injective in the quasi-variety it generates is strongly dualisable. This follows from
results of Willard [10], but it can also be proved directly using the results in [1].

LEMMA 1.1. LetM be a finite algebra that is injective inISP.M /. If M is dualis-
able, thenM is strongly dualisable.

PROOF(Sketch).Assume thatM is dualisable. Then there is a relational structure
M∼ = 〈M ; R;T 〉 that yields a duality onA := ISP.M /. Define the setG :=⋃{A .M n;M/ | n ∈ N ∪ {0}} and define the alter egoM∼

′ := 〈M ; G; R;T 〉 of M .
ThenM∼

′ also yields a duality onA . SinceM is injective inA , every algebraic partial
operation onM is the restriction of an algebraic operation onM . It now follows
thatM∼

′ yields a strong duality onA by Exercise 3.1 and the Second Strong Duality
Theorem, in [1]. (For the solution to Exercise 3.1, refer to the proof of Theorem 3.1.3
in [1].)
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In this paper, we make use of two general methods for showing that a dualisable
algebra is strongly dualisable. The first method is due to Clark, Idziak, Sabourin,
Szabó and Willard [2].

THEOREM 1.2 ([2, Lemma 4.8]).Let M be a finite algebra and letM∼ be an alter
ego ofM . ThenM∼ yields a strong duality onA := ISP.M / if and only if

.i/ M∼ yields a duality onA , and
.ii/ for everyA ∈ A and each proper closed substructureX of D.A/, the maps

in X do not separate the elements ofA.

The second method was introduced by Lampe, McNulty and Willard [8]. It is based
on a result of Willard [10]. For a setY ⊆ A .M n;M /, with n ∈ N, define the natural
product mapuY : M n → MY by uY.a/.y/ := y.a/. We say thatM has enough
algebraic operationsif there is a mapf : N→ N for which the following condition
holds:

for all n ∈ N, all algebrasB 6 A 6 M n and all homomorphismsh : A → M ,
there exists a setY ⊆ A .M n;M /, with |Y| 6 f .|B|/, and a homomorphism
h′ : uY.A/→ M such that the diagram below commutes.

M

B

h�B

uY.A/

uY�A

h′

A M n

Although the definition of enough algebraic operations appears technical, it often
provides a relatively easy way to lift dualisability to strong dualisability.

THEOREM 1.3 ([8, Theorem 4.3]).LetM be a finite algebra with enough algebraic
operations. IfM is dualisable, thenM is also strongly dualisable.

2. Zero-kernel and one-kernel unary algebras
are strongly dualisable

The quasi-variety generated by a zero- or one-kernel unary algebra is especially
simple. Consider a finite (not necessarily three-element) zero- or one-kernel unary
algebraM and defineA := ISP.M /. There is a finite setB of algebras that
encapsulates the quasi-varietyA : each finite algebra inA is ‘nearly isomorphic’ to
a coproduct of algebras fromB. The finiteness of the quasi-varietyA suggests that
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the algebraM should be dualisable. This is the case, and it is proven in [4]. To show
that M is strongly dualisable, it now suffices to show thatM has enough algebraic
operations. We begin by describing the finiteness ofA precisely, using the definition
of a gentle basis from [4].

Let A be a finite unary algebra. An elementa ∈ A is called anouter element ofA
if sgA.a/ is a maximal one-generated subalgebra ofA. Otherwise, we say thata ∈ A
is aninner element ofA. Let Aout denote the set of all outer elements ofA and letAin

denote the set of all inner elements ofA. ThenAin is a subuniverse ofA. A surjection
' : A � B is said to begentleif '�Ain∪sgA.a/

is one-to-one, for alla ∈ Aout.
Let M be a finite unary algebra and defineA := ISP.M /. An algebraP is called

a petal ofA if P is a petal of an algebra belonging toA . LetB be a set of finite
petals ofA . ThenB is agentle basis forA if, for every finite petalP ofA , there is a
gentle surjection' : P� B, for someB ∈ B. The following three results are proven
in [4]. The first lemma shows that gentle surjections are ‘nearly’ isomorphisms.

LEMMA 2.1 ([4, Lemma 3.3]).Let A be a finite unary algebra and let' : A � B
be a gentle surjection. Then' is a retraction and, for each subalgebraC of A such
that '�C is one-to-one, there is a coretraction : B ,→ A for ' with C ⊆  .B/.

LEMMA 2.2 ([4, Corollary 3.8]).Let M be a finite unary algebra. ThenISP.M /

has a finite gentle basis if and only ifM is a zero-kernel or one-kernel algebra.

THEOREM 2.3 ([4, Theorems 2.7 and 3.9]).Every finite zero-kernel or one-kernel
unary algebra is dualisable.

We shall also use the following general lemma due to Hyndman [6].

LEMMA 2.4 ([6, Lemma 2.2]).LetM be a finite algebra and defineA := ISP.M /.
Let B 6 M n, for somen ∈ N. Then there is a setZ ⊆ A .M n;M/ of projection
functions such thatZ separates the elements ofB and|Z|6 |B| − 1.

Using the results above, we now prove that finite zero- and one-kernel algebras
have enough algebraic operations.

LEMMA 2.5. Every finite zero-kernel or one-kernel unary algebra has enough al-
gebraic operations.

PROOF. Let M be a finite zero-kernel or one-kernel unary algebra. By Lemma2.2,
there is a finite gentle basisB for A := ISP.M /. Choose somek ∈ N such that
k > |A .P;M /|, for all P ∈ B. Define the mapf : N→ N by f .n/ := k2n+ n− 1.
Now letn ∈ N, let B 6 A 6 Mn and leth : A → M .
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DefineP to be the set of all petals ofM n. LetPB denote the set of all petalsP of
M n such thatP∩B 6= CM n . For eachP ∈P , there is a gentle surjection'P : P� P∗,
whereP∗ ∈ B, and we can writeA .P∗;M / = {xP1; : : : ; xPk}. For eachP ∈ P and
all i; j ∈ {1; : : : ; k}, we can define the algebraic operationgPi j

: Mn → M by

gPi j := .xPi ◦ 'P/ t
⊔
{xQ j ◦ 'Q | Q ∈P\{P}};

asMn is the coproduct of its petals.
By Lemma2.4, there is a setZ ⊆ A .M n;M / of projection functions such thatZ

separates the elements ofB and|Z| 6 |B| − 1. Define

Y := Z ∪ {gPi j | P ∈PB andi; j ∈ {1; : : : ; k}}:

Then|Y| 6 |B| − 1+ k2|B| = f .|B|/. Define¼ : M n→ MY by¼ := uY. We wish
to find a homomorphismh′ : ¼.A/ → M such thath′ ◦ ¼�B = h�B. We can assume
that the setY is not empty. (Otherwise, we have|B| = 1 = |¼.A/| and so we can
defineh′ to have the same value ash�B.)

The setD := ⋃{P | P ∈ P\PB} determines a subalgebraD of Mn. We will
show that¼.A/ is the coproduct of{¼.P∩ A/ | P ∈PB} ∪ {¼.D ∩ A/} in A . To do
this, it suffices to prove that

{¼.P ∩ A/\C¼.A/ | P ∈PB} ∪ {¼.D ∩ A/\C¼.A/}

is a partition of¼.A/\C¼.A/. Let a ∈ .P ∩ A/\CA and letb ∈ .Q ∩ A/\CA, for some
P ∈PB andQ ∈P\{P}. It is now enough to show that¼.a/ 6= ¼.b/.

As a 6= b in Mn, there is a homomorphismz : M n → M such thatz.a/ 6= z.b/.
By Lemma2.1, there is a coretraction a : P∗ ,→ P for 'P with sgP.a/ ⊆  a.P∗/.
It follows that a ◦ 'P.a/ = a. The homomorphismz ◦  a : P∗ → M belongs to
A .P∗;M/ = {xP1; : : : ; xPk}. So there is somei ∈ {1; : : : ; k} such thatz ◦  a = xPi

and thereforexPi ◦ 'P.a/ = z ◦  a ◦ 'P.a/ = z.a/. Similarly, there exists some
j ∈ {1; : : : ; k} with xQ j ◦ 'Q.b/ = z.b/. Thus

gPi j .a/ = xPi ◦ 'P.a/ = z.a/ 6= z.b/ = xQ j ◦ 'Q.b/ = gPi j .b/;

whence¼.a/ 6= ¼.b/. We have shown that the algebra¼.A/ is the coproduct of
{¼.P∩ A/ | P ∈PB} ∪ {¼.D ∩ A/} in A .

Now letP ∈PB. To see that the surjection¼�P∩A : P∩ A � ¼.P∩ A/ is gentle,
let a ∈ .P∩ A/out and letb; c ∈ .P∩ A/in ∪ sgP∩A.a/ with b 6= c. As .P∩ A/in ⊆ Pin

and'P is gentle, we have'P.b/ 6= 'P.c/. There must be somei ∈ {1; : : : ; k} with
xPi ◦ 'P.b/ 6= xPi ◦ 'P.c/. So gPi 1.b/ 6= gPi 1.c/ and therefore¼.b/ 6= ¼.c/. Thus
¼�P∩A : P ∩ A � ¼.P ∩ A/ is gentle. SinceY separates the elements ofB, the
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map¼�P∩B is one-to-one. It follows by, Lemma2.1, that there is a coretraction
¹P : ¼.P∩ A/ ,→ P∩ A for ¼�P∩A such thatP ∩ B ⊆ ¹P ◦ ¼.P ∩ A/.

Since¼.A/ 6 MY and the setY is non-empty, there exists a homomorphism
x : ¼.A/→ M . We can now define the homomorphismh′ : ¼.A/→ M by

h′ := x�¼.D∩A/ t
⊔
{h ◦ ¹P | P ∈PB}:

To see thath′ ◦ ¼�B = h�B, let P ∈PB and letb ∈ P ∩ B. Since¹P is a coretraction
for¼�P∩A such thatP∩B ⊆ ¹P◦¼.P∩A/, we have¹P◦¼�P∩B = idP∩B and therefore

h′ ◦¼.b/ = h ◦ ¹P ◦ ¼.b/ = h.b/:

ThusM has enough algebraic operations.

The next theorem follows straight from Theorem1.3, Theorem2.3and Lemma2.5.

THEOREM 2.6. Every finite zero-kernel or one-kernel unary algebra is strongly
dualisable.

We finish this section by considering quasi-injectivity.

LEMMA 2.7. Every finite zero-kernel or one-kernel unary algebra isn-quasi-injec-
tive, for somen ∈ N.

PROOF. Let M be a finite zero-kernel or one-kernel unary algebra. By Lemma2.2,
there is a finite gentle basisB forA := ISP.M /. Every algebra inB is a finite petal
of A . For each finite petalP of A , define

wP := max
({dP.a;b/ | a;b ∈ P\CP}

)
:

Now define

n := max
({wB | B ∈ B} ∪ {2}

)
:

Let P be a finite petal ofA . There is a gentle surjection' : P � B, for some
B ∈ B. To see thatwP 6 n, let a;b ∈ P\CP with a 6= b. Define the subuniverse
Pab := Pin ∪ sgP.{a;b}/ of P.

Case(a): '�Pab
is one-to-one. By Lemma2.1, there is a coretraction : B ,→ P

for ' with a;b ∈  .B/. SodP.a;b/ 6 d .B/.a;b/ 6 w .B/ = wB 6 n.

Case(b): '�Pab
is not one-to-one. Since' is gentle, we havea;b ∈ Pout and

sgP.a/ 6= sgP.b/. There isca ∈ sgP.a/\Pin andcb ∈ sgP.b/\Pin with '.ca/ = '.cb/.
We must have sgP.a/ = sgP.ca/ and sgP.b/ = sgP.cb/, sinceca and cb are outer
elements ofP. As ca andcb are connected by a fence inP, there must be a unary
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term functionu of A such thatu.ca/ ∈ Pin\CP. This gives usu.ca/ = u.cb/, since
'.u.ca// = '.u.cb// and' is gentle. ThereforedP.a;b/ 6 26 n, asa ∈ sgP.ca/ and
b ∈ sgP.cb/.

We have shown thatwP 6 n, for all finite petalsP of A . To see thatM is n-quasi-
injective, choose a pair of finite algebrasA;B ∈ A with B 6 A. Let x : B → M
and assume thatx extends tonA.B/. Let P be a petal ofA with P ∩ B 6= CA. Then
P ⊆ nA.B/, sincewP 6 n. So x�P∩B extends toP. SinceA is the coproduct of its
petals, it follows thatx extends toA.

3. Two-kernel three-element unary algebras
that are strongly dualisable

The family of two-kernel three-element unary algebras is surprisingly complicated.
It contains strongly dualisable algebras, dualisable algebras that are not fully dual-
isable, and non-dualisable algebras. We begin this section by giving two different
classifications of the two-kernel three-element unary algebras. To give the classifica-
tions, we require the following easy lemmas from [4].

LEMMA 3.1 ([4, Lemma 4.1]).LetM be a two-kernel three-element unary algebra.
There is an isomorphic copy ofM , on the set{0;1;2}, that has kernels{01|2} and
{02|1}.

LEMMA 3.2 ([4, Lemma 4.2]).Let M be a two-kernel unary algebra, on the set
{0;1;2}, with kernels{01|2} and {02|1}. Then the unary term functions ofM all
belong to the set{012;021} ∪ {ppq; pqp | p;q ∈ M}.

We can now restrict our attention to those two-kernel algebras, on the set{0;1;2},
that have kernels{01|2} and {02|1}. The most complicated algebra of this kind is
M ] = 〈{0;1;2}; F ]〉, whereF ] := {012;021} ∪ {ppq; pqp | p;q ∈ M}. Define the
idempotent operationsf1 := 010 and f2 := 002 in F ]. The next result divides the
two-kernel three-element unary algebras up into four types.

THEOREM 3.3 ([4, Theorem 4.3]).LetM be a two-kernel unary algebra, on the set
{0;1;2}, with kernels{01|2} and {02|1}. Let F be the set of unary term functions
of M . Then at least one of the following is true:

.2/O each map inF preserves the order4 with 14 04 2;
.2/P { f1; f2} * F, and{ppq; pqp} ⊆ F, for somep;q ∈ M with p 6= q;
.2/M {010;001;110} ⊆ F and222 =∈ F, or {002;020;202} ⊆ F and111 =∈ F ;
.2/R { f1; f2} ⊆ F, and condition.2/M fails.
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In [4], it is shown that the algebras of type.2/O and type.2/R are dualisable, and
that the algebras of type.2/P and type.2/M are non-dualisable. We shall use a different
classification for our characterisation of strong dualisability.

THEOREM 3.4. Let M be a two-kernel unary algebra, on the set{0;1;2}, with
kernels{01|2} and {02|1}. Let F be the set of unary term functions ofM . Then at
least one of the following is true:

.2/P { f1; f2} * F, and{ppq; pqp} ⊆ F, for somep;q ∈ M with p 6= q;
.2/Q {ppq;qpq} ⊆ F, for somep;q ∈ M with p 6= q;
.2/C {101;220} ⊆ F ;
.2/S { f1; f2} ⊆ F, and conditions.2/Q and.2/C both fail.

PROOF. First assume thatM has type.2/O but not type.2/Q. We will show
that {010;002} ⊆ F ⊆ {012;010;002;000;111;222}. Since{01|2} and{02|1} are
kernels ofM , there arep;q; r; s ∈ M , with p 6= q andr 6= s, such thatppq ∈ F and
rsr ∈ F . AsM does not have type.2/Q, we must haveqpq =∈ F andssr =∈ F . The only
non-constant maps inM M that preserve the order4 are 012, 110, 112, 002, 010, 212
and 202. Asrsr◦110= rsr◦112= ssr =∈ F andppq◦212= ppq◦202= qpq =∈ F ,
it follows that{010;002} ⊆ F ⊆ {012;010;002;000;111;222}.

To see that the four types in the statement of the theorem are exhaustive, assume that
M has neither type.2/P, type.2/Q, nor type.2/C. We need to prove that{ f1; f2} ⊆ F .
SinceM does not have type.2/Q, we have{110;010} * F and {202;002} * F .
ThereforeM does not have type.2/M. So, by Theorem3.3, we can assume thatM
has type.2/O. We have just shown that this implies that{ f1; f2} ⊆ F .

Throughout the rest of this paper, we shall prove that the algebras of type.2/S
are strongly dualisable, and that the algebras of type.2/Q and type.2/C are not fully
dualisable. This will provide us with plenty of examples of dualisable algebras that are
not fully dualisable: for instance, each algebra〈{0;1;2}; F〉 such that{101;220} ⊆
F ⊆ F ].

In [3] (see also [4]), it is shown that a finite unary algebra is dualisable if its
operations form a set of lattice endomorphisms. The proof is particularly short and
elegant. So it is slightly surprising that not all of these lattice-endomorphism unary
algebras are fully dualisable. In fact, most of the two-kernel three-element lattice-
endomorphism unary algebras are not fully dualisable. In the proof of Theorem3.4,
we showed that a two-kernel unary algebra whose operations preserve the order4,
with 1 4 0 4 2, must have type.2/Q unless it is polynomially isomorphic to
〈{0;1;2}; 010;002〉.

Every algebra of type.2/S also has type.2/R, and is therefore dualisable. We shall
prove that every algebra of type.2/S has enough algebraic operations and is therefore
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strongly dualisable. The following lemma has nearly the same proof as that of Lemma
4.7 in [4].

LEMMA 3.5. Assume thatM has type.2/S. Let A ∈ ISP.M /, let A∗ 6 A such
that f1.A/ ∪ f2.A/ ⊆ A∗ and let x : A∗ → M be a homomorphism. Thenx has
an extension toA if and only if x. f1.a// = 0 or x. f2.a// = 0, for all a ∈ A\A∗.
Moreover, ifx has an extension toA, then that extension is unique.

Assume thatM has type.2/S and letF be the set of unary term functions ofM .
Then{101;220} * F , sinceM does not have type.2/C. We shall consider the two
cases 101;220 =∈ F and 101∈ F separately. The case 220∈ F is symmetric, under
conjugation by 021, to the case 101∈ F . To see this, assume that 220∈ F . We can
create an isomorphic copy ofM by interchanging the labels 1 and 2. More precisely,
there is a unary algebraM ′, on the set{0;1;2}, such that 021: M → M ′ is an
isomorphism. The setF ′ := {021◦ u ◦ 021 | u ∈ F} is the set of all unary term
functions ofM ′. It is easy to check thatM ′ has type.2/S and that 101∈ F ′.

LEMMA 3.6. Let M be a unary algebra with type.2/S.

.i/ If neither101nor220is a term function ofM , then all the unary term functions
of M belong to{012;021;010;020;001;002;000;111;222}.
.ii/ If 101 is a term function ofM , then all the unary term functions ofM belong

to {012;101;010;002;000;111;222}.

PROOF. Let F denote the set of all unary term functions ofM and assume that
220 =∈ F . Since 010;002∈ F andM does not have type.2/Q, we know that 110=∈ F
and 202=∈ F . Let ppq ∈ F with p 6= q. Then 010◦ ppq ∈ F and 002◦ ppq ∈ F . As
110;220 =∈ F , this implies thatp = 0. We have 212=∈ F , as 002◦ 212= 202 =∈ F .
SinceF ⊆ F ], by Lemma3.2, it now follows that

F ⊆ {012;021;010;020;101;121;001;002;000;111;222}:
To prove (i), assume that 101=∈ F . Then 121=∈ F , as 010◦121= 101 =∈ F . So claim
(i) holds. To prove (ii), assume that 101∈ F . We must have 021;001 =∈ F , since
101◦021= 101◦001= 110 =∈ F . As 020◦101= 202 =∈ F and 121◦101= 212 =∈ F ,
we have 020;121 =∈ F . Thus claim (ii) holds.

Given a setS, for eachm ∈ M we usem̂ to denote the constant map inM S with
valuem.

LEMMA 3.7. Let M be a unary algebra with type.2/S. Assume that neither101
nor 220is a term function ofM . LetB 6 A in ISP.M / and letx : B→ M . Then the
following are equivalent:
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.i/ x extends toA;
.ii/ x extends to1A.B/;
.iii / wheneveru1 ∈ {010;020} and u2 ∈ {002;001} are term functions ofM and

a ∈ A with u1.a/;u2.a/ ∈ B, we havex.u1.a// = 0 or x.u2.a// = 0.

In particular, the algebraM is 1-quasi-injective.

PROOF. DefineF to be the set of all unary term functions ofM . We can assume that
A 6 M S, for some setS. Clearly (i) implies (ii). To see that (ii) implies (iii), assume
that x : 1A.B/ → M is an extension ofx. Let a ∈ A and letu1 ∈ F ∩ {010;020}
andu2 ∈ F ∩ {002;001}, with u1.a/;u2.a/ ∈ B, such thatx.u1.a// 6= 0. We want to
show thatx.u2.a// = 0. First assume thatu1.a/ ∈ CA ⊆ {̂0; 1̂; 2̂}. Thenu1.a/ 6= 0̂,
and soa = 1̂. Since 000= f1 ◦ f2 is a constant term function ofM , this implies
that x.u2.a// = x.̂0/ = 0. Now assume thatu1.a/ =∈ CA . Thena ∈ 1A.B/ and
u1.x.a// = x.u1.a// 6= 0. Sox.a/ = 1 and thereforex.u2.a// = u2.x.a// = 0.

It remains to show that (iii) implies (i). So assume that condition (iii) holds. By
Lemma3.6 (i), the setA∗ := A ∩ .{0;1}S ∪ {0;2}S/ determines a subalgebra ofA.
We want to definex∗ : A∗ → M by

x∗.a/ =


2 if u.a/ ∈ x−1.u.2//, for someu ∈ F ∩ {002;001};
1 if u.a/ ∈ x−1.u.1//, for someu ∈ F ∩ {010;020};
0 otherwise.

To see thatx∗ is well defined, letu1 ∈ F ∩ {010;020}, u2 ∈ F ∩ {002;001} and
a ∈ A∗ with u1.a/;u2.a/ ∈ B. Thenx.u1.a// = 0 6= u1.1/ or x.u2.a// = 0 6= u2.2/,
by (iii). So x∗ is well defined.

Now let b ∈ B ∩ A∗. Thenx∗.b/ = 2 impliesx.b/ = 2, and

x.b/ = 2 H⇒ 002.x.b// = 2 H⇒ x.002.b// = 002.2/ H⇒ x∗.b/ = 2:

Similarly, we havex∗.b/ = 1 if and only if x.b/ = 1. Thusx∗ extendsx�B∩A∗ . Using
Lemma3.6(i), it is easy to check thatx∗ is a homomorphism.

We shall prove thatx∗ extends to a homomorphismx : A → M using Lemma3.5.
Choose somea ∈ A\A∗ and suppose thatx∗. f1.a// 6= 0 andx∗. f2.a// 6= 0. Since f1

and f2 are both idempotent, we must havex∗. f1.a// = 1 andx∗. f2.a// = 2. There
existu1 ∈ F ∩ {010;020} andu2 ∈ F ∩ {002;001} such thatu1 ◦ f1.a/ ∈ x−1.u1.1//
andu2◦ f2.a/ ∈ x−1.u2.2//. This implies thatx.u1◦ f1.a// 6= 0 andx.u2◦ f2.a// 6= 0,
which contradicts (iii). So there is an extensionx : A → M of x∗. By Lemma3.5,
the extensionx : B → M of x�B∩A∗ is unique. Thusx is an extension ofx, as
x�B∩A∗ = x�B∩A∗.

THEOREM 3.8. LetM be a unary algebra, with type.2/S, such that neither101nor
220 is a term function ofM . ThenM is strongly dualisable.
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PROOF. By [4], the algebraM is dualisable. So, using Theorem1.3, it will follow
that M is strongly dualisable once we have shown thatM has enough algebraic
operations. Definef : N → N by f .n/ := n. Let n ∈ N, let B 6 A 6 M n and let
h : A → M .

By Lemma3.6 (i), the set f1.Mn/ ∪ f2.Mn/ = {0;1}n ∪ {0;2}n determines a
subalgebra ofMn. Let m ∈ {1;2} and let b ∈ fm.B/\{̂0}. Using Lemma3.5
and Lemma3.6 (i), there is a homomorphismgb : M n → M such that, for all
a ∈ f1.Mn/ ∪ f2.Mn/, we have

gb.a/ =


m if a = b or a = m̂;

021.m/ if a = 021.b/ or a = 021.m̂/;

0 otherwise.

Define

Y := {gb | b ∈ . f1.B/ ∪ f2.B//\{̂0}}:
Then|Y| 6 |B| − 1 6 f .|B|/.

Define the homomorphism¼ : M n → M Y by ¼ := uY. To see that¼�B is
an embedding, we need to show thatY separates the elements ofB. Let b; c ∈ B
with b 6= c. Then fm.b/ 6= fm.c/, for somem ∈ {1;2}. We can assume that
fm.b/ 6= 0̂ and fm.c/ 6= m̂. So gfm.b/. fm.b// = m 6= gfm.b/. fm.c//, which implies
that¼. fm.b// 6= ¼. fm.c// and therefore¼.b/ 6= ¼.c/.

We shall use Lemma3.7to prove thath ◦ .¼�B/
−1 : ¼.B/→ M extends to¼.A/.

Choose anya ∈ A. Letu1 andu2 be unary term functions ofM , with u1 ∈ {010;020}
andu2 ∈ {002;001}, such thatu1.¼.a//;u2.¼.a// ∈ ¼.B/. Definem1 := u1.1/ and
m2 := u2.2/. Then fm1 ◦ u1 = u1 and fm2 ◦ u2 = u2. So there is someb1 ∈ fm1.B/
andb2 ∈ fm2.B/ with ¼.u1.a// = ¼.b1/ and¼.u2.a// = ¼.b2/. We want to show
that h.b1/ = 0 or h.b2/ = 0. So we can assume thatb1;b2 6= 0̂. Since¼�B is
one-to-one, we have¼.b1/; ¼.b2/ 6= ¼.̂0/. This implies thata =∈ {̂1; 2̂}, and so
u1.a/;u2.a/ =∈ {̂1; 2̂}. For eachi ∈ {1;2}, we havemi = gbi

.bi / = gbi
.ui .a//

and thereforeui .a/ = bi . As h�B extends toA, it follows, by Lemma3.7, that
h.b1/ = h.u1.a// = 0 orh.b2/ = h.u2.a// = 0. We have shown that

h ◦ .¼�B/
−1.uj .¼.a/// = h ◦ .¼�B/

−1.¼.bj // = h.bj / = 0;

for some j ∈ {1;2}. Henceh ◦ .¼�B/
−1 extends to¼.A/, whenceM has enough

algebraic operations.

To make the next two proofs easier to read, we introduce some notation. Assume
thatM has type.2/S and letA ∈ ISP.M /. There is a natural binary relation_A on A
that reflects part of the structure ofA. For alla;b ∈ A, we seta _A b if and only if
there is somec ∈ A such thata = f1.c/ andb = f2.c/.
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LEMMA 3.9. Let M be a unary algebra with type.2/S. Assume that101 is a term
function of M . Let B 6 A in ISP.M / and letx : B → M . Then the following are
equivalent:

.i/ x extends toA;
.ii/ x extends to1A.B/;
.iii / the following conditions both hold:

(1) x.b/ = 0 or x.c/ = 0, for all b; c ∈ B such thatb _A c;
(2) x.b/ = 0 or x.c/ = 0, for all b; c ∈ B anda ∈ A such thata _A b and

101.a/ _A c.

In particular, the algebraM is 1-quasi-injective.

PROOF. Assume thatA 6 M S, for some setS. To prove that (ii) implies (iii),
assume thatx extends to a homomorphismx : 1A.B/ → M . We first prove two
claims.

.∗/1 Let a;b ∈ A, with a ∈ CA or b ∈ CA, such thata _A b. Thena = 0̂ orb = 0̂.

There is somec ∈ A with f1.c/ = a and f2.c/ = b. Since eithera or b belongs to
the set{̂0; 1̂; 2̂}, we must havec ∈ {0;m}S, for somem ∈ {1;2}. Soa = f1.c/ = 0̂ or
b = f2.c/ = 0̂.

.∗/2 Let a ∈ A andb ∈ B\CA such thata _A b. Thenx.a/ = 0 or x.b/ = 0.

There is somec ∈ A such that f1.c/ = a and f2.c/ = b. Sinceb =∈ CA , we have
a; c ∈ 1A.B/. Assume thatx.b/ 6= 0. Then f2.x.c// = x.b/ 6= 0 and sox.c/ = 2.
Thereforex.a/ = x. f1.c// = f1.x.c// = 0.

We can now show that (iii) holds. Since 000 is a term function ofM , we have
x.̂0/ = 0. So (1) follows straight from claims.∗/1 and.∗/2. To see that (2) holds,
let b; c ∈ B anda ∈ A, with a _A b and 101.a/ _A c, such thatx.b/ 6= 0. First
assume thatb; c =∈ CA. By .∗/2, we must havex.a/ = 0 and thereforex.101.a// =
101.x.a// = 1. Using .∗/2 again, we getx.c/ = 0. Now assume thatb ∈ CA .
Thenb 6= 0̂, sincex.b/ 6= 0. Soa = 0̂, by .∗/1, and therefore 101.a/ = 1̂. As
101.a/ _A c, it follows thatc = 0̂, whencex.c/ = 0. Finally, assume thatc ∈ CA .
Sinceb 6= 0̂ anda _A b, we havea 6= 1̂. This implies that 101.a/ 6= 0̂, whence
c = 0̂, by.∗/1. Thus (iii) is satisfied.

To prove that (iii) implies (i), assume that (iii) holds. By Lemma3.6 (ii), the sets
A1 := f1.A/∪CA andA2 := f2.A/∪CA both determine subalgebras ofA. LetT be a
transversal of{{a;101.a/} | a ∈ f1.A/} and define the homomorphismx1 : A1→ M
such that, for alla ∈ T , we have

x1.a/ =


x.a/ if a ∈ B;

0 if a =∈ B anda _A b, for someb ∈ x−1.2/;

1 otherwise.
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We can definex2 : A2→ M by

x2.a/ =
{

x.a/ if a ∈ B;

0 otherwise.

Now defineA∗ := A1 ∪ A2 andx∗ := x1 ∪ x2 : A∗ → M .
To see thatx∗ extends toA, using Lemma3.5, let a ∈ A\A∗ with x∗. f2.a// = 2.

Then f2.a/ ∈ x−1.2/. First assume thatf1.a/ ∈ B. Thenx∗. f1.a// = x. f1.a// = 0,
by (1). Now assume thatf1.a/ =∈ B and f1.a/ ∈ T . Thenx∗. f1.a// = x1. f1.a// = 0.
Finally, assume thatf1.a/ =∈ B and 101.a/ ∈ T . We must havex∗.101.a// =
x1.101.a// = 1, by (2), and thereforex∗. f1.a// = 101.x∗.101.a/// = 0. So there
is a homomorphismx : A → M that extendsx∗. By Lemma3.5, the extension
x : B→ M of x�B∩A∗ = x�B∩A∗ is unique, whencex extendsx.

THEOREM 3.10. Let M be a unary algebra, with type.2/S, such that either101or
220 is a term function ofM . ThenM is strongly dualisable.

PROOF. By symmetry, we can assume that 101 is a term function ofM . The algebra
M is dualisable, by [4]. So, using Theorem1.3, it suffices to show thatM has enough
algebraic operations. DefineA := ISP.M / and define the mapf : N → N by
f .n/ := 3n− 2. Letn ∈ N, let B 6 A 6 Mn and leth : A → M .

Now let b ∈ f2.B/\{̂0}. By Lemma3.6 (ii), the set f2.Mn/ ∪ CMn determines a
subalgebra ofM n. Using Lemma3.6 (ii) and Lemma3.9, there is a homomorphism
gb : M n→ M such that, for alla ∈ f2.Mn/, we have

gb.a/ =
{

2 if a = b or a = 2̂;

0 otherwise.

The set f1.Mn/ ∪ CM n determines a subalgebra ofMn. By Lemma3.6 (ii) and
Lemma3.9, there is a homomorphismg′b : Mn → M such that, fora ∈ f1.Mn/, we
have

g′b.a/ =
{

gb.a/ if a _A b or 101.a/ _A b;

101.gb.a// otherwise.

By Lemma2.4, there is a setZ ⊆ A .M n;M / of projections such thatZ separates the
elements ofB and|Z| 6 |B| − 1. Define

Y := Z ∪ {gb; g′b | b ∈ f2.B/\{̂0}}:
Then|Y| 6 |B| − 1+ 2.|B| − 1/ 6 f .|B|/.

Define¼ : M n→ M Y by¼ := uY. Then¼�B is an embedding, asY separates the
elements ofB. We shall begin by proving the following claim.
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.∗/ Let a ∈ A andb ∈ B with ¼.a/ _¼.A/ ¼.b/. Then f1.a/ _A b.

Since f1.a/ _A 0̂, we can assume thatb ∈ B\{̂0}. There isc ∈ A with f1.¼.c// =
¼.a/ and f2.¼.c// = ¼.b/. As f1 is idempotent, this implies that¼. f1.c// =
¼. f1.a//. We have¼. f2.b// = ¼.b/ and thereforeb ∈ f2.B/, as¼�B is one-to-one.
This gives usgb. f2.c// = gb.b/ = 2, which implies thatgb.c/ = 2, and also that
f2.c/ = b or c = 2̂. Sog′b. f1.a// = g′b. f1.c// = gb. f1.c// = gb. f1.a//, which tells
us that f1.a/ _A b or 101.a/ _A b. We havegb.b/ = 2 and

gb.101.a// = 101.gb. f1.a/// = 101.gb. f1.c/// = 101.gb.c// = 101.2/ = 1:

As gb preservesf1 and f2, it follows that 101.a/ 6_A b. Thus f1.a/ _A b, and.∗/
holds.

We will use Lemma3.9 to prove thath ◦ .¼�B/
−1 : ¼.B/ → M extends to¼.A/.

To see that (1) holds, letb; c ∈ B such that¼.b/ _¼.A/ ¼.c/. Then f1.b/ _A c,
by .∗/. We havef1.b/ = b, as f1.¼.b// = ¼.b/ and¼�B is one-to-one. Soh.b/ = 0
or h.c/ = 0, by Lemma3.9, sinceh�B extends toA.

To check that (2) holds, letb; c ∈ B anda ∈ A such that¼.a/ _¼.A/ ¼.b/ and
101.¼.a// _¼.A/ ¼.c/. Then f1.a/ _A b and 101.a/ _A c, by .∗/, which implies
thath.b/ = 0 or h.c/ = 0. It now follows thath ◦ .¼�B/

−1 extends to¼.A/.

4. Dualisable three-element unary algebras
that are not strongly dualisable

In this section, we will show that every algebra that has type.2/Q or type .2/C
is not strongly dualisable. This will complete our characterisation of the strongly
dualisable three-elementunary algebras. Our proof is based on the proof by Hyndman
and Willard [7] that the unary algebra〈{0;1;2}; 001;122〉 is not strongly dualisable.
Most of the results in this section will also be used in the following section to finish
the classification of fully dualisable three-element unary algebras. In our proof, we
make use of a special pair of ordered sets.

LEMMA 4.1 ([7, Lemma 4.1]).There is a chain0 = 〈� ;6〉 and an ordered set
0 ′ = 〈� ;C〉 such thatC is strictly contained in6 and the following condition holds:
for all c;d ∈ � with c 6 d andc 6C d, there exists{cn | n ∈ N} ∪ {dn | n ∈ N} ⊆ �
such thatcC cn anddn C d andcn 6 dn 6 cn+1, for everyn ∈ N.

Throughout the rest of this paper,0 and0 ′ will denote a fixed pair of ordered sets
satisfying the conditions of Lemma4.1. The following lemma gives a general method
for proving that a finite algebra is not strongly dualisable. LetG denote the category
of directed graphs.
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LEMMA 4.2. Let M be a finite algebra and letB 6 A in A := ISP.M / such that
� ⊆ B. Assume there is a chainC = 〈C;6〉, with C ⊆ M, for which the maps
−�� : A .A;M / → G .0;C/ and−�� : A .B;M / → G .0′;C/ are well-defined
bijections.

.i/ The setX := {x�B | x ∈ A .A;M/} forms a closed substructure ofM∼
B, for

each alter egoM∼ of M .
.ii/ The algebraM is not strongly dualisable.

PROOF. Let M∼ = 〈M ; G; H; R;T 〉 be an alter ego ofM . There arec;d ∈ � with
c 6 d andc 6C d. There also exist 0;1 ∈ C such that 06= 1 and 06 1. Define the
mapw : � → C by

w.a/ =
{

1 if cC a;

0 otherwise.

Thenw ∈ G .0′;C/ and so there is a homomorphismw ∈ A .B;M / for which
w�� = w. As w =∈ G .0;C/, we must havew =∈ X and thereforeX 6= A .B;M /.
We will show thatX forms a closed substructure of D.B/ 6 M∼

B. As X separates the
elements ofB, it will follow by Theorem1.2 thatM∼ does not yield a strong duality
onA .

Let � : B → A denote the inclusion map. ThenX is the image of the morphism
D.�/ : D.A/ → D.B/. This implies thatX is topologically closed in D.B/ and that
X is closed under the operations inG. It remains to check thatX is closed under
the partial operations inH . So leth ∈ H be ak-ary partial operation, for some
k ∈ N, and letx1; : : : ; xk ∈ X with .x1; : : : ; xk/ ∈ dom.h/D.B/. We will show that
z := h.x1; : : : ; xk/ ∈ X.

To show thatz ∈ X, it is enough to prove thatz�� ∈ G .0;C/. So letc;d ∈ �
with c 6 d. Now we wish to show thatz.c/ 6 z.d/. Sincez ∈ A .B;M /, we
know thatz�� ∈ G .0′;C/. So we can assume thatc 6C d. There exists a subset
{cn | n ∈ N} ∪ {dn | n ∈ N} of � such thatc C cn anddn C d andcn 6 dn 6 cn+1,
for all n ∈ N. We havexi �� ∈ G .0;C/, for eachi ∈ {1; : : : ; k}. As C is finite,
there aren;m ∈ N, with n < m, such thatxi .cn/ = xi .cm/, for all i ∈ {1; : : : ; k}.
Sincecn 6 dn 6 cm, we getxi .cn/ = xi .dn/, for all i ∈ {1; : : : ; k}, and therefore
z.cn/ = z.dn/. As z�� ∈ G .0′;C/, with c C cn and dn C d, it follows that
z.c/ 6 z.cn/ = z.dn/ 6 z.d/. Thus z ∈ X, whenceX is a closed substructure
of D.B/.

Now let M be a unary algebra on the set{0;1;2}. In order to apply Lemma4.2,
we shall give a method for constructing algebras in the quasi-varietyA := ISP.M /

using ordered sets.
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DEFINITION 4.3. Let M be a unary algebra on the set{0;1;2}, let P = 〈P;6〉 be
an ordered set and letC be a subset of6. Define the setP+ := P

:∪ {>;⊥}. For all
a;b ∈ P such thata C b, define

_
ab ∈ M P+ by

_
ab.⊥/ = 2,

_
ab.>/ = 1 and

_
ab.c/ =


2 if c6 a;

0 if c6 b andc
 a;

1 otherwise,

for all c ∈ P. Define the algebra
_
PC := sgM P+

({_ab | a;b ∈ P anda C b}). If the
relationC on P is reflexive, we can define the injection�P : P→ _

PC by �P.a/ :=_aa.
If C is equal to6, then we write

_
P instead of

_
PC.

The following lemma describes the structure of
_
PC under some special conditions

onC andM . For each setSand eacha ∈ {0;1;2}S, define the partition

P.a/ := {a−1.0/;a−1.1/;a−1.2/}\{?}

of S. For every algebraA 6 M S, the setA↓2 := {a ∈ A | |P.a/| 6 2} is a
subuniverse ofA.

LEMMA 4.4. Let M be a unary algebra with type.2/Q. Let P = 〈P;6〉 be an
ordered set, letC be a reflexive subset of6 and defineA :=_PC.

.i/ ThensgA.
_
ab/\{_ab;021.

_
ab/} ⊆ sgA.{_aa;

_
bb}/, for all a;b ∈ P with a C b.

.ii/ The set of petals ofA↓2 is {sgA.
_aa/ | a ∈ P}.

PROOF. Let a;b ∈ P such thata C b. For all unary term functionsu1 andu2 of M ,
with ker.u1/ = {02|1} and ker.u2/ = {01|2}, we haveu1.

_
ab/ = u1.

_
bb/ andu2.

_
ab/ =

u2.
_aa/. Using Lemma3.2, it follows that sgA.

_
ab/\{_ab;021.

_
ab/} ⊆ sgA.{_aa;

_
bb}/.

So claim (i) holds andA↓2 =⋃{sgA.
_aa/ | a ∈ P}.

To prove (ii), it is enough to show that sgA.
_aa/ ∩ sgA.

_
bb/ = CA, for all a;b ∈ P

with a 6= b. Assume thatu._aa/ = v._bb/, for somea;b ∈ P with a 6= b and some
unary term functionsu andv of M . Since the two-block partitionsP._aa/ andP.

_
bb/

of P+ are different, we haveu._aa/ ∈ {̂0; 1̂; 2̂}. But_aa ∈ {1;2}P+ andM does not
have any unary term functions with kernel{0|12}. Sou is a constant term function
of M , which implies thatu._aa/ ∈ CA.

To illustrate Lemma4.4, we consider a particular example.

EXAMPLE 4.5. Let M be a unary algebra with type.2/Q. Define the three-element
chain P = 〈{a;b; c};6〉, such thata 6 b 6 c, and define the ordered setP′ =
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P

b a
b b
b c

P′

ba

b c
b b

A := _
PC ��
��

CA

m mr _ac r _bc

r
_cc

r_
bb

r_aa

?

s

?

+

FIGURE1. Example4.5

〈{a;b; c};C〉, such thatC = 6\{.a;b/}. Denote each elementx ∈ M P+ by the
5-tuple.x.⊥/; x.a/; x.b/; x.c/; x.>//. Then

_ac = .2;2;0;0;1/; _
bc = .2;2;2;0;1/;

_aa = .2;2;1;1;1/; _cc = .2;2;2;2;1/; _
bb = .2;2;2;1;1/:

The structure of the algebraA := _PC is shown in Figure1. The three petals ofA↓2
aresgA.

_aa/, sgA.
_
bb/ andsgA.

_cc/.

The following lemma shows that the algebra
_
PC and the graph〈P;C〉are intimately

connected. Define the two-element chain2 = 〈{1;2};6〉 such that 16 2. For each
setSands ∈ S, let³s : M S→ M denote thesth projection function.

LEMMA 4.6. Let M be a unary algebra with type.2/Q and defineA := ISP.M /.
Let P = 〈P;6〉 be an ordered set, letC be a reflexive subset of6 and define
P′ = 〈P;C〉.
.i/ For all x ∈ A ._PC;M/ anda;b ∈ P such thata C b, we havex.

_
ab/ = 2 if

and only if x._aa/ = 2, andx.
_
ab/ = 1 if and only if x.

_
bb/ = 1.

.ii/ The map− ◦ �P : A ._PC;M /→ G .P′;2/ is a well-defined bijection.

PROOF. As M has type.2/Q, there arep;q ∈ M , with p 6= q, such that bothppq
and qpq are term functions ofM . DefineA := _

PC. For all x ∈ A .A;M/ and
a;b ∈ P with a C b, we have

x.
_
ab/ = 2 ⇐⇒ ppq.x.

_
ab// = q ⇐⇒ x.ppq.

_
ab// = q

⇐⇒ x.ppq._aa// = q ⇐⇒ ppq.x._aa// = q

⇐⇒ x._aa/ = 2

and, similarly,x.
_
ab/ = 1 if and only if x.

_
bb/ = 1. So (i) holds.
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We want to define the map� : A .A;M/ → G .P′;2/ by �.x/ := x ◦ �P. To see
that this will work, letx ∈ A .A;M /. For eacha ∈ P, we have

ppq.x._aa// = x.ppq._aa// = x.qpq._aa// = qpq.x._aa//;

which implies thatx._aa/ ∈ {1;2}. Thereforex ◦ �P.P/ ⊆ {1;2}. For all a;b ∈ P
such thata C b andx._aa/ = 2, we havex.

_
ab/ = 2 and thereforex.

_
bb/ = 2, by (i).

Thusx ◦ �P ∈ G .P′;2/ and� is well defined.
Let x; y ∈ A .A;M / such that�.x/ = �.y/ and leta;b ∈ P with a C b. Then

x.
_
ab/ = 2 ⇐⇒ x._aa/ = 2 ⇐⇒ y._aa/ = 2 ⇐⇒ y.

_
ab/ = 2;

by (i), and, similarly,x.
_
ab/ = 1 if and only if y.

_
ab/ = 1. So x = y and� is

one-to-one.
It remains to show that� is onto. Letz ∈ G .P′;2/. By Lemma4.4 (ii), there is a

homomorphismz∗ : A↓2→ M , given by

z∗ :=
⊔
{³>�sgA.

_aa / | a ∈ z−1.1/} t
⊔
{³⊥�sgA.

_aa / | a ∈ z−1.2/};
such thatz∗ ◦ �P = z. We will show thatz∗ extends to a homomorphismz : A →
M . Let a;b ∈ P such thata 6= b and a C b. We want to findc ∈ P+ with
z∗�sgA .{_aa ;_bb }/ = ³c�sgA .{_aa ;_bb }/. We will then definez.

_
ab/ := _ab.c/ and, if 021 is

a term function ofM , we will definez.021.
_
ab// := 021.

_
ab/.c/. It will follow by

Lemma4.4(i) that z∗ extends toA.
We can assume thatz.a/ 6= z.b/. Thereforez.a/ = 1 andz.b/ = 2, asz.a/ 6 z.b/.

We havez∗._aa/ = ³>._aa/ = 1=_aa.b/ andz∗.
_
bb/ = ³⊥._bb/ = 2=_bb.b/, which

implies thatz∗�sgA.{_aa ;_bb }/ = ³b�sgA .{_aa ;_bb }/. Thus� is a bijection.

THEOREM 4.7. Let M be a unary algebra with type.2/Q. ThenM is not strongly
dualisable.

PROOF. DefineA := ISP.M /. Using Lemma4.1 and Definition4.3, we have
algebras

_
0C 6

_
0 inA and an injection�0 : � →_

�C. By Lemma4.6(ii), the maps
−◦ �0 : A ._0 ;M/→ G .0;2/ and−◦ �0 : A ._0C;M/→ G .0′;2/ are well-defined
bijections. It follows by Lemma4.2(ii) that M is not strongly dualisable.

The algebraM ] = 〈{0;1;2}; F ]〉, defined near the beginning of Section 3, has
type.2/Q. Every two-kernel algebra, with kernels{01|2} and{02|1}, is a reduct ofM ].
We will useM ] to prove that none of the algebras of type.2/C are strongly dualisable.

LEMMA 4.8. Let M be a unary algebra with type.2/C. Let A be an algebra in
A ] := ISP.M ]/ and letA[ be the reduct ofA in A := ISP.M /. ThenA .A[;M / =
A ].A;M ]/.
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PROOF. We begin by proving that the only homomorphisms fromM2 to M are the
two projections. Letx : M 2→ M be a homomorphism. Thenx.0;1/ ∈ {0;1}, since
x preserves 010= 101◦ 101. First assume thatx.0;1/ = 1. In M2, we have

.0;1/
101←→ .1;0/

101←− .2;1/
220−→ .0;2/

220←→ .2;0/
220←− .1;2/:

Applying the homomorphismx gives us

1
101←→ 0

101←− 1
220−→ 2

220←→ 0
220←− 2

in M . The constant operations 000, 111 and 222 are all term functions ofM . So it
follows thatx = ³2. Now assume thatx.0;1/ = 0. Thenx.1;0/ = 101.x.0;1// = 1
and, by symmetry, we havex = ³1.

We can assume thatA 6 .M ]/S, for some non-empty setS. Let a ∈ A such that
P.a/ has two blocks. Then sgA.a/ = {b ∈ M S |P.b/ =P.a/ orP.b/ = {S}}, as
every map inF ] is an operation ofM ]. LetsgA.a/

[ denote the reduct ofsgA.a/ inA .
It now follows thatsgA.a/

[ is isomorphic toM 2, via repetition of coordinates. Since
the only homomorphisms fromM 2 to M are the projections, every homomorphism
from sgA.a/

[ to M is the restriction of a projection.
Now let y ∈ A .A[;M / and leta ∈ A. To prove thaty ∈ A ].A;M ]/, it suffices to

show thaty�sgA.a/
is the restriction of a projection. The constant maps 000, 111 and

222 are all term functions ofM . So, if a ∈ {̂0; 1̂; 2̂}, theny�sgA.a/
is the restriction of

a projection. Ifa ∈ A↓2\{̂0; 1̂; 2̂}, thenP.a/ has two blocks and so we know that
y�sgA.a/

is the restriction of a projection. Therefore we can assume thata ∈ A\A↓2.
For eachm ∈ {1;2}, definePm := sgA. fm.a//. Then sgA.a/ = P1∪ P2∪{a;021.a/}.
Since|P.a/| = 3, we can choose somes ∈ a−1.y.a//. For eachm ∈ {1;2}, we have
y. fm.a// = fm.y.a// = fm.a.s// and soy�Pm

= ³s�Pm
, asy�Pm

is the restriction of
a projection and all the elements ofPm\{̂0; 1̂; 2̂} determine the same partition ofS.
For eachm ∈ {1;2}, we have fm ◦ 021.a/ ∈ P1 ∪ P2 and so fm.y.021.a/// =
y. fm.021.a/// = fm.021.a.s///. Thereforey.021.a// = 021.a.s//, since f1 and f2

separateM . We have shown thaty�sgA.a/
= ³s�sgA.a/

, whencey ∈ A ].A;M ]/.

THEOREM 4.9. Let M be a unary algebra with type.2/C. ThenM is not strongly
dualisable.

PROOF. DefineA := ISP.M / andA ] := ISP.M ]/. Using Lemma4.1 and
Definition 4.3, we have

_
0C 6

_
0 in A ] and an injection�0 : � → _

�C. The maps
− ◦ �0 : A ].

_
0 ;M ]/ → G .0;2/ and− ◦ �0 : A ].

_
0C;M

]/ → G .0′;2/ are well-
defined bijections, by Lemma4.6(ii). Let

_
0 [ and

_
0 [
C

denote the reducts of
_
0 and

_
0C in the quasi-varietyA . Then, by Lemma4.8, the maps− ◦ �0 : A ._0 [;M/→
G .0;2/ and− ◦ �0 : A ._0 [

C
;M /→ G .0′;2/ are bijections. So Lemma4.2(ii) tells

us thatM is not strongly dualisable.
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We have now finished establishing the classification of strongly dualisable three-
element unary algebras given in the introduction. Part (i) of the characterisation
follows from Theorem2.6. It is shown in [4] that each unary algebra with type.2/P
is not dualisable. So part (ii) of the characterisation follows from Theorems3.4, 3.8,
3.10, 4.7and4.9. The three-kernel three-element unary algebras are shown to be not
dualisable, and therefore not strongly dualisable, in [4].

LEMMA 4.10. LetM be a unary algebra with type.2/Q or type.2/C. ThenM is not
n-quasi-injective, for alln ∈ N.

PROOF. First assume thatM has type.2/Q. Let n ∈ N and definek := 2n+ 1. Let
D = 〈{0; : : : ; k};6〉 be a.k+1/-element chain with 06 · · · 6 k. Define the relations
J := {.i; i / | i ∈ D} ∪ {.i; i + 1/ | i ∈ D\{k}} andC := J\{.n;n + 1/} on D.
Using Definition4.3, we can defineA :=_DJ andC := _DC, whereC is a subalgebra
of A. By Lemma4.4(ii), the coproductB := sgA.

_
00/ ∗ sgA.

_
kk/ is also a subalgebra

of A. Define the homomorphismx : B → M by x := ³⊥�sgA .
_00 / t ³>�sgA.

_kk /.
Thenx ◦ �D.0/ = x.

_
00/ = 2 andx ◦ �D.k/ = x.

_
kk/ = 1. To prove thatM is not

n-quasi-injective, we shall show thatx extends tonA.B/ but not toA.
The mapx ◦ �D�{0;k} : {0; k} → {1;2} does not extend to a morphism from〈D;J〉

to 2. So, by Lemma4.6 (ii), the homomorphismx : B → M does not extend toA.
There is an extensiony : 〈D;C〉 → 2 of x ◦ �D�{0;k}. Using Lemma4.6 (ii) again,
there is a homomorphismy : C→ M such thaty ◦ �D = y. We havey.

_
00/ = x.

_
00/

andy.
_
kk/ = x.

_
kk/. So y is an extension ofx. We have shown thatx extends toC

but not toA. It remains to prove thatnA.B/ ⊆ C.
Define n′ := n + 1. ThenA\C ⊆ {_nn′;021._nn′/}, by Lemma4.4 (i). Using

Figure2 and Lemma4.4, the reader can check thatdA.a;b/ > n+ 1, for all a ∈ A\C
andb ∈ B\CA . ThusnA.B/ ⊆ C, whenceM is notn-quasi-injective.

Now assume thatM has type.2/C and letn ∈ N. We have just shown thatM ] is
not n-quasi-injective. So there are finite algebrasB 6 A in ISP.M ]/ for which there
is a homomorphismx : B→ M ] that extends tonA.B/ but not toA. Let A[ denote
the reduct ofA in ISP.M /. The algebrasM andM] have the same constant term
functions. SoCA[ = CA. It follows thatnA[.B/ ⊆ nA.B/. Thusx extends tonA[ .B/
but not toA[, using Lemma4.8.

The Quasi-injectivity Theorem, given in the introduction, now follows from Lem-
ma2.7, Theorem3.4, Lemma3.7, Lemma3.9and Lemma4.10.

5. Dualisable three-element unary algebras that are not fully dualisable

In this section, we prove that each unary algebra with type.2/Q or type.2/C is not
fully dualisable. It will then follow that every fully dualisable three-element unary
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algebra is strongly dualisable. Our proof is an extension of that given by Hyndman and
Willard [7] to show that the unary algebra〈{0;1;2}; 001;122〉 is not fully dualisable.
The proof in [7] used the fact that both the operations 001 and 122 preserve the total
order with 06 16 2. Our proof is more complicated since it must work, in particular,
for the algebraM ], and there is no total order on{0;1;2} that is preserved by every
operation inF ].

A full duality for a quasi-varietyA := ISP.M / is more subtle than either a duality
or a strong duality. At the moment, we have no reason to believe that, ifM∼ is a
structure that yields a full duality onA , then every extension ofM∼ , via algebraic
relations, also yields a full duality onA . However, there are some relations that can
always be added to a structureM∼ without destroying a full duality. The following
lemma is proved in [7], by Hyndman and Willard.

Let n ∈ N and consider ann-ary algebraic relationr on M . Then r is the
underlying set of a subalgebrar of M n. The relationr is said to bebalancedif
A .r ;M/ = {³i �r | i ∈ {1; : : : ;n}}, and³i �r 6= ³ j �r , for all i; j ∈ {1; : : : ;n} with
i 6= j .

LEMMA 5.1. [7, Lemma 4.7] Let M be a finite algebra and assume that the
structureM∼ = 〈M ; G; H; R;T 〉 yields a full duality onISP.M /. Letr be a balanced
algebraic relation onM . ThenM∼

′ := 〈M ; G; H; R∪{r };T 〉 also yields a full duality
on ISP.M /.

Now assume thatM is a unary algebra of type.2/Q or type.2/C. Let4 denote the
order on{0;1;2} with 14 04 2. We will define some algebraic relations onM . The
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definitions of these relations will depend on the type ofM . If M has type.2/Q, then
we define the algebraic relations onM by

4n := sgMn

({a ∈ Mn | 1= a.1/ 4 · · · 4 a.n/ = 2});
for all n ∈ N\{1}, and

FG := sgM6

({a ∈ M6 | 1= a.1/ 4 · · · 4 a.6/ = 2}\{.1;1;0;0;2;2/}):
If M has type.2/C but not type.2/Q, then, sinceM is a reduct ofM ], we can define
the algebraic relations onM by

4n := sg.M ]/n

({a ∈ Mn | 1= a.1/ 4 · · · 4 a.n/ = 2});
for all n ∈ N\{1}, and

FG := sg.M ]/6

({a ∈ M6 | 1= a.1/ 4 · · · 4 a.6/ = 2}\{.1;1;0;0;2;2/}):
The relations44 andFG will play an important role in our proof thatM is not fully
dualisable.

LEMMA 5.2. Let M be a unary algebra with type.2/Q or type.2/C. The relations
44 andFG onM are balanced.

PROOF. First assume thatM has type.2/Q and defineA := ISP.M /. Define the
three-element chainC = 〈{0;1;2};6〉 such that 06 1 6 2. Using Definition4.3, we
have

_
C = sgM C+

({a ∈ MC+ | 1= a.>/ 4 a.2/ 4 a.1/ 4 a.0/ = a.⊥/ = 2}):
So
_
C is isomorphic to the algebra444 4. By Lemma4.6 (ii), we have|A .444 4;M /| =

|A ._C ;M /| = |G .C;2/| = 4 and therefore44 is balanced.
Define the five-element chainD = 〈{0;1;2;3;4};6〉 with 0 6 · · · 6 4. Define

the graphD′ = 〈D;C〉, whereC := 6\{.1;3/}. Write each elementa ∈ M D+ as the
7-tuple.a.>/;a.4/; : : : ;a.0/;a.⊥//. Then

_
DC = sgM D+

({a ∈ M D+ | 1= a.>/ 4 a.4/ 4 · · · 4 a.0/ = a.⊥/ = 2}\
{.1;1;0;0;2;2;2/});

and
_
DC is isomorphic to the algebraFG. Using Lemma4.6 (ii), this implies that

|A .FG;M/| = |A ._DC;M/| = |G .D′;2/| = 6. ThusFG is balanced.
Now assume thatM has type.2/C but not type.2/Q. The relations44 andFG,

defined onM , are algebraic onM ]. We have just shown that44 andFG are balanced
onM ]. So44 andFG are balanced onM , by Lemma4.8.



212 J. G. Pitkethly [26]

We will work with the relations4n, for eachn ∈ N\{1}, andFG using the properties
given in the following lemma.

LEMMA 5.3. LetM be a unary algebra of type.2/Q or type.2/C. Letm;n ∈ N\{1}
and leta1; : : : ;an ∈ {0;1;2}.
.i/ Let i; j; k ∈ {1; : : : ;n} such thati 6 j 6 k. If ai = ak and ai 6= aj , then

.a1; : : : ;an/ =∈ 4n and.a1; : : : ;an/ =∈ FG.
.ii/ Let ¦ : {1; : : : ;m} → {1; : : : ;n} such that¦.1/ = 1, ¦.m/ = n and ¦

preserves the natural order. If.a1; : : : ;an/ ∈ 4n, then.a¦ .1/; : : : ;a¦ .m// ∈ 4m.
.iii / We have46\FG ⊆ {.1;1;0;0;2;2/; .2;2;0;0;1;1/} ⊆ M 6\FG.

PROOF. The three claims follow from the definitions, since all the unary term
functions ofM belong to the setF ].

Assume thatM has type.2/Q. The algebras
_
0 and

_
0C in A := ISP.M / are

given by Lemma4.1and Definition4.3 in the previous section. LetM∼ be an alter ego
of M that has44 andFG in its type. By Lemma4.2 (i) and Lemma4.6 (ii), we know
that X := {x�_� C | x ∈ A ._0 ;M /} determines a closed substructureX of M∼

_� C .
To show thatM∼ does not yield a full duality onA , we shall prove, via a sequence of
technical lemmas, thatX is not isomorphic to the dual of any algebra inA .

Now assume thatM has type.2/Q or type.2/C. We will associate a graph with
each algebra inISP.M /. Let A 6 M S, for some non-empty setS. Recall that
A↓2 := {a ∈ A | |P.a/| 6 2} determines a subalgebra ofA, where we define the
partitionP.a/ := {a−1.0/;a−1.1/;a−1.2/}\{?} of S, for eacha ∈ A. For each
two-block partitionQ of S, we define thesubuniverse ofA↓2 determined byQ to be

AQ :=
{
a ∈ A

∣∣P.a/ = Q orP.a/ = {S}}:
Define the set

PA :=
{

AQ
∣∣ Q =P.a/ for somea ∈ A↓2\{̂0; 1̂; 2̂}

}
:

ThenPA contains all the partition-determinedsubuniverses ofA↓2 that do not lie in the
set{̂0; 1̂; 2̂}. There are unary term functionsu1 andu2 of M such that ker.u1/ = {02|1}
and ker.u2/ = {01|2}. Let t ∈ S and define the reflexive binary relation−→t A on
PA such thatP −→t A Q if and only if P = Q or there existsa ∈ A\A↓2 and
{m; m̃} = {1;2} with um.a/ ∈ P, um̃.a/ ∈ Q anda.t/ = m. The definition of−→t A

is independent of our choice ofu1 andu2. Let −→→t A denote the transitive closure
of −→t A. Then−→→t A is a quasi-order onPA. To illustrate the definition of−→t A, we
revisit the algebra constructed in Example4.5.

EXAMPLE 5.4. Let M be a unary algebra with type.2/Q. Define the ordered set
P′ and the algebraA := _

PC as in Example4.5. We shall show that〈PA;−→⊥ A〉
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is isomorphic toP′. Let u1 and u2 be unary term functions ofM with ker.u1/ =
{02|1} and ker.u2/ = {01|2}. The partitionsP._aa/,P.

_
bb/ andP._cc/ of P+ are

distinct. So, using Lemma4.4(ii), we havePA = {sgA.
_aa/; sgA.

_
bb/; sgA.

_cc/}. By
Lemma4.4(i), we get

A\A↓2 ⊆ {_ac;
_
bc;021._ac/;021.

_
bc/}:

Now _ac.⊥/ = 2, with u2.
_ac/ = u2.

_aa/ ∈ sgA.
_aa/ and u1.

_ac/ = u1.
_cc/ ∈

sgA.
_cc/, which implies that sgA.

_aa/ −→⊥ A sgA.
_cc/. If 021 is a term function ofM ,

then we have 021._ac/.⊥/ = 1, with u1.021._ac// ∈ sgA.
_aa/ andu2.021._ac// ∈

sgA.
_cc/, which also implies that sgA.

_aa/ −→⊥ A sgA.
_cc/. Similarly, using

_
bc and

021.
_
bc/, we have sgA.

_
bb/ −→⊥ A sgA.

_cc/. So there is an isomorphism# : 〈P;C〉 →
〈PA;−→⊥ A〉 given by#.x/ = sgA.

_xx/.

Now defineIt.A/ to be the set of all−→t A-increasing subsets ofPA.

LEMMA 5.5. Let M be a unary algebra of type.2/Q or type.2/C, and define the
quasi-varietyA := ISP.M /. LetA 6 M S, withPA 6= ?, and lets; t ∈ S. Assume
that x�P = ³s�P or x�P = ³t�P, for all x ∈ A .A;M/ and all P ∈PA. Then the map
� : A .A;M /→ It.A/, given by�.x/ := {P ∈PA | x�P = ³t�P}, is a well-defined
bijection.

PROOF. There are unary term functionsu1 and u2 of M with ker.u1/ = {02|1}
and ker.u2/ = {01|2}. To see that� is well defined, letx ∈ A .A;M / and choose
P;Q ∈ PA, with P 6= Q, such thatP ∈ �.x/ and P −→t A Q. We want to show
that Q ∈ �.x/. As P −→t A Q, there is somea ∈ A\A↓2 and {m; m̃} = {1;2}
such thatum.a/ ∈ P, um̃.a/ ∈ Q and a.t/ = m. We must haveum.x.a// =
x.um.a// = um.a.t// = um.m/, sincex�P = ³t�P. Thereforex.a/ = m = a.t/
and x.um̃.a// = um̃.x.a// = um̃.a.t//. SinceP.um̃.a// has two blocks, we have
³s.um̃.a// 6= ³t.um̃.a// and thereforex�Q = ³t�Q. Thus�.x/ ∈ It.A/ and� is well
defined.

To show that� is a bijection, letZ ∈ It.A/. As {P\{̂0; 1̂; 2̂} | P ∈PA} forms a
partition of A↓2\{̂0; 1̂; 2̂}, we can define the homomorphismx : A↓2→ M by

x :=
⋃
{³t�P | P ∈ Z} ∪

⋃
{³s�P | P ∈PA\Z}:

We want to prove thatx has a unique extensionx : A → M . Let a ∈ A\A↓2 and let
Qm be the subuniverse ofA↓2 determined byP.um.a//, for eachm ∈ {1;2}. Then
sgA.a/ ⊆ Q1∪Q2∪{a;021.a/}, since every unary term function ofM belongs toF ].
We want to find somer ∈ S such thatx�Q1∪Q2

= ³r �Q1∪Q2
. We shall then define

x.a/ := a.r / and, if 021.a/ ∈ A, we shall definex.021.a// := 021.a/.r /. It will
follow that x extends toA.
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For eachm ∈ {1;2}, we haveum.a.s// = ³s.um.a// 6= ³t .um.a// = um.a.t//.
This implies that{a.s/;a.t/} = {1;2}. Now definem := a.t/ andm̃ := a.s/. Then
Qm −→t A Qm̃. We can assume thatQm̃ ∈ Z andQm =∈ Z. Choose somer ∈ a−1.0/.
We have

um.a.s// = um.m̃/ = um.a.r // and um̃.a.t// = um̃.m/ = um̃.a.r //:

The elements ofQm\{̂0; 1̂; 2̂} all determine the same partition ofS. So x�Qm
=

³s�Qm
= ³r �Qm

and, similarly,x�Qm̃
= ³t�Qm̃

= ³r �Qm̃
. Thus x extends to a ho-

momorphismx ∈ A .A;M/. Since³s�P 6= ³t�P, for all P ∈ PA, we must have
�.x/ = Z.

Let y : A → M be an extension ofx. For alla ∈ A\A↓2 andm ∈ {1;2}, we have

x.a/ = m ⇐⇒ um.x.a// = um.m/ ⇐⇒ x.um.a// = um.m/

⇐⇒ y.um.a// = um.m/ ⇐⇒ um.y.a// = um.m/

⇐⇒ y.a/ = m:

Sox is the unique extension ofx to A. It follows that� is a bijection.

We say that the algebraA 6 M S is locally balancedif x�B is the restriction of a
projection, for each homomorphismx : A → M and each finite subsetB of A. For
all B 6 M S ands ∈ S, define the homomorphism²s : B→ M by ²s := ³s�B.

LEMMA 5.6. Let M be a unary algebra of type.2/Q or type .2/C, and define
A := ISP.M /. Let B 6 A 6 M S such thatA↓2 = B↓2 andA is locally balanced.
Define the setX := {x�B | x ∈ A .A;M /} and lets; t ∈ S. Assume that the relation

6 := {.x; y/ ∈ X2 | .²s; x; y; ²t/ ∈ 44}

on X is reflexive.

.i/ For all x ∈ X and P ∈PA, we havex�P = ³s�P or x�P = ³t�P.
.ii/ There is a well-defined order-isomorphism� : 〈X;6〉 → 〈It.A/;⊆〉 given by

�.x/ := {P ∈PA | x�P = ³t�P}.
.iii / For all n ∈ N and all x1; : : : ; xn ∈ X such thatx1 6 · · · 6 xn, we have
.²s; x1; : : : ; xn; ²t/ ∈ 4n+2.

PROOF. There are unary term functionsu1 andu2 of M with ker.u1/ = {02|1} and
ker.u2/ = {01|2}. We must havePA =PB, sinceA↓2 = B↓2. To prove (i), letx ∈ X
andP ∈PA. There is somea ∈ P such that|P.a/| = 2. The relation6 is reflexive,
so .²s; x; x; ²t/.a/ ∈ 44. SinceA is locally balanced, the mapx�P is the restriction
of a projection. Therefore|{x.a/;a.s/;a.t/}| 6 2. By Lemma5.3 (i), this implies
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thatx.a/ = a.s/ or x.a/ = a.t/. Since all the elements ofP\{̂0; 1̂; 2̂} determine the
same partition ofS, we must havex�P = ³s�P or x�P = ³t�P. Thus (i) holds and the
map�, given in (ii), is a well-defined bijection, by Lemma5.5. (Note that� is still a
bijection even ifPA = ? and we cannot use Lemma5.5, as the algebraA is locally
balanced.)

We now want to show that� is an isomorphism. Letx; y ∈ X and assume that
x 6 y. To see that�.x/ ⊆ �.y/, let P ∈ �.x/. There is somea ∈ P such
that |P.a/| = 2. We have.²s; ²t; y; ²t/.a/ = .²s; x; y; ²t/.a/ ∈ 44 and therefore
y.a/ = a.t/, by Lemma5.3(i). Thus P ∈ �.y/, which implies that�.x/ ⊆ �.y/.

Now assume�.x/ ⊆ �.y/ and letb ∈ B. We will show thatb.s/ = x.b/ or
x.b/ = y.b/ or y.b/ = b.t/. It will then follow that .²s; x; y; ²t/.b/ ∈ 44, since
.²s; y; y; ²t/; .²s; x; x; ²t/ ∈ 44 and therefore.²s; ²s; y; ²t/; .²s; x; ²t; ²t/ ∈ 44,
by Lemma5.3 (ii). Assume thatb.s/ 6= x.b/ and y.b/ 6= b.t/. There is some
m ∈ {1;2} such thatum.x.b// 6= um.b.s//. Define Qm to be the subuniverse of
A↓2 determined byP.um.b//. Thenx�Qm

= ³t�Qm
, by (i). As �.x/ ⊆ �.y/, this

implies thaty�Qm
= ³t�Qm

and thereforeum.y.b// = um.b.t// = um.x.b//. Define
m̃ := 021.m/ and letQm̃ denote the subuniverse ofA↓2 determined byP.um̃.b//.
We must haveum̃.y.b// 6= um̃.b.t//, sincey.b/ 6= b.t/. Now �.x/ ⊆ �.y/ implies
that x�Qm̃

= ³s�Qm̃
= y�Qm̃

, and thereforeum̃.x.b// = um̃.b.s// = um̃.y.b//. So
x.b/ = y.b/, asu1 andu2 separateM . Thusx 6 y. We have proven that� is an
isomorphism, and so (ii) holds.

To prove (iii), letn ∈ N andx1; : : : ; xn ∈ X with x1 6 · · · 6 xn. Let b ∈ B. We
will show that there arej; k ∈ {1; : : : ;n}, with j 6 k, such that

xi .b/ =


²s.b/ if i < j ;

xj .b/ if j 6 i 6 k;

²t.b/ if k < i ,

for all i ∈ {1; : : : ;n}. As6 is reflexive, it will then follow, by Lemma5.3 (ii), that
.²s; x1; : : : ; xn; ²t/.b/ ∈ 4n+2. Let i ∈ {1; : : : ;n}. If i 6= n andxi .b/ = ²t.b/, then
.²s; ²t; xi+1; ²t /.b/ = .²s; xi ; xi+1; ²t/.b/ ∈ 44 and thereforexi+1.b/ = ²t.b/, by
Lemma5.3(i). Similarly, if i 6= 1 andxi .b/ = ²s.b/, thenxi−1.b/ = ²s.b/. Since the
algebraA is locally balanced, we know that|{x.b/ | x ∈ X}| 6 3. Thus (iii) holds.

For each ordered set〈X;6〉, defineL6.X/ to be the set of allx ∈ X that have a
unique lower coverx↓ in 〈X;6〉.

LEMMA 5.7. Let M be a unary algebra of type.2/Q or type .2/C, and define
A := ISP.M /. Let B 6 A 6 M S such thatA↓2 = B↓2 andA is locally balanced.
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Define the setX := {x�B | x ∈ A .A;M /} and lets; t ∈ S. Assume that

6 := {.x; y/ ∈ X2 | .²s; x; y; ²t/ ∈ 44}

is an order onX and define

>∗ := {.x; y/ ∈L6.X/
2 | x > y and.²s; y↓; y; x↓; x; ²t/ =∈ FG}:

Then the structures〈L6.X/;>∗ ;>〉 and〈PA;−→t B;−→→t A〉 are isomorphic.

PROOF. There are unary term functionsu1 andu2 of M with ker.u1/ = {02|1} and
ker.u2/ = {01|2}. We must havePA = PB, since A↓2 = B↓2. Lemma5.6 tells
us thatx�P = ³s�P or x�P = ³t�P, for all x ∈ X and P ∈ PA, and also that the
map� : 〈X;6〉 → 〈It.A/;⊆〉, given by�.x/ := {P ∈ PA | x�P = ³t�P}, is an
order-isomorphism.

For eachP ∈PA, define the−→t A-increasing subset

ZP := {Q ∈PA | P −→→t A Q}

ofPA. ThenL⊆.It.A// = {ZP | P ∈PA} and so we can define� :PA → L6.X/
by �.P/ := �−1.ZP/. Since� is an isomorphism, the map� is onto. To see that
� is one-to-one, suppose thatP;Q ∈ PA such thatP 6= Q and �.P/ = �.Q/.
Then ZP = ZQ. For all x ∈ X, we havex�P∪Q = ³s�P∪Q or x�P∪Q = ³t�P∪Q, as
�.x/ ∈ It.A/. This is a contradiction, sinceP andQ determine different partitions
of S. Thus� is a bijection.

We will show that� is an isomorphism between the structures〈PA;−→t B;−→→t A〉
and〈L6.X/;>∗ ;>〉. Let P;Q ∈ PA such thatP 6= Q. DefinexP := �.P/ and
xQ := �.Q/. Then

P −→→t A Q ⇐⇒ ZP ⊇ ZQ ⇐⇒ �−1.ZP/ > �−1.ZQ/ ⇐⇒ xP > xQ:

So−→→t A is an order onPA.
By Lemma5.3 (i), the relation>∗ onL6.X/ is reflexive. So it remains to prove

that P −→t B Q if and only if xP >
∗ xQ. First assume thatP −→t B Q. There is some

b ∈ B\B↓2 and{m; m̃} = {1;2} with um.b/ ∈ P, um̃.b/ ∈ Q andb.t/ = m. We have
x�Q = ³s�Q or x�Q = ³t�Q, for all x ∈ X. Soum̃.b.s// 6= um̃.b.t// = um̃.m/ and
thereforeb.s/ = m̃. Since−→→t A is an order onPA, we have�.x↓P/ = Z↓P = ZP\{P}
and�.x↓Q/ = Z↓Q = ZQ\{Q}. As P −→→t A Q, it follows that

um.x
↓
Q.b// = x↓Q.um.b// = um.b.s// = um.m̃/;

um̃.x
↓
Q.b// = x↓Q.um̃.b// = um̃.b.s// = um̃.m̃/;
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and, similarly,

um.xQ.b// = um.b.s// = um.0/; um̃.xQ.b// = um̃.b.t// = um̃.0/;

um.x
↓
P.b// = um.b.s// = um.0/; um̃.x

↓
P.b// = um̃.b.t// = um̃.0/;

um.xP.b// = um.b.t// = um.m/; um̃.xP.b// = um̃.b.t// = um̃.m/:

This implies that.²s; x↓Q; xQ; x↓P; xP; ²t /.b/ = .m̃; m̃;0;0;m;m/, sinceu1 and u2

separate the elements ofM . So.²s; x↓Q; xQ; x↓P; xP; ²t/ =∈ FG, by Lemma5.3(iii). As
P −→→t A Q and thereforexP > xQ, we have shown thatxP >

∗ xQ.
Now assume thatxP >

∗ xQ. Then x↓Q 6 xQ 6 x↓P 6 xP, which implies that
.²s; x↓Q; xQ; x↓P; xP; ²t/ ∈ 46, by Lemma5.6(iii). Since.²s; x↓Q; xQ; x↓P; xP; ²t/ =∈ FG,
there is someb ∈ B and {m; m̃} = {1;2} such that.²s; x↓Q; xQ; x↓P; xP; ²t /.b/ =
.m̃; m̃;0;0;m;m/, by Lemma5.3 (iii). As A is locally balanced, this implies that
b =∈ B↓2. We have

x↓P.um.b// = um.0/ = um.b.s//; x↓Q.um̃.b// = um̃.m̃/ = um̃.b.s//;

xP.um.b// = um.m/ = um.b.t//; xQ.um̃.b// = um̃.0/ = um̃.b.t//:

It follows that the subuniverse ofA↓2 determined byP.um.b// belongs toZP but
not to ZP\{P}. Thereforeum.b/ ∈ P and, similarly,um̃.b/ ∈ Q. ThusP −→t B Q,
whence� is an isomorphism.

The next lemma will complete the preparation for our proof that algebras with
type .2/Q or type.2/C are not fully dualisable. The algebras

_
0 and

_
0C come from

Lemma4.1and Definition4.3.

LEMMA 5.8. Let M be a unary algebra with type.2/Q and defineA := ISP.M /.
Then

_
0C 6

_
0 6 M � + such that.

_
� /↓2 = .

_
�C/↓2 and

_
0 is locally balanced.

Define the setX := {x�_� C | x ∈ A ._0 ;M/}. Then the relation

6 := {.x; y/ ∈ X2 | .²>; x; y; ²⊥/ ∈ 44}

on X is reflexive. The structures〈P_0 ;−→⊥ _0 C ;−→→⊥ _
0 〉 and 〈� ;C;6〉 are iso-

morphic.

PROOF. It follows by Lemma4.4 (ii) that .
_
� /↓2 = .

_
�C/↓2. To see that

_
0 is

locally balanced, letx ∈ A ._0 ;M / and letB ⊆ _� be finite. There is a finite subset
�0 of � such thatB ⊆ sg_0 .{_ab | a;b ∈ �0 anda 6 b}/. The mapx ◦ �0 : 0 → 2
is order preserving, by Lemma4.6 (ii). First assume thatx.

_
bb/ = 1, for all b ∈ �0.

By Lemma4.6 (i), we havex.
_
ab/ = 1, for all a;b ∈ �0 with a 6 b, and therefore



218 J. G. Pitkethly [32]

x�B = ³>�B. Now we can assume that there is a minimum elementc of �0 in 0 such
thatx._cc/ = 2. For alla;b ∈ �0 with a 6 b, we have

x.
_
ab/ =


2 if c6 a;

0 if a < c6 b;

1 if b < c,

=_ab.c/;

by Lemma4.6(i). Thusx�B = ³c�B and
_
0 is locally balanced.

For alla;b ∈ � with a C b and allx ∈ X, we have²>.
_
ab/ = 1 4 x.

_
ab/ 4 2 =

²⊥.
_
ab/ and therefore.²>; x; x; ²⊥/.

_
ab/ ∈ 44. So6 is reflexive. It is easy to check

that〈P_0 ;−→⊥ _0 C
;−→→⊥ _

0 〉 and〈� ;C;6〉 are isomorphic; see Example5.4.

An algebraA 6 M S is calledbalancedif A .A;M/ = {³s�A | s ∈ S}, and
³s�A 6= ³t�A, for all s; t ∈ S with s 6= t . It is easy to check that every algebra in
ISP.M / is isomorphic to a balanced algebra.

THEOREM 5.9. Let M be a unary algebra of type.2/Q or type.2/C. ThenM is not
fully dualisable.

PROOF. First assume thatM has type.2/Q. Suppose there is an alter egoM∼ of M
that yields a full duality onA := ISP.M /. By Lemma5.1and Lemma5.2, we can
assume that44 andFG are in the type ofM∼ . Using Lemma4.1 and Definition4.3,
there are algebras

_
0C and

_
0 in A . The setX := {x�_� C | x ∈ A ._0 ;M /} forms a

closed substructure ofM∼
_
� C , by Lemma4.2(i) and Lemma4.6(ii). SinceM∼ yields a

full duality onA , there is an isomorphism' : X → D.A/, for some balanced algebra
A 6 M S, with S a non-empty set.

As A is balanced, there exists; t ∈ S with '.²>/ = ²s and'.²⊥/ = ²t . By
Lemma5.6(ii) and Lemma5.8, the relation6 := {.x; y/ ∈ X2 | .²>; x; y; ²⊥/ ∈ 44}
is an order onX. Since' is an isomorphism and44 is in the type ofM∼ , we have

'.6/ = {.x; y/ ∈ A .A;M /2 | .²s; x; y; ²t/ ∈ 44}:
Define

>∗ := {.x; y/ ∈ L6.X/
2 | x > y and.²>; y↓; y; x↓; x; ²⊥/ =∈ FG}:

Then '.>∗/= {.x; y/∈L'.6/.A .A;M //2 | x '.>/ y and.²s; y↓; y; x↓; x; ²t/ =∈ FG}.
Using Lemma5.7twice and Lemma5.8, it follows that

〈PA;−→t A;−→→t A〉 ∼= 〈L'.6/.A .A;M //;'.>∗/; '.>/〉
∼= 〈L6.X/;>

∗ ;>〉
∼= 〈P_0 ;−→⊥ _0 C ;−→→⊥ _0 〉:
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So 〈PA;−→t A;−→→t A〉 is isomorphic to〈� ;C;6〉, by Lemma5.8. But this implies
that6 is the transitive closure ofC, which is a contradiction. ThusM is not fully
dualisable.

Now assume thatM has type.2/C but does not have type.2/Q. Recall that
M ] = 〈{0;1;2}; F ]〉. We can show thatM is not fully dualisable, using Lemma4.8,
by following the proof given above with the algebras

_
0 [
C

and
_
0 [ in A , which are

the reducts of the algebras
_
0C and

_
0 in ISP.M ]/.
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