J. Austral. Math. Soc73(2002), 171186

AVERAGE CO-ORDINATE ENTROPY

GENEVIEVE MORTISS
(Received 15 December 2000; revised 28 August 2001)

Communicated by A. H. Dooley

Abstract

A notion of entropy for the non-singular action of finite co-ordinate changeSXor: 72, Z2, i) is
introduced. This quantity—average co-ordinate or AC entropy—is calculated for product measures and
G-measures. It is shown that the type Ill classes can be subdivided using AC entropy. An equivalence
relation is established for which AC entropy is an invariant.

2000Mathematics subject classificatioprimary 28D20, 28A35.

1. Introduction

Let T be a measure preserving transformation on the spdce?, 1) anda be a
finite, measurable partition of. Then the entropy of with respecttax is given by
the formula

1 ©
h(T,a) = lim =H T
(T.e) = lim (\_/O a),

whereH (B) = =Y., n(B) log u(B) for g = {B}; a finite measurable partition
of X. The entropy ofT is defined a$i(T) = sup, (T, w).

Now the above limit must always exist far measure preserving, and further the
entropy of a transformation is invariant for metric isomorphism. Both these results
rely upon the factthatl (¢p~*a) = H («) for any measure preserving automorphigm
Obviously this is not necessarily true for a non-singglar

Attempts have been made to define a non-singular version of entropy. For example
in [12], an entropy is defined using the Krengel entropy of skew products. However
the resulting quantity is somewhat limited as it only takes the values zero and infinity.
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In this paper we formulate a new notion of entropy for a class of non-singular
dynamical systems which have been the subject of much recent interest—systems o
finite co-ordinate changes. This new quantity, which we will call average co-ordinate
or AC entropy may be regarded as a measure of the average uncertainty or randomne:
in the initial co-ordinates of a point € X = [, Z, as it is acted upon by the group

' ={y € X:3N e N such that, = 0forn > N}.

Our original motivation for examining such systems arose from their relative sim-
plicity. Having the same group acting on two spac¥s#, 1) and(X, 4, v) means
that we need only attend to the differences in their measures.

We begin with some notation before we give our definition of AC entropy. When
we write (X, ', ) we are denoting the system of finite co-ordinate changes that is
the action ofl" on (X, %, u). Herep is a probability measure oX = [, Z,
which is quasi-invariant and ergodic for the actionlaf For an elemenyy € T,
yx € X is defined by(yx), = y» + X, (mod 2. Let T, denote the subgroup
{y e :y=0forallk > nfandX,thesetfx e X : X, =X, =--- =X, = 0}.

Note that while we have chosen to work wixh= []*, Z,, we could easily extend
our work to coverX = [[2,Z, foranyp € N.

The real differences between two systems of finite co-ordinate changes lie in their
measures. Therefore we denote our new entropy,@§t) whereu is the measure
on the system under consideration.

For all partitionsg andn if & < n thenH () < H(n). If our new entropy is
to be similar in some respect to the standard form then we should be looking for
some kind of supremum over partitions. For this reason we define AC entropy using
Bn = {y X"}, cr, the finest cylinder set partition for fixede N.

DerINITION 1.1. For a system of finite co-ordinate chang&s T, 1) we define the
AC entropy by

1
hac(n) = n'L”cL n H(Bn)

where this exists. If this limit does not exist we say that the AC entropy «f
undefined.

Here the prefix AC stands for ‘average co-ordinate’, and will be used to distinguish
our new quantity from the standard metric entropy.

Note that our definition maintains the same basic entropy ratio as we find in the
metric entropy of a transformation acting era two set partition ofX. For fixedn,
the maximum number of non-trivial elements\i;‘]";olT*i (o) is 2, the same as the
number of elements if,.
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We provide formulae for the AC entropy for two important classes of measures—
namely Markov measures (a subclass of Brown and Doof@yseasures introduced
in [1]) and product measures. In the latter case AC entropy reduces to an extremely
simple expression. It is for this reason that much of our focus will be on product
measures, although in the longer term we hope to extend all our resGltat@asures.

We also give results relating to AC entropy and measure equivalence. It follows from
Kakutani's theorem that two equivalent product measures have the same AC entropy
While we cannot make the same statement for Markov measures generally, we are
able to produce such aresult for a special type of these measures which we have calle
Quas-Markov.

In Sectiord we show that AC entropy can be used to subdivide the type Il classes.
The AC entropy of a system, if it exists, lies in the interM@l1]. For each. € [0, 1]
there exist type Ill systems of all possible AC entropies.

Ultimately our aim in this work would be to prove a result analogous to Ornstein’s
isomorphism theorem using AC entropy as an invariant. To this end in Secti@n
define an equivalence relation which we shall call Initial Co-ordinate or IC equivalence.
Roughly speaking, two systeniX, I', ) and (X, T, v) are IC equivalent if there
exists a suitable map between them which preserves equality of initial co-ordinates
between two points. We give some examples of IC equivalences and show that two
IC equivalent systems have the same AC entropy. Further work may allow us to
define a class of systems within which AC entropy would be a complete invariant for
IC equivalence, as entropy is a complete invariant for isomorphism between finitely
determined systems.

Recently it has been discovered that the AC entropy of a system of finite co-
ordinate changesX, I', 1) is closely related to another invariant known as the
critical dimension associated with the odometer action¥nuw). The critical di-
mension (L0) quantifies the asymptotic growth rate of the Radon derivative sums
Z[‘;&dT*‘M(x)/dM and is an invariant for isomorphism of non-singular ergodic
transformations. The relationship between the AC entropy of a system, ) for
wu a product measure and the critical dimension of the associated odometer can b
appreciated by considering a Shannon-McMillan-Breiman type theorem in S€ction
By this theorem, the results of Sectidmave immediate implications for the study of
non-singular isomorphism classes.

2. Product measures
Letpu = @, ui be a product measure ofiwith

mi)=d+a)/2, w0 =>1A-4a)/2

wherea, € (—1,1). Then by an easy calculation we have:



174 Genevieve Mortiss (4]

ProOPOSITION2.1. For a product measure as described

n

-1 1+ g 1+ 1-—4 1-3

i=1

NoTE. Unless otherwise stated, all logs are taken to base 2.

This formula will feature in much of the remainder of this paper.
If uw=Q:=, m,v=Q:, v are two infinite product measures dh= [, Z»,
then by Kakutani’'s Theorem we can state the following fact:

ProOPOSITION2.2. If u andv are equivalent measures ofithenhac () = hac(v).

But of course it is not hard to see that there exist non-equivalent measures with the
same AC entropy.

ExamPLE. Let 4;(0) = a, uj = (1) = 1 — afori odd whilep; (0) = b, u;i (1) =
1 —bfori even wherea # b. Then takev;(0) = b, v;(1) = 1— b fori odd and
1;(0) =a, v (1) =1—afori even.

The above example leads us to consider invariance of AC entropy in permuted
measures. Thatis, if = . for what sort of permutations do we havenc(v) =
hac()? We can at least partly answer this question.

PROPOSITION2.3. Supposédiac (1) exists andr, a permutation ofN satisfies

0.

(1) im #or o (L,n) A n) _

n—o0 n

(Herer : (1, n) is the range ofr over (1, n).) Then ify; = p,q thenhac(v) exists
and equaldac(p).

Note that the set of permutationssatisfying () forms a subgroup under compo-
sition.

We include the following example to illustrate how the previous result may fail
without the limit condition onr.

ExampLE. Definepn = @2, 1 on X such that

1, fori odd;
1/2, fori even

H (i) ={

Sohac(u) =1/2+1/2-1/2=3/4. Now letv = @;~, vi = Q.2 ixi) Wherer is
defined as follows:
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Divide N into blocks{1}, {2,3},{4,5,6,7},... ,{2",...,2"1 —1},.... Letn
be a permutation that sends all the even integef&'in .. , 2" — 1} to the first half
of that block and all the odd integers to the second half. For example, suelting
on the block{4, 5, 6, 7} could give ug4, 6, 5, 7}.

Now at the end of each block, thatis,iat 2" — 1

#HL,2"—1) Ax: (1,20 -1 o
n—1 -

’

and

1

1 2n-1 3 2n-1
Ji‘!ozn_li;'*(“i) =2 =n|gr;2n_1;H<vi>.

But in the middle of each block, that is,ia 2" + 2"1 — 1,

ML 242D Ax (L2421 202 1o
— = — 00
nyon-1_1 = nyn1-1 6

and
242011

1 S oo 1 21 2 271y 2 L3
_— )= —_— —_— — — —
Mo 1_] s i1\ 2272 2 3\" 2

i=1

asn — oo. Thus the AC entropy of is not defined. So even the existence of the AC
entropy limit is not preserved under.

To conclude this section we present the following Shannon-McMillan-Breiman
type result:

THEOREM 2.4. Let X be equipped with a product measwe= &), ui. Then

i 2oizt —109(4 00)) + i(0) log i () + i (D) log (i (1) _

n—o0 n

0

for u-almost allx € X.

The proof Theorem.4is easily derived from the following result from]|

THEOREM2.5. Let vy, Vo, ... be mutually independent random variables with
E(y)) =0andE(y?) = 02 < co. Thenif)_°(6?/i?) < oo, we have

Ilm yl+"'+yn

n—oo n

=0

for u-almost allx € X.
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Note that it has been shownl(]]) that the critical dimension of a odometer is
equal to liminf, ..(1/n) Y7, —log(yi (%)) for n-almost allx € X for a wide class
of product measures. Further, it can be established that for any product measure
if the AC entropy limit exists then it is equal to the critical dimension. In light
of this it may seem tempting to have begun our study of AC entropy by defining
it as liminf._ . (1/n)H (B,) expecting that for a general measure Xrthe critical
dimension of the associated odometer action would be the same. However, as will
be shown in the following section, a question remains as to whether two equivalent
Markov odometers (which must have the same critical dimension) can have different
AC entropies. Hence it would be premature at this stage to try and identify the two
invariants, although it is fairly clear that some close relationship does exist in the
general case.

3. G-measures

Brown and Dooley’'ss-measuresl]] are a generalized form of Keangjsneasures
[6]. Calculating the AC entropy of a gener@measure (PropositioB.4) does not
really tell us anything concrete and for this reason we narrow our focus to Markov
measures. Within a restricted class of these measures, which we shall refer to a:
the Quas-Markov class, we are able to show that provided two measures satisfy the
hypotheses of the Kakutani's Theorem analogueGemeasures then AC entropy is
an invariant for measure equivalence. However, as we explain later in this section, the
same relationship may not hold for general Markov measures.

DEFINITION 3.1. Let G = (G),—, be a family of non-negative Borel functions on
X =[], Z, satisfying

(i) normalization that is,(1/|Ts]) Zyern G,(yx) = 1forallx € X; and

(i) compatibility, thatis,G,(yX)Gn(X) = Gn(yX)Gnh(X), wheren > m, y € I,
andx € X.
Then from this family of functions we construct the famity,(x)):° ,, where

Gn(X)/Gn-1(X),  Gn-1(X) # O;

P00 = {o, Grs(0 =0,

which satisfy the following

(i) g,(x) depends only on the co-ordinates, Xn.1, ... ); and

(i) foreachn € N, (Gn(0, Xnr1, Xny2s - - ) + Gn (L, Xns1, Xni2, - ..))/2 = 1 for all
X e X.
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Now we sayu is aG-measure idu(x)/du™ = []", g (X) = G,(x) whereu™ =
(/1T er, O V-

Our work in this section relies upon the following two results. The firstis necessary
for our AC entropy calculations (Propositiéh4 and Propositior8.5). The second
is a G-measure version of Kakutani’'s Theorem which we require for the proof of
Lemma3.7.

LEMMA 3.2 ([1]). Let 1 be a quasi-invariantG-measure. Then for eadhe N,
o(X) > Ofor pa.a.x € X, and fory €T,

LEMMA 3.3 ([2]). Supposer is a uniqueG-measure ana is a uniqueF-measure
and that ifg;(x) = 0, then f;(xX) = 0. Then the following conditions are equiva-
lent

M w~w; ,

(i) the seriesy o, > et (J fa(yX) — +/0n(yXx))” converges for almost allx;

(i) the above series converges on a set of positiveeasure.

PROPOSITION3.4. For a quasi-invariantG-measure

H(Ba) ==Y u(y XM log u(y X"

y€ln
d d
-~y / £o V(x) du(x) log ( / oY %) dM(X))
yeln
_ Z/ l—[ gk()/ )d () log </ Ok (¥ X )d,u(x))
yeln k=1 k(X)

== / Hgkwx)dwm(xﬂog( / l_lgk<yx>dw><x>).
X" k=1

yeln X" k=1

Unfortunately this is about as far as we can go without making assumptions about
the functiongg,(x). For this reason we shall restrict ourselves to considering Markov
measures, that is, tho&-measures for whicly,(X) = g,(Xn, Xn+1). SO our normal-
ization condition reduces @, (0, Xn41) + On(1, Xa11))/2 = 1. Now

H(Ba) ==Y u(yX")log u(y X",

yeln
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so first we will need a formula for(y X"), wherey € 'y and X" = {X : X; = X, =
- =X, =0}
Now if y € I'y_1, we have

n £ 9 Yierd) Groa (1. 0)
X —
i / H 0.0 600

_ ﬁ Ok (V> Yis1) On-1(¥n-1, 0)
K=1 gk(09 0) gnfl(o, 0)

n(X").

Ify € Cn\ ooy,

n-2
n OV Vir1) On—1(Yn-1, D On(L, Xny1)
X" = d
X /x H 0.0 0 1(0.0) (0. Xr0)

_ l_ll O o ied) [ Gn(L Xni0)
k=1 gk(o’ 0) xn On (09 Xn+1)

n-1
_ gk()/k, Vk+1) gn(l, 0) el gn(l, 1) . .
- g %(0,0) [gn(o, o XM g o) X — X ))} ,

Of course these expressions fory X") depend on the valugs(X") and so by using
the recursive relationship

" [Te190.0 2 / (gn(l, 0 o 1))
X +1 — k=1 Xn —
e ( 21 goo" )) 6.0.0 6,01

and some further straightforward calculations we obtain the following:

PROPOSITION3.5. For a Markov measurg,

1 on-1 0,0
hac(w) = lim [— <h<u<X”>)+h<H“gk( ) _ (X”>))

[T—1 9 (0, 0) 201
O (V> Vir1)
+ (X" h
oo 3 v 1255557
[T 1gk( 0 n O (V> Virn)
XM
(T o) 2 o(T%5)

if this exists, wheréa(x) = —xlogx and

n—k n—-1
w(X") = Ans+ Z (]‘[ ) Ancicr+ 1 OXH [ B

k=1 \i=1 i=1
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for
n—-2
A 5600 5 -2
-1 — 5 -1 — .
on2 (@10 _ gl " Gn_1(0, 1) (2100 _ gudd
0n-100.0)  gn-1(0.1) n—11 0n-100.0)  gn-1(0.1)

Obviously our formula for AC entropy on even the simplésmeasure is extremely
cumbersome. However for a certain class of Markov measures discussgdnia [
can obtain a more usable expression.

DEFINITION 3.6. We callix on X = ]'[f’io 7, a Quas-Markov measure if there exist

Ko, Ki=1—KoandP", i, j € {0, 1}, forn > 1 such that

(X, Xa, -+, Xal) = K PO P - PUTE

X170 X1, X2 ' X2, X3 Xn—1,Xn
for P{? = Pjo =1— P} =1— P9,

The symmetric nature of these measures means that they are product-like in som¢
respects. Ing] Quas-Markov measures were shown to be orbit equivalent to product
measures, as their associated flows have the AT property.

LEmmA 3.7. If © and v are Quas-Markov measures satisfying the hypotheses of
Lemma3.3andu ~ v then ifhac () exists therc(v) exists and equalsac(w).

ProOOF. Consider the functiop : (X,n) — (X, u) where¢(x) = y for y, =
Yo% (mod 2 andp is the product measung= );~, ni whereno(0) = K, and
ni(0) = Py andn; (1) = Py).

As ¢ is measure preserving we know thag (1) = hac(n). Now as

KPS 01D eAD 60
Ko P{W™D  01(0,0)62(0.0)  gp1(0,0)

and
KPGY 1) edd gD
KoPT™"  6:1(0,0)g2(0,0)  go1(0, 1)

we obtain
PTY Py ”  gha(11) oa(0,0)
PGPS Y T 00400, 1) Gh1(1.0)

As PtV =1— P{T" we have

- h-1(1,1) g,-1(0,0)
pn-1 _ 1/ 1 On—1( '
" ( i \/gnl(o’ 1) gn—l(l, 0)

So by LemmaB.3we have our result. O
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The AC entropy of a Quas-Markov measure is easily calculated. For a general
Markov measure of the form([x, Xz, ... , X,]) = K,,P" PZ ... P! we have
the recursive relationship

H(By) = H(Bon) + (X2 (h (PS5 ) +h (PTY))
+ 0%y ) (h(PS) +h(PY),

whereun(X?_,) is the measure of the set Bfe X with x,_; = 0. This formula will
allow us to explain why it may be possible for two equivalent Markov measures to
have different AC entropies.

Now by results of Lodkin @]) and LePage and Mandrekar7[], two Markov
measures which are ergodic foron X = [],Z, and have weight®?, Q"
bounded away from zero are equivalent if and only if

foralli, j = 0, 1. By this condition lim._... h(R") = lim,_... h(Q"). However, it

is not immediately clear to us that this condition is sufficient to guarantee equality of
AC entropy. In addition, questions remain as to the validity of the Markov measure
equivalence criteria if the weights are not bounded away from zero, or if AC entropy
is defined on a more general spae= [];-, Z,s,. Hence we leave examination of

the detail of this point to a future paper.

4. AC entropy within orbit equivalence classes

In the study of ergodic dynamical systems most attention has been given to those
systems which are measure preserving. For this reason we believe that in developin
a new invariant we should hope to provide more information about the type IlI
systems rather than the already well-studied measure preserving systems and the
close relatives in the {Iclass.

AC entropy is not an invariant of orbit equivalence as shown by the results below.
However it does allow us to subdivide the type Il orbit equivalence classes, and so it
may hold potential in the investigation of thegltilasses.

In this section we are dealing exclusively with product measureX ea[ .-, Z,.

We summarize our results as follows:

e Allll ; systems havbpc(un) = 1.
e Foreveryc e [0, 1] thereis all| (0 < A < 1) system withhac(u) = c.

One of our major tools in this section will be the following result.
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THEOREM4.1 (Moore’s Criteria9]). Letu be a product measure oX. Then
() pistypelifandonlyif) . (1—a) < oo;
(2) pistypell;ifandonlyif)" a? < oo;
(3) wistypelll ifand only if) . (1 — a)(min(Za/(l —a), 1))2 = 00;
(4) if u satisfies none of the above conditions theis of typell ...

From part (2) it immediately follows that
ProPOSITION4.2. All II; systemgX, T, u) have AC entropyt.

ProPOSITION4.3. For all ¢, (0 < ¢ < 1) there exists dll ; system(X, ", u) with
hac(u) =c.

PrROOF. (i) hac(i) = 0. We take an example from][

EXAMPLE. Let{o; =log(1+ &)/(1 — &)}2, be a sequence of the form

pL)Ol’--- ,,01’)02’)02’-” ,2,01’2)01’”- ,2,02’2)02’”- )

wherep;/p, ¢ Q and ifn, is the number of termigo; thenn,, > €.

Now it can be shown that ** ande *2 are both in the ratio set of this measure and
hence thap is a type Iy, measure wherg, — 1 and schac(n) = 0.

(i) hac() = 1. Forhac(u) = 1 we merely quoted, Proposition 6.2]: ‘Ifs;, — 0
and)_ a? = oo thenp is of type Ill;

(iii) hac(u) = ¢, 0 < ¢ < 1. We can easily obtain a lIsystem by defining
w@®=>01-a/2, w@l)=@1A+a/2 foriodd (O<a=<l),
wi@®=1-b)/2, w@) =@A+b)y/2 forieven O<b<1),

where
log((L+a)/(1—a))
log((1+ b)/(1 - b))

Definex = ®:°, i so that

¢ Q.

l1+a l1+a 1-a 1-a .
— ; log ; - log 5 =c+4, foriodd;
= 1+bIo 1+b 1_blo 1_b—c §, forieven
2 973 2 W= !

wheres, (0 < § < ¢), is such that

_ log((1+ a(s))/(1 —a()))
log((1 +b(8))/(1 — b(é)))

(The function f decreases continuously from 1 so suchli enust exist.) Hence

hac(u) = 1/2(c+8) + 1/2(c—§) =c. Il

f(5)

¢ Q.
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ProPOSITION4.4. FiX A, (0 < A < 1). Foranyc, (0 < ¢ < 1), there exists dll
system( X, I', 1) such thathac () = c.

PrOOF. (a) Case ll], (0 < A < 1).

(i) hac(u) = 0. Definep = @2, wi in blocks of integer lengtm; > 1/1J,

j =1,2, ..., sothatfoi in the jth block; (0) = A1 /(A + 1), i (1) = 1/ (A + 1).
Asi — oo, H(ui) — 0sohac(n) =0.

(i) hac(u) = 1. For eacm € N let A(n) C [0,n] be an index set such that
(1/2)[v/n] < #A(n) < [/N]. Fori € A(n), let 4;(0) = v*(0) = A/(1+ 1),
wi (D) = v*(Q) = 1/(1+ A), while fori € [0,n]\ A(n) let 4 (0) = w;i (1) = 1/2.
Then

hac(p) = lim — iA(n) * #An( Doty =1

(i) hac(nw) =ce Q,(0<c<1l). Letc=m/n,form,n € Z*. We define the
required measure by taking the sequesice {log(1+ a)/(1 — &)} = {—logAI®}
from the measure constructed in part (i) and inserting strings of 0 values to form a
new sequence;. Take a block of lengtm. In the firstm places we put; = 0,
that is, H(x) = 1. In the remaining places puat,., = o = {—logAxl®} for
i=12,...,n—m.

Repeat the process, taking anotheterms withs; = 0 and then the next — m
values in thg— log A/} sequence. Continuing in this manner the resultant measure
w will be of type 11l by Moore’s Criteria as there will still bey, terms with 1— g =
20%/1 + Ak, and furthen will be of type IlI, as we have not changed the ratio set. It
is clear thatiac () = m/n.

(iv) hac(n) = ¢c ¢ Q, (0 < ¢ < 1). ltis easily seen that by using rational
approximations we can adapt the measure from (iii) to provide examples,of Il
systems with irrational AC entropies.

Take, for example, the decimal expansiortet d;/10+d,/10% +d3 /103 + - - - =
.didodz - -+ whered, € {0,1,...,9}. Chooses (0 < € < 1). Letc be a series of
decimal approximations towith ¢; < ¢, foralli € N so thatc — ¢; < €' /2. First
define they; in blocks of length 10 wherec; = .dd, - - - d,,. The firstd,d; - - - d,,
places will haveH () = 1, while the remaining; will be taken from the sequence
defined by thes; sequence used in part (iii).

ChooseN; so that if this cycle were repeated infinitely, then forralk- N; we
would have|H (8,)/n — ci| < €/2. After that, keep defining; in blocks of length
10™, but now make sure thakd, - - - d,, of each 1 places hadd (i) = 1. Then
chooseN, so that for alln > N, we would havgH (8,)/n — ¢,| < €2/2 and so on.

Now ¢, — c asn increases and further after eadjy |H (8,)/n — c| < 2¢.

(b) Case Il}.
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(i) hac() = 0. Here we refer to an example frorf][ We shall modify it in
parts (ii), (i) and (iv).

EXAMPLE. Let{o;}, be of the form

k ok Kk ok+l K+1 ok+2
e, 28,25 0 28, 25 L 2 25 L

ng terms Niy1 terms

To ensure that is of type Ill we choose the, to satisfy part (3) of Moore’s Criteria
so that)_ ., (1 — &) = oo. Here we have + a = 2/(1+€") so we can take
ne > (€% + 1)/2. The resulting measuyeis of type Ill,. Further, lim_..a = 1 so
we havehac () = 0.

(i) hac(n) = 1. We modify the sequende;} from part (i) by inserting long
sequences of zeroes (thatjis,with entropy 1) between the 3trings; that is,

2K 2% .. ,250,0,...,0, 21 . 2kt

n terms N terms Nk+1 terms

where theN, are chosen so large th@'}j N < +/Ng.

Our new measure is still type jlbut we now havéiac () = 1.

(i) hac(w) =c € Q,(0<c<1). Letc=m/n, form,n € Z*. Again we will
take our Ilh measure from part (i) and add strings of zeroes to the seqyerifs.

Define{o/}:2, in blocks of lengtm. The firstm values foro; in each block will be
zero, that is, they; have entropy 1. The remainimg— m values in the block will be
taken from the originajo; } sequence and integrated into fla¢} sequence with their
order undisturbed, for example,

m
0,0,...,0,2% 2k ok+i = k¢l

n

There will still ben, terms of 2 so our resulting measure will still be tyfié and as we
have not changed the ratio set we know it will be typg IClearlyh,c () = m/n=c
as required.

(iv) hac(p) = c ¢ Q, (0 < ¢ < 1). We obtain Il systems with irrational AC
entropies by modifying the measure from part (iii) using rational approximations, as
illustrated previously in the IJlcase. O

5. IC equivalence

In this section we introduce an equivalence relation—Initial Co-ordinates or IC
equivalence—for which AC entropy is an invariant. The definition of this equivalence
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relation was inspired by Propositich.3. Although that result dealt solely with
permuted product measures, the formulation of IC equivalence contains no such
restriction.

DerINITION 5.1. Let (X, T, n) and(X, ', v) be two systems of finite co-ordinate
changes. Suppose we have an invertible, bi-measurablepmaiX, u) — (X, v)
satisfying the following: For each € N there exisim;(n), my(n) € N with

my(N) < n <mp(n), my(n) <m(n+ 1), mp(n) < my(n + 1),
and
im M ™
n— o0 n n— o0 n

such that for almost akt, y € X,

(i if ¢(x) ande (y) have the same first co-ordinates (that is, they are initially
equal), therx andy have the same firsh, (n) co-ordinates; and

(i) if x andy have the same firsh, (n) co-ordinates, the# (x) and¢ (y) have the
same firsh co-ordinates.

Now if it o ¢ = v (hereu o ¢(E) = u(¢p1(E)) for measurablé&) we say(X, I, i)
and(X, T, v) arelC equivalent

NoTE. Our definition requires thato¢ = v. Itwould be preferable to weaken this
requirementtqu o ¢ ~ v as is the case for orbit equivalence. Remember that our aim
is to develop an equivalence relation for which AC entropy is an invariant. In certain
cases we could replace the measure equality condition with measure equivalence
and still achieve our objective. For example,uif u o ¢ andv were all product
measures then, as our working will later show, all that would be required to establish
hac(i) = hac(v) would bep o ¢ ~ v for a suitablep. However as we have shown
in Section3, this may not be sufficient in the general case.

LEmMMA 5.2. IC equivalence is an equivalence relation.

PrROOF. Reflexivityis obvious, takingy as the identity map.

Forsymmetrysupposeu is IC equivalent ta via the mapp, with sequences, (n)
andm,(n) to guarantee properties (i) and (ii) in our definition. We will show that for
the mapp—* we can findm,(n) andm,(n) for eachn to satisfy these same properties.

Letx andy have the same first co-ordinates. We wamiy; (n) < n such thai (x)
and¢ (y) have the same firsh; (n) co-ordinates.

We know from property (ii) that ik andy have the same firsh,(p) co-ordinates
then¢ (x) and¢(y) have the same firgh co-ordinates. So ih = my(p) for some
p € N, we could takem|(n) = p. Let p € N be the greatest integer such that
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m(p) < n. Then we taken; (n) = p. Similarly, if we letq € N be the least integer
such than < my(q), then setm,(n) = q. Itis easy to check that

jim T _ i (W _

n— oo n n— oo n

1

For transitivity supposeu is IC equivalent tov via the map¢ and sequences
mi(n), mi(n) andv is IC equivalent toy by v, m2(n), mi(n). Then for sequences
m3(n) = mi(mZ(n)) andm3(n) = mi(m3(n)), which satisfy the required limiting
properties, the mag o ¢ sets up an IC equivalence betweerand,n. Hence IC
equivalence is an equivalence relation. O

LEMMA 5.3. If u and v are IC equivalent and ihiac() exists therhac(u) =
hac(v).

ProoOE The result is derived from the fact that for eattve have

By < & (Bn) < By

and hence
-1
jim Hur) M@ H @B H ) mam)
n—oo  My(N) n n—o0 n n—oo  My(N) n
Thushac() = hac(it 0 @) = hac(v). U

For an obvious example of IC equivalence, téXeT", 1) and(X, T, o ¢), where
¢(x) = yxforanyy € I'. Equally, we could takey(x) = y wherey. = X,-1, for
a permutationt such that(1, m;(n)) € 7~ : (1,n) andz~*: (1,n) € (1, my(n))
for my(n) andm,(n) such that lim_. ., my(n)/n = lim,_. ., my(n)/n = 1. These two
examples of IC equivalence are in fact orbit equivalences.

The Quas isomorphis : (X, n) — (X, 1) used in the proof of Lemma.7 also
induces an IC equivalence. Howewers not an orbit equivalence betweeX, I, n)
and (X, T, u) but between X, I, n) and (X, T, u) whereI" is the group of finite
co-ordinate changes which alter an even number of co-ordingtes [

Orbit equivalencey o ¢ ~ v for ¢ (yx) = y'¢(X) wherey’ depends oy andx)
deals with the way points which are equal on all but their first co-ordinates are mapped
from one space to another. In this sense it is somewhat contrary in nature to IC
equivalence. However it is not immediately clear to us that there exist IC equivalence
maps which do not also set up orbit equivalences. This question is worthy of further
investigation.

Our new equivalence relation might be viewed as disappointing in that it seems
to be unrelated to the action of finite co-ordinate changes. However the fact that we
can subdivide the IJI(0 < 1 < 1) classes using AC entropy immediately leads us to
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consider the partitioning of orbit equivalence classes by IC equivalence. Establishing
an intermediate classification between measure equivalence and orbit equivalenc
could yield some interesting results. In fact such a scheme may even be necessary |
we are ever to gain a clearer picture of the tlass.
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