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Abstract

Finite graphs of valency 4 and girth 4 admitting 1/2-transitive group actions, that is, vertex- and edge- but
not arc-transitive group actions, are investigated. A graph is said to be 1/2-transitiveif its automorphism
group acts 1/2-transitively. There is a natural orientation of the edge set of a 1/2-transitive graph induced
and preserved by its automorphism group. It is proved that in a finite 1/2-transitive graph of valency 4 and
girth 4 the set of 4-cycles decomposes the edge set in such a way that either every 4-cycle is alternating
or every 4-cycle is directed relative to this orientation. In the latter case vertex stabilizers are isomorphic
to Z2.

2000Mathematics subject classification: primary 05C25, 20B25.

1. Introduction

Throughout this paper by agraph we mean a finite, simple and undirected graph.
Given a graphX we let V.X/ and E.X/ be the vertex set and the edge set ofX,
respectively. Each edgeuv = {u; v} of X gives rise to twoarcs .u; v/ and .v;u/
of X. Any choice of precisely one of these two arcs for all edges ofX results in an
oriented graphwhose underlying graph isX. (By an oriented graphwe therefore
mean an ordered pair.V; A/, whereV is a finite nonempty set andA, the set ofarcs,
is an antisymmetric relation onV.) Unless stated otherwise graphs are assumed to be
connected. Furthermore, all groups are assumed to be finite. For graph-theoretic and
group-theoretic terms not defined here we refer the reader to [3, 4, 18].
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We are going to adopt the terminology and notations of [10, 11] pertaining to the
particular concept of 1=2-transitive group actions on graphs. A graphX is said to be
vertex-transitive, edge-transitiveandarc-transitive, respectively, if its automorphism
group AutX actsvertex-transitively, edge-transitivelyandarc-transitively. Further, a
graph is 1-regular if its automorphism group acts regularly on its arc set. It follows
from [16, 7.53, page 59] that the automorphism group of a vertex- and edge-transitive
but not arc-transitive graph must necessarily have two orbits on the arc set, with each
orbit containing an arc corresponding to each edge; that is, in the terminology of [18,
page 24], it acts 1=2-transitively on the arc set having two orbits (of equal length).
We shall thus say, although in a slight discord with the above mentioned meaning
[18, page 24], that a graphX is 1=2-transitiveprovided it is vertex- and edge- but not
arc-transitive. More generally, by a 1=2-transitiveaction of a subgroupG ≤ Aut X
on X we shall mean a vertex- and edge- but not arc-transitive action onX. In this case
we shall say that the graphX is .G;1=2/-transitive.

Recently there has been an outburst of papers dealing with the structure and clas-
sification of 1=2-transitive graphs [1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19].
In this paper we continue the study of 1=2-transitive group actions on finite graphs
of valency 4 initiated in [10], where some general results were obtained, including
classification results on 1=2-transitive graphs of valency 4 enjoying certain addi-
tional structural properties, and continued in [11], where the interplay of regular
maps, 1-regular graphs and graphs of valency 4 admitting 1=2-transitive group actions
was studied. It follows from [13] that graphs of valency 4 and girth 3 admitting a
1=2-transitive group action are in a one-to-one correspondence (via the line graph
construction) with cubic graphs having a subgroup of automorphisms acting regularly
on the arc set. In particular, 1=2-transitive graphs of valency 4 and girth 3 are in a
one-to-one correspondence with cubic 1-regular graphs. Our aim is to prove a similar
result for graphs of valency 4 and girth 4 admitting a 1=2-transitive group action.

Let X be an oriented graph. A pathP of X is calleddirectedif every vertex ofP of
valency 2 is the tail of one and the head of the other of its two incident arcs. Similarly,
adirected cyclein X is a cycle whose every vertex is the tail of one and the head of the
other of its two incident arcs. An even length cycleC in X is aparallel cycleif it may
be decomposed into two arc-disjoint directed subpaths of equal length intersecting
in two vertices, one of which is the tail and the other the head of the corresponding
incident arcs. An even length cycleC in X is analternating cycleif every other vertex
of C is the tail and every other vertex ofC is the head of its two incident arcs.

Let X be a graph of valency 4 admitting a 1=2-transitive action of some subgroup
G ≤ Aut X. Let us assign an orientation, fixed from now on, to a given edge
of X. Then, via the 1=2-transitive action ofG, this orientation extends uniquely to
an orientation of the edge set ofX, thus giving rise to an oriented graph whose every
vertex has two predecessors and two successors and whose underlying undirected
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graph isX. Concepts peculiar to oriented graphs, such as directed, alternating and
parallel cycles, may thus be extended to 1=2-transitive graphs, via the above orientation
of the edge set induced by its automorphism group. We may now state one of the two
main results of this paper.

THEOREM 1.1. Let X be a1=2-transitive graph of valency4 and girth4. Then the
set of4-cycles ofX decomposes the edge setE.X/ and, furthermore, either

.i/ every4-cycle is alternating or
.ii/ every4-cycle is directed.

Moreover, in case(ii) the vertex stabilizer.Aut X/v , v ∈ V.X/, isZ2.

In order to prove Theorem1.1, 1=2-transitive group actions on graphs of valency 4
and girth 4 are studied, resulting in their characterization in Theorem4.1. In Section2
certain concepts arising in the study of 1=2-transitive group actions on graphs are
introduced. Next, in Section3 some exceptional arc-transitive graphs of valency 4
and girth 4 admitting a 1=2-transitive group action are dealt with, setting the stage for
the proofs of Theorem1.1and Theorem4.1in Section4. Finally, two infinite families
of 1=2-transitive graphs of valency 4 and girth 4 satisfying, respectively, conditions
(i) and (ii) of Theorem1.1are given at the end of this paper.

2. Preliminaries

Let X be a graph and letG ≤ Aut X act 1=2-transitively. There will be instances in
our discussion where information on the vertex stabilizerGv, v ∈ V.X/, is relevant.
We shall say thatX is .G;1=2; H /-transitiveprovidedH = Gv for somev ∈ V.X/.

There are two essentially different types of 1=2-transitive group actions on graphs
of valency 4. Namely, given a graphX of valency 4 admitting a 1=2-transitive action
of a subgroupG ≤ Aut X and a vertexv ∈ V.X/, the restrictionGN.v/

v of the stabilizer
Gv to the neighbourhoodN.v/ = {u;w; x; y} of v is isomorphic either toZ2 or toZ2

2.
In other words,X is either.G;1=2;Z2/-transitive or.G;1=2; H /-transitive, where
H = Gv contains a copy ofZ2

2. (Note thatH is a 2-group.) Let{x; y} and{u;w}
be the two orbits ofGv on N.v/. In the first case,GN.v/

v = 〈.xy/.uw/〉 and it is easy
to see that the restriction homomorphism is a monomorphism and so|Gv| = 2. In
the second case,GN.v/

v = 〈.xy/; .uw/〉 and in general the order|Gv| is not bounded
as may be seen by the lexicographic productsCt [2K1], whereCt denotes the cycle of
lengtht ≥ 3 (see Section3). TheG-heighthG.X/ of X is equal toh, where|Gv| = 2h,
v ∈ V.X/. Moreover, we let theheighth.X/ of X be the maximum over allG-heights
hG.X/, whereG ≤ Aut X acts 1=2-transitively onX.

A .G;1=2/-transitive graphX of valency 4, whereG ≤ Aut X, gives rise to two
oriented graphs—withX as their underlying graph—namely, the two orbital graphs
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of the action ofG on V.X/ relative to two paired suborbits of length 2. LetDG.X/ be
one of these two graphs fixed from now on. Foru; v ∈ V.X/ we shall writeu → v

if .u; v/ is an arc inDG.X/ and shall say thatu is a predecessorof v (and thetail
of .u; v/), and thatv is a successorof u (and theheadof .u; v/). We remark that
by the G-orientation of the edges ofX, that is, by the orientation induced by the
1=2-transitive action ofG, we shall always mean the corresponding orientation of the
edges inDG.X/. A pathP in X is aG-directed pathif it is a directed path inDG.X/.
A cycle of X is a G-directed cycle, a G-parallel cycleand aG-alternating cycle,
respectively, provided it is a directed cycle, a parallel cycle and an alternating cycle
in DG.X/. In particular, ifG = Aut X the symbolG is omitted and we refer to an
orientationof the edges ofX, and to adirected path, adirected cycle, aparallel cycle
and analternating cycleof X. It transpires that allG-alternating cycles inX have
the same length and form a decomposition of the edge set ofX [10, Proposition 2.4];
half of this length is denoted byrG.X/ and is called theG-radiusof X. Moreover,
any two adjacentG-alternating cycles ofX intersect in the same number of vertices
and this number, called theG-attachment numberaG.X/ of X, divides 2rG.X/ [10,
Proposition 2.6]. IfX is 1=2-transitive, we let theradiusand theattachment number
of X be, respectively, the AutX-radius and the AutX-attachment number ofX. The
following simple observation on attachment numbers is made in [12].

LEMMA 2.1. Let X be a.G;1=2/-transitive graph for some subgroupG of Aut X.
If the G-attachment numberaG.X/ is at least3 then theG-heighthG.X/ equals1.

If aG.X/ = rG.X/we say that the.G;1=2/-transitive graphX of valency 4 istightly
G-attached. In particular, a 1=2-transitive graphX of valency 4 istightly attachedif it
is tightly Aut X-attached. A complete classification of tightly attached 1=2-transitive
graphs with odd radius and valency 4 is obtained in [10, Theorem 6.2.].

By a mapwe mean a cellular decomposition of an orientable closed surface. A
common way of constructing maps is by embedding a graph into a surface. It is
well known that a mapM given by an embedding of a graphX into a surface can
be completely described by means of its rotation system, that is, by listing, for every
vertex v of M , the cyclic permutation of the incident outgoing arcs ofv induced
by a chosen rotation of the ambient surface. We can therefore identifyM with the
pair .X; R/, whereR is the above rotation system forM . The mapM = .X; R/
determines the dual mapM ∗ = .X∗; P/, whereX∗ is the dual graph andP is the one
of two possible rotations determining the geometric dual ofM , which is consistent
with the chosen orientation of the surface. We say thatM is positively self-dualif
M = .X; R/ is isomorphic toM∗ = .X∗; P/. The mapM is calledregular if its
automorphism group AutM acts transitively (and therefore regularly) on the set of
arcs ofX. We say that a regular mapM is of type{q; p}, whereq, p are integers, if
M is of valencyp and has face-sizeq. The relationship between regular and self-dual
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maps and 1=2-transitive group actions on graphs of valency 4 is studied in [11].

3. Exceptional graphs admitting 1/2-transitive group actions

In this section we describe seven infinite families of arc-transitive graphs of va-
lency 4 and girth 4 admitting a 1=2-transitive group action. These graphs arise as
exceptional graphs in Theorem4.1.

A circulant is a Cayley graph of a cyclic group. Letn be a positive integer and
let S = −S be a symmetric subset ofZn. By Circ.n; S/ we denote the circulant with
vertex set{vi : i ∈ Zn} and edges of the formvi vi +s, i ∈ Zn, s ∈ S. A particular
family of circulants arises in the characterization of graphs of valency 4 admitting
a 1=2-transitive group action with respect to which they have only two alternating
cycles.

PROPOSITION3.1 ([10, Proposition 2.4, (ii)]). Let X be a.G;1=2/-transitive graph
of valency4 for some subgroupG of Aut X and letr = rG.X/. ThenX has only two
G-alternating cycles (both spanningV.X/) if and only ifX ∼= Circ.2r; {1;−1; s;−s}/
for some odds ∈ Z

∗
2r \ {1;−1} such thats2 ∈ {1;−1}. Moreover,X is arc-transitive.

Let r; t ≥ 3 be integers. Forr odd ands ∈ Z
∗
r satisfyingst ∈ {1;−1}, let X.s; t; r /

denote the graph with vertex set{v j
i : i ∈ Zt; j ∈ Zr } and edges of the formv j

i v
j +si

i +1 ,

v
j
i v

j −si

i +1 (i ∈ Zt , j ∈ Zr ). In particular, setX.t; r / = X.1; t; r /. For r and t even,
let Y.t; r / denote the graph with vertex set{v j

i : i ∈ Zt; j ∈ Zr } and edges of the
form v

j
i v

j
i +1, v

j
i v

j +.−1/i+1

i +1 (i ∈ Zt; j ∈ Zr ). Moreover, letZ.t; r / denote the graph with

vertex set{v j
i : i ∈ Zt ; j ∈ Zr } and edges of the formv j

i v
j
i +1, v

j
i v

j +.−1/i+1

i +1 (i ∈ Zt\{−1},
j ∈ Zr ) andv j

−1v
j +r=2
0 , v j

−1v
j +1+r=2
0 ( j ∈ Zr ). It may be seen that the permutation²

mapping according to the rulev j
i ² = v

j +1
i , i ∈ Zt , j ∈ Zr , is an automorphism of

X.s; t; r /, Y.t; r / as well asZ.t; r /. Moreover, the permutation
 defined by the rule
v

j
i 
 = v

− j
i +1, i ∈ Zt , j ∈ Zr , is an automorphism of bothX.t; r / andY.t; r /. Finally,

the permutationŽ defined by the rule

v
j
i Ž =

{
v

− j
i +1; i ∈ Zt\{−1}; j ∈ Zr ;

v
− j +r=2
0 ; i = −1; j ∈ Zr ;

is an automorphism ofZ.t; r /. Besides,
 −1²
 = ²−1 andŽ−1²Ž = ²−1 and so〈²; 
 〉
in the case of graphsX.t; r / andY.t; r / and〈²; Ž〉 in the case of the graphZ.t; r / is
a metacyclic subgroup of automorphisms acting vertex-transitively.

PROPOSITION3.2. Let X be a tightlyG-attached.G;1=2/-transitive graph of va-
lency4, whereG ≤ Aut X, with r ≥ 2 and t ≥ 3 as its respectiveG-radius and
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the number ofG-alternating cycles. IfX contains aG-parallel 4-cycle thenX is
isomorphic toCt [2K1] if r = 2, to Y.t; r / or to Z.t; r / if r ≥ 4 is even and toX.t; r /
if r is odd.

PROOF. The fact thatX is tightly G-attached is crucial. Supposing first thatr is
odd, we have by [10, Proposition 3.3] thatX is isomorphic toX.s; t; r / and it is
easily seen that the existence of aG-parallel 4-cycle inX forcess ∈ {1;−1} and so
X ∼= X.t; r /.

Suppose now thatr is even. The caser = 2 is proved in [10, Proposition 3.1]. Let
r ≥ 4. Letv ∈ V.X/ and letu;w be the two neighbours ofv on a givenG-alternating
cycle ofX containingv. By [10, Proposition 3.1] there exists an automorphism² of X
takingu tow whose orbits are theG-attachment sets ofX, as well as an automorphism
¦ cyclically permuting theG-attachment sets ofX in such a way that¦−1²¦ = ²s

for somes ∈ Z
∗
r . For eachi ∈ Zt , let Vi be theG-attachment set containingv¦ i .

Further, for eachj ∈ Zr , let v j
0 = v² j andv j

1 = w² j . Next, letv′ be the fourth
vertex in theG-parallel 4-cycle containing verticesv;u andw. Of course,v′ ∈ V2

and one can easily see thatu′² = w′, whereu′;w′ ∈ V3 are the other two neighbours
of v′. For eachj ∈ Zr , we setv j

2 = v′² j andv j
3 = w′² j . Continuing this way we

end up with a graph having vertex set{v j
i : i ∈ Zt; j ∈ Zr } and edges of the form

v
j
i v

j
i +1, v

j
i v

j +.−1/i

i +1 (i ∈ Zt \ {−1}; j ∈ Zr ). As for the edges with one endvertex in
Vt−1 and the other inV0, there are precisely two possibilities, one resulting in a graph
isomorphic toY.t; r / and the other in a graph isomorphic toZ.t; r /. Namely, since
X is a tightlyG-attached.G;1=2/-transitive graph, it follows by [10, Proposition 3.1]
that there exists an involutory automorphism, say− , fixing v = v0

0 and fixing each of
the setsVi , i ∈ Zt , setwise. One may easily see that− must obey the rulev j

i − = v
− j
i ,

j ∈ Zr , for i even andv j
i − = v

− j −1
i , j ∈ Zr , for i odd. Using this automorphism we

then deduce that, for eachj ∈ Zr , the neighbours ofv j
t−1 in V0 are eitherv j

0 andv j +1
0

or v j +r=2
0 andv j +1+r=2

0 . In the first case we haveX ∼= Y.t; r / and in the second case
X ∼= Z.t; r /.

Let r ≥ 3 be an integer and letX = Cr × Cr be the Cartesian product of two
cycles of lengthr . There is a unique quadrilateral embeddingM of X into the
torus. If r is even then we can orient the edges ofX in such a way that each copy
of Cr forms an alternating cycle and every 4-cycle ofX bounding a quadrilateral
region inM is directed in the prescribed orientation. From the planar representation
of M one can easily see that there is an automorphism² of X rotating a specific
quadrangle and preserving the above orientation. Moreover, the vertex stabilizer
.Aut X/v , v ∈ V.X/, contains two reflectionsÞ andþ fixing, respectively, the two
alternating cycles meeting atv. It follows thatX = C2s ×C2s, r = 2s, is .G;1=2;Z2

2/-
transitive, whereG = 〈Þ; þ; ²〉. We note that, letting the vertex set ofX beZ2s ×Z2s,
the orientation of the edges ofX which admits the 1=2-transitive action of the group
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FIGURE 1.

G, satisfies the following rule: the vertex.i; j / is a predecessor of.i; j + 1/ and a
successor of.i +1; j / if i + j is even, and is a successor of.i; j +1/ and a predecessor
of .i + 1; j / if i + j is odd.

There is another infinite family of graphs sharing similar properties with the Carte-
sian product of two even cycles of equal length. LetY = C2r ⊗ C2r , r ≥ 3, denote
the graph whose vertex set is the edge set ofX = Cr × Cr , with two vertices ofY
being adjacent if the corresponding edges form consecutive sides of a quadrangle in
the quadrilateral embeddingM of X into the torus. The graphY is the so called
medial graph ofM . Since the mapM is regular and self-dual it follows from [11,
Theorem 4.1 (4)] that the graphY is .G;1=2;Z2

2/-transitive for a particular subgroup
G of Aut Y. (This fact can also be checked directly.) Moreover, theG-orientation
of the edges ofY induced byG is such that all 4-cycles ofY areG-directed. The
G-alternating cycles ofY have length 2r and two of them are either disjoint or meet
in two vertices (see Figure1 for r = 3). Moreover, we letC4 ⊗ C4 be the lexico-
graphic productC4[2K1] (which is isomorphic to the complete bipartite graphK4;4).
Alternatively, we may defineY = C2r ⊗ C2r , r ≥ 2, as a particular quotient graph of
X = C2r × C2r , obtained by identifying the vertices.i; j / and.i + r; j + r / of X, for
all i; j ∈ Z2r , with the adjacency as well as the orientation of the edges being inherited
from that ofX.

The next proposition follows from the above arguments.

PROPOSITION3.3. Let X ∼= C2r × C2r or X ∼= C2r ⊗ C2r for somer ≥ 2. ThenX
is a .G;1=2;Z2

2/-transitive graph for some subgroupG ≤ Aut X, and consequently
h.X/ ≥ 2. Moreover, theG-orientation of the edge set ofX is such that every edge
of X lies on fourG-directed4-cycles ifX ∼= C4 ⊗ C4 and on twoG-directed4-cycles
otherwise.
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In the next proposition we show that the converse is also true.

PROPOSITION3.4. Let X be a .G;1=2/-transitive graph of valency4, for some
subgroupG ≤ Aut X, such that every edge ofX lies on precisely twoG-directed
4-cycles andhG.X/ ≥ 2. Then eitherX ∼= C2r ×C2r , r ≥ 2 or X ∼= C2r ⊗ C2r , r ≥ 3.

PROOF. By gluing a 2-cell to everyG-directed 4-cycle ofX we obtain a 4-valent 4-
gonal mapM in a surfaceSof Euler characteristic 0. As a consequence of transitivity
of quadrangles we have that the two alternating cycles meeting at a vertexv cross
each other atv. It is well known that a simple closed curve in a surface of Euler
characteristic 0 is of one of the following four types: (i) contractible—it bounds a disk,
(ii) nonseparating and orientation changing, (iii) separating and noncontractible—it
bounds a M¨obius band, (iv) nonseparating, noncontractible and orientation preserving.
We first show that everyG-alternating cycleC of X is of type (iv).

Assuming thatC bounds a diskD we get a quadrangulationofD and a contradiction
can be derived using Euler’s formula. IfC is of type (ii) then the subgraph ofX induced
by all the quadrangles incident withC forms a quadrangulation of a M¨obius bandB
with the boundary ofB being formed by anotherG-alternating cycle whose length
would be twice the length ofC, a contradiction. Finally, ifC bounds a M¨obius band
B, we may assume that the number of quadrangles insideB is minimal, that is,B does
not contain aG-alternating cycle separating a M¨obius band. ThenB is a union of
quadrangles incident withC. If C meets just one side of each quadrangle ofB, then
there is aG-alternating cycle of type (ii) insideB, and a contradiction is derived as
above. IfC meets two opposite sides of every quadrangle we take a quadrangleQ in B
and an element ∈ G rotatingQ. Clearly, mapsC onto someG-alternating cycle
C′ meetingC in the four vertices ofQ. Thus the twoG-alternating cycles intersect in
at least four vertices and, by Lemma2.1, we have thathG.X/ = 1, a contradiction.

Having seen that everyG-alternating cycle ofX is of type (iv), we can cut and
open the surface along one such cycleC. We get an annulusA bounded by two copies
C1 andC2 of C. Let us consider aG-alternating cycleC′ meetingC at a vertexu.
SinceC′ is of type (iv), it follows thatS is a torus. By Lemma2.1, C′ meetsC in
one or two vertices. In the first caseC′ is represented onA by a path joining the two
copiesu1 andu2 of u on C1 andC2. In the second case, letv be the second vertex.
Then C′ is represented by two paths joiningu1 to v2 andv1 to u2 (see Figure2),
whereui andvi , i = 1;2, are the respective copies ofu andv on Ci , i = 1;2. Now
cutting A along the paths representingC′ we get the planar representations of toroidal
embeddings ofC2r × C2r , r ≥ 2, in the first case andC2r ⊗ C2r , r ≥ 3, in the second
case. Moreover, note that in the second case{u; v} is the G-attachment set arising
from theG-alternating cyclesC andC′ and so it follows thatu andv are antipodal on
bothC andC′.



[9] Graphs admitting half-transitive groups 163

FIGURE 2.

We say that a graph of valency 4 admitting a 1=2-transitive group action isexcep-
tional if it belongs to one of the following families of (arc-transitive) graphs.

.i/ the familyF 1 of circulants Circ.2r; {1;−1; s;−s}/, wherer ≥ 2 ands ∈ Z
∗
2r

satisfiess2 ∈ {1;−1};
.ii/ the familyF2 of graphsX.t; r /, wheret ≥ 3 is an integer andr ≥ 3 is an odd

integer;
.iii / the familyF3 of graphsY.t; r /, wheret ≥ 4 andr ≥ 4 are even integers;
.iv/ the familyF4 of graphsZ.t; r /, wheret ≥ 4 andr ≥ 4 are even integers;
.v/ the familyF5 of lexicographic productsCt [2K1], wheret ≥ 3 is an integer;
.vi/ the familyF6 of Cartesian productsC2r × C2r , r ≥ 2;
.vii/ the familyF7 of graphsC2r ⊗ C2r , r ≥ 3.

Let us remark that the exceptional graphs belonging toF6 and toF7 are the
underlying graphs of reflexible regular maps of type{4;4} (see [6] for the classification
of such maps).

The proof of the next proposition is left to the reader.

PROPOSITION3.5. The following isomorphisms hold between members of different
families of exceptional graphs.

.i/ C2r × C2r , r ≥ 2, is isomorphic toZ.2r;2r /;
.ii/ C2r ⊗ C2r , r ≥ 3 is isomorphic toY.2r; r / if r is even and toX.2r; r / if r is

odd;
.iii / C2r [2K1], r ≥ 3, is isomorphic toX.4; r / if r is odd and toY.4; r / if r is even.

Let us emphasize, however, that for each of these pairs of isomorphic graphs in
Proposition3.5, the associated 1=2-transitive group actions are different.

PROPOSITION3.6. Every exceptional graph is arc-transitive.

PROOF. In view of Proposition3.5, it suffices to check that every graph belonging
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to one of the familiesFi , i = 1;2;3;4;5, is arc-transitive. The arc-transitivity of
lexicographic productsCt [2K1] ∈ F5 is obvious. The arc-transitivity of the circulants
inF1 follows from Proposition3.1. The arc-transitivity of the graphsX.t; r / ∈ F2 is
deduced from [10, Corollary 3.6]. To see that the graphsY.t; r / ∈F3 and the graphs
Z.t; r / ∈ F4 are arc-transitive, note that the permutation− defined by the rule

v
j
i − =

{
v

− j
i ; i even; j ∈ Zr ;

v
− j −1
i ; i odd; j ∈ Zr ;

is an automorphism ofY.t; r / and Z.t; r /. Furthermore, the permutation! defined
by the rule

v
j
i ! = v

j
t−i ; i ∈ Zt; j ∈ Zr ;

is an automorphism ofY.t; r / and the permutation# defined by the rule

v
j
i # =

{
v

j
−i ; i 6= 0; j ∈ Zr ;

v
j +r=2
0 ; i = 0; j ∈ Zr ;

is an automorphism ofZ.t; r /. Hence the groups〈²; 
; −; !〉 and 〈²; Ž; −; #〉, act
arc-transitively on the graphsY.t; r / andZ.t; r /, respectively.

Let X be any graph of valency 4 with the property that every edge lies on precisely
two 4-cycles. A 2-path ofX is calledstraight if it does not extend to a 4-cycle. A
cycleC of X is said to bestraight if every 2-path ofC is straight. Using the fact that
each edge ofX is on precisely two 4-cycles, it may be seen that an arbitrary 2-path of
X which is extendable to a 4-cycle is uniquely extendable to a 4-cycle. We deduce that
every edge ofX is uniquely extendable to a straight 2-path and thus also to a straight
cycle and that, moreover, at every vertex ofX two straight 2-paths, and therefore
also two straight cycles, intersect. In particular, straight cycles form a decomposition
of E.X/.

In view of the above comments, the proof of the next lemma is straightforward.

LEMMA 3.7. Let X be a graph of valency4 such that each of its edges lies on
precisely two4-cycles. Then the straightness of cycles ofX is preserved byAut X.
Moreover, if any two adjacent straight cycles ofX meet in at least three vertices, then
the only automorphism ofX fixing two adjacent vertices is the identity.

PROPOSITION3.8. Let X be an exceptional graph. Then

.i/ h.X/ = h ≥ 3 if and only if X ∼= Ch+1[2K1] andh ≥ 3;
.ii/ h.X/ = 2 if and only if X is isomorphic either toC3[2K1] or to C2r × C2r

∼=
Z.2r;2r / for somer ≥ 2, or to C2r ⊗ C2r

∼= X.2r; r / for somer ≥ 3 odd or to
C2r ⊗ C2r

∼= Y.2r; r / for somer ≥ 4 even;
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.iii / andh.X/ = 1 in all other cases.

PROOF. Suppose first thatX = Ct [2K1] for somet ≥ 3. To proveh.X/ ≥ t − 1
let us take one of the two possible directed orientations of the base cycleCt and
extend it consistently to the edges ofX. It is easily seen that the subgroupG of the
orientation preserving automorphisms ofX acts.G;1=2;Zt−1

2 /-transitively onX. On
the other hand, the vertex stabilizer.Aut X/v , v ∈ V.X/, has order 2t . But Aut X
acts arc-transitively, forcingh.X/ < t and soh.X/ = t − 1. (Of course,h.X/ = 3
if X = C4 ⊗ C4 and, by Proposition3.5, we haveh.X/ = 2r − 1 > 3 if X is either
X.4; r /, r ≥ 3 odd, orY.4; r /, r ≥ 4 even).

If X = C4 × C4
∼= Z.4;4/, then one can easily see that the vertex stabilizer acts

faithfully on the set of neighbours, thus forcingh.X/ = 2, in view of Proposition3.3.
Next, suppose thatX = Circ.10; {1;−1;3;−3}/. It is easy to see thatX ∼=

K5;5 − 5K2. Assuming thatX is .G;1=2/-transitive for someG, it follows that the
G-orientation of the edges determines a decompositionD of E.X/ into alternating
cycles (of even length). SinceX has 20 edges,D either consists of two 10-cycles
or it consists of five 4-cycles. In the first casehG.X/ = 1 by Lemma2.1. In the
second case we define a new graphY whose vertices are the alternating 4-cycles,
two being adjacent if the corresponding 4-cycles share a vertex in common. But two
alternating 4-cycles can have at most one vertex in common. Consequently,Y ∼= K5.
Moreover,Y admits a 1=2-transitive action of the groupG, the latter giving rise (via
the corresponding alternating cycles) to a decomposition ofE.Y/ into even length
cycles, which is clearly not possible asY has 10 edges. This contradiction shows that
h.X/ = 1.

We may now assume thatX is neitherCt [2K1], t ≥ 3 nor X.4; r /, r ≥ 3 odd, nor
Y.4; r /, r ≥ 4 even, nor Circ.10; {1;−1;3;−3} nor C4 × C4

∼= Z.4;4/. We first
show thath.X/ ≤ 2. Observe that every edge ofX lies on exactly two 4-cycles. This
implies that the action of the vertex stabilizer.Aut X/v , v ∈ V.X/, acts faithfully on
the set of neighbours{u1;u2;u3;u4} of v. Suppose thatu1vu2 andu3vu4 are the two
straight 2-paths atv. Then the sets{u1;u2} and{u3;u4} are blocks of imprimitivity
of .Aut X/v . Thus.Aut X/v ≤ D8, whereD8 denotes the dihedral group of order 8.
Consequently,h.X/ ≤ 2. To computeh.X/, we go through a case to case analysis for
each of the exceptional familiesFi , i = 1;2;3;4;6;7.

If either X ∼= C2r × C2r
∼= Z.2r;2r / or X ∼= C2r ⊗ C2r for somer ≥ 3, then

h.X/ = 2 in view of Proposition3.3.
Suppose thatX = Circ.2r; {1;−1; s;−s}/, wherer > 5 is odd ands ∈ Z

∗
2r satisfies

s2 = ±1. It is easily seen that each edge ofX lies on precisely two 4-cycles. Also,
observe thatX has two straight cycles, namely the Hamilton cyclesv0v1v2 · · · v2r −1

andv0vsv2s · · · v2r −s and by Lemma3.7, we haveh.X/ = 1.
Suppose now thatX = X.t; r /, wheret 6= 4 andr odd. It follows from the



166 Dragan Marǔsič and Roman Nedela [12]

definition of X.t; r / that the intersection of the two straight cycles meeting atv0
0

contains the vertexvmt
0 for everym ∈ Z. Sincer is odd, the set{vmt

0 : m ∈ Z} contains
at most two elements if and only ift ≡ 0 .mod r /. But if t > 2r then the above
intersection contains the verticesv0

r andv0
2r . Consequently, ift 6= r andt 6= 2r we

have thath.X/ = 1, by Lemma3.7. Next, sinceX.2r; r / ∼= C2r ⊗ C2r we have
h.X/ = 2 for t = 2r . On the other hand, note that the graphX.r; r / is isomorphic to
Y = Cr × Cr . Assume thathG.Y/ 6= 1 for some subgroupG of Aut Y. Then there is
an element ofG fixing a vertexv of Y, fixing pointwise one of the two straight cycles
meeting atv and reflecting the other one. Sincer is odd this automorphism inverts
an edge, contradicting the 1=2-transitive action ofG. Thush.Y/ = 1 and so we have
h.X/ = 1 for t = r .

Suppose now thatX = Y.t; r /, wheret 6= 4 andr ≥ 4 is even. It follows from
the definition ofY.t; r / that the intersection of the two straight cycles meeting atv0

0

contains the vertexv.mt/=2
0 for everym ∈ Z. Sincer is even, the set{v.mt/=2

0 : m ∈ Z}
equals{v0

0} if and only if t ≡ 0 .mod 2r / and it contains precisely two vertices, that
is, v0

0 andvt=2
0 , if and only if t ≡ 0 .mod r / but t 6≡ 0 .mod 2r /. Observe that this

intersection contains the vertexvr=2
r for all t > r and the vertexv0

2r for all t > 2r .
Moreover, if t = r this intersection contains the verticesvr=4

r=2 andv3r=4
r=2 if r=2 is even

and the verticesv.r +2/=4
r=2 andv.3r +2/=4

r=2 if r=2 is odd. Hence ift 6= 2r , Lemma3.7implies
thath.X/ = 1. If t = 2r , thenY.2r; r / ∼= C2r ⊗ C2r and soh.X/ = 2.

Finally, if X = Z.t; r /, t 6= r , we can apply an argument which emulates the one
used in the previous paragraph almost word by word. The details are omitted.

4. Main results

THEOREM 4.1. Let X be a.G;1=2/-transitive graph of valency4and girth4, where
G ≤ Aut X. Then either every4-cycle ofX is G-alternating or every4-cycle ofX is
G-directed orX is one of the exceptional graphs above. Moreover, if every4-cycle of
X is G-directed then eitherhG.X/ = 1 or X is exceptional.

PROOF. We assign to a 4-cycleC in X a binary sequence of length 4, on symbols 0
and 1, by the following rule: a vertex ofC is labeled by 1 if it is the head of one arc
and the tail of the other arc inDG.X/ and it is labeled by 0 if it is either the head of
both arcs or the tail of both arcs inDG.X/. There are then precisely four possible
binary sequences (modulo a cyclic rotation): 0000, 1111, 1100 and 1010, where the
first, the second and the third correspond toG-alternating,G-directed andG-parallel
4-cycles inX, respectively. We shall now analyze the structure ofX subject to the
existence of one of these types of 4-cycles.

Case1: X contains a4-cycle of type1010, that is, aG-parallel 4-cycle.
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Let r = rG.X/ be theG-radius ofX and consider two adjacentG-alternating cycles
C = v0v1 · · · v2r −1v0 andC′ = u0u1 · · · u2r −1u0 meeting at the vertexv0 = u0. Let
v1 andv2r −1 be the two successors, andu1 andu2r −1 the two predecessors ofv0. By
vertex-transitivity we must have that every vertex inX is contained on some 4-cycle
of type 1010 as the vertex having both successors on that 4-cycle. In particular, this
means that the 2-pathu0u1u2 is extendable to a 4-cycle of type 1010. But the fourth
vertex of this cycle must be eitherv1 or v2r −1 and it has to be a successor ofu2. Hence
u2 = v2 oru2 = v2r −2. In both cases it is easily deduced that the two alternating cycles
C andC′ either coincide or have precisely every other vertex in common. (See also
[10]). In the first case, by Proposition3.1, X is exceptional. In the second case,X is a
tightly G-attached graph with girth 4 and so, by Proposition3.2, isomorphic either to
X.t; r / or Y.t; r / or Z.t; r / for a suitablet or to Ct[2K1], and so exceptional. (Note
that the vertex stabilizer is isomorphic toZ2 in all of these cases except whenr = 2
andX ∼= Ct [2K1] when the vertex stabilizer is isomorphic toZt−1

2 .)
Case2: X contains a4-cycle of type1100.
As in Case 1, letr = rG.X/ and consider twoG-alternating cycles

C = v0v1 · · · v2r −1v0 and C′ = u0u1 · · · u2r −1u0

meeting at the vertexv0 = u0. Let v1 andv2r −1 be the two successors, andu1 and
u2r −1 the two predecessorsofv0. By vertex-transitivity we must have that every vertex
in X is contained on some 4-cycle of type 1100 as the vertex having both successors
on that 4-cycle. In particular, this means that the 2-pathu0u1u2 is extendable to a
4-cycle of type 1100. It follows that eitheru2u1u0v1u2 or u2u1u0v2r −1u2 is such a
cycle. Without loss of generality we may assume that the first possibility happens.
Thenv1 is a predecessor ofu2. For symmetry reasons we have thatur −2ur −1v0vr −1ur −2

is also a 4-cycle of type 1100. Letw be a predecessor ofu1. Then eitherwu1u0v1w

orwu1u0v2r −1w is a 4-cycle of type 1100. If the first possibility happens we have that
wu1u2v1w is a 4-cycle of type 1010 and as in Case 1 the graphX is exceptional. If the
latter happens thenw = v2r −2 and so it follows thatu1 = v2r −3. ThusC andC′ have
two consecutive vertices ofC′ in common and we can deduce that the two vertex sets
coincide, that is,V.C/ = V.X/ = V.C′/. As in Case 1, by Proposition3.1, the graph
X is exceptional. (In fact in this case one can see thatX ∼= Circ.10; {1;−1;3;−3}.)

Case3: X contains4-cycles of types0000and 1111, that is, G-alternating and
G-directed4-cycles.

If two adjacentG-alternating cycles have two vertices in common then the graph
is tightly G-attached and therefore exceptional. (In fact it must be isomorphic to
C4[2K1]. Assume that two adjacentG-alternating cycles intersect in one vertex only.
We letY = Alt .X/ be the graph whose vertices are theG-alternating cycles ofX, with
two vertices joined by an edge if and only if the correspondingG-alternating cycles
have a common vertex. It may be seen thatY admits a 1=2-transitive action of the
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groupG and that every edge ofX is contained on aG-directed 4-cycle. Moreover,Y
has half the number of vertices ofX and so the corresponding stabilizer of the action
of G on Y contains a copy ofZ2

2. But then every edge ofY must lie on at least two
G-directed 4-cycles. Letu; v be a pair of adjacent vertices inY with u → v in the
G-orientation onY, and letu1;u2 andv1; v2 be the two predecessors ofu and the
two successors ofv, respectively. Since the vertex stabilizersGu andGv contain a
copy ofZ2

2, we may easily see that the bipartite graph induced by the sets{u1;u2}
and{v1; v2} is regular and so isomorphic either toK2;2 or to 2K1. In the first case,
{u1;u2; v1; v2} induces aG-alternating 4-cycle inY, forcingY ∼= C4[2K1] ∼= C4⊗C4,
and consequentlyX ∼= C4 ×C4, an exceptional graph. In the second case, we see that
the edgeuv, and hence every edge ofY, is contained on precisely twoG-directed 4-
cycles. By Proposition3.4, we have that eitherY ∼= C2r ×C2r , r ≥ 2, orY ∼= C2r ⊗C2r ,
r ≥ 3. Now going back toX we have thatX ∼= C4r ⊗ C4r , r ≥ 2, in the first case, and
X ∼= C2r × C2r , r ≥ 3, in the second case. ThusX is again exceptional. (Observe
that, with the exception of the caseX ∼= C4 × C4, the vertex stabilizer of the above
1=2-transitive group action onX, which induces alternating cycles of length 4, is
isomorphic toZ2.)

Case4: All 4-cycles inX are of type1111, that is,G-directed.
We show that eitherhG.X/ = 1, that is, the vertex stabilizer is isomorphic toZ2,

or X is isomorphic to one of the graphsC2r × C2r , r ≥ 2, or C2r ⊗ C2r , r ≥ 3.
Clearly,r = rG.X/ ≥ 3. Consider twoG-alternating cyclesC = v0v1 · · · v2r −1v0 and
C′ = u0u1 · · · u2r −1u0 meeting atv0 = u0. Letv1 andv2r −1 be the two successors, and
u1 andu2r −1 the two predecessors ofv0. There exists a vertexx of X such thatv1 → x
andx → u1, giving rise to a directed 4-cyclev0v1xu1v0. If there was another vertex
y such thatv1 → y andy → u1 thenu1xv1yu1 would be a forbidden 4-cycle of type
1010. Similarly,u1xv1yu1 would be a forbidden 4-cycle of type 1100 ifv1 → y and
u1 → y or if y → v1 andy → u1. Finally, if u1 → y andy → v1 thenv0v1wu1v0

would be a forbidden 4-cycle of type 1010. We have therefore proved thatu1 and
v1 have a unique common neighbourx. It follows that in X a directed 2-path is
extendable to a unique (directed) 4-cycle. This implies that every edge ofX lies on
either one or two directed 4-cycles. We now show that the assumption that the vertex
stabilizerGv0 is not isomorphic toZ2 forces the latter possibility.

So, assume thatGv0 is not isomorphic toZ2. Then there existsÞ ∈ G whose
restriction to{v0} ∪ N.v0/ is the permutation.v0/.v1/.v2r −1/.u1u2r −1/. If xÞ = x,
then we must havex → u2r −1 and soxu1v0u2r −1x is a forbidden 4-cycle of type 1010.
Thusw = xÞ 6= x. It follows thatv0v1wu2r −1v0 is another directed 4-cycle containing
the edgev0v1. We conclude that the graphX is specified by the characteristic property
that every edge is contained on precisely two 4-cycles, both of them of directed
orientation. Now the proof is completed using Proposition3.4.

As an immediate consequence of Theorem4.1 and Proposition3.6 we have the
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following result.

COROLLARY 4.2. Let X be a1=2-transitive graph of valency4 and girth 4. Then
either

.i/ every4-cycle is alternating or
.ii/ every4-cycle is directed.

Moreover, in case(ii) X is of height1.

We are now ready to prove Theorem1.1.

PROOF OFTHEOREM 1.1. Using Corollary4.2 together with the fact that in a 1=2-
transitive graph of valency 4 the set of alternating cycles decomposes the edge set
[10, Proposition 2.4], we may assume that 4-cycles inX are all directed. Further
h.X/ = 1. We now show that the set of these cycles decomposesE.X/. If not then
Corollary4.2 implies that every edge ofX lies on½ ≥ 2 directed 4-cycles. If½ > 2,
then X is isomorphic toC4[2K1]. Thus½ = 2 and applying [11, Proposition 2.2]
we conclude thatX is the medial graph of a regular map of type{4;4}. It follows
from the classification of regular maps of type{4;4} (see [6, page 103]) that all of
these maps are positively self-dual. HenceX is arc-transitive by [11, Theorem 4.1], a
contradiction.

The conclusion of our analysis is that 1=2-transitive graphs of valency 4 and girth 4
fall into two disjoint classes. Graphs belonging to the first class have alternating 4-
cycles, in other words their radius is 2. Recently, an infinite family of such graphs has
been constructed in [9] as follows. For eachn = 2k+1 ≥ 17 letXn denote the Cayley
graph Cay.An; {a;a−1;b;b−1}/, wherea is then-cycle.0;1; : : : ;n−1/ andb = tat
is a conjugate ofa by t = .02/.47/. ThenXn is a 1=2-transitive graph of valency 4
and radius 2 (with the automorphism groupAn ×Z2). Graphs belonging to the second
class have directed 4-cycles and their height equals 1. It follows from the results
proved in [11] that every such graph is the medial graph of an irreflexible regular map
of valency 4. Controlling irreflexibility of maps, however, is not at all an easy task.
Also, there are examples of irreflexible regular maps that give rise to arc-transitive
medial graphs. Nevertheless, there exists an infinite family of graphs belonging to
the second class above. Lets be any even number and letr = 1 + s + s2 + s3.
It follows from [14, Theorem 3.1] that the graphX.s; 4; r /, defined in Section3, is
1=2-transitive. Moreover, it is obvious that its girth is 4 and that all of its 4-cycles are
directed.
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