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Abstract

Finite graphs of valency 4 and girth 4 admitting 1/2-transitive group actions, that is, vertex- and edge- but

not arc-transitive group actions, are investigated. A graph is said to leah&ltiveif its automorphism

group acts 1/2-transitively. There is a natural orientation of the edge set of a 1/2-transitive graph induced
and preserved by its automorphism group. Itis proved that in a finite 1/2-transitive graph of valency 4 and

girth 4 the set of 4-cycles decomposes the edge set in such a way that either every 4-cycle is alternating
or every 4-cycle is directed relative to this orientation. In the latter case vertex stabilizers are isomorphic

to Zz.

2000Mathematics subject classificatioprimary 05C25, 20B25.

1. Introduction

Throughout this paper by graph we mean a finite, simple and undirected graph.
Given a graphX we letV (X) and E(X) be the vertex set and the edge set<f
respectively. Each edgev = {u, v} of X gives rise to twaarcs (u, v) and (v, u)

of X. Any choice of precisely one of these two arcs for all edgeX oésults in an
oriented graphwhose underlying graph iX. (By anoriented graphwe therefore
mean an ordered pai¥/, A), whereV is a finite nonempty set ard, the set ofarcs

is an antisymmetric relation ovi.) Unless stated otherwise graphs are assumed to be
connected. Furthermore, all groups are assumed to be finite. For graph-theoretic an
group-theoretic terms not defined here we refer the readé&r 1 18].
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We are going to adopt the terminology and notationsléf [L1] pertaining to the
particular concept of 2-transitive group actions on graphs. A grayts said to be
vertex-transitiveedge-transitivendarc-transitive respectively, if its automorphism
group AutX actsvertex-transitivelyedge-transitivelandarc-transitively Further, a
graph is tregularif its automorphism group acts regularly on its arc set. It follows
from [16, 7.53, page 59] that the automorphism group of a vertex- and edge-transitive
but not arc-transitive graph must necessarily have two orbits on the arc set, with eact
orbit containing an arc corresponding to each edge; that is, in the terminolod§, of [
page 24], it acts /2-transitively on the arc set having two orbits (of equal length).
We shall thus say, although in a slight discord with the above mentioned meaning
[18, page 24], that a grapX is 1/2-transitiveprovided it is vertex- and edge- but not
arc-transitive. More generally, by g2-transitiveaction of a subgrou® < Aut X
on X we shall mean a vertex- and edge- but not arc-transitive actiofi dn this case
we shall say that the grapXis (G, 1/2)-transitive

Recently there has been an outburst of papers dealing with the structure and clas
sification of 1/2-transitive graphs]] 2, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19].

In this paper we continue the study of2ttransitive group actions on finite graphs

of valency 4 initiated in 10], where some general results were obtained, including
classification results on/2-transitive graphs of valency 4 enjoying certain addi-
tional structural properties, and continued ]} where the interplay of regular
maps, 1-regular graphs and graphs of valency 4 admitti@ettansitive group actions

was studied. It follows from13] that graphs of valency 4 and girth 3 admitting a
1/2-transitive group action are in a one-to-one correspondence (via the line graph
construction) with cubic graphs having a subgroup of automorphisms acting regularly
on the arc set. In particular/2-transitive graphs of valency 4 and girth 3 are in a
one-to-one correspondence with cubic 1-regular graphs. Our aim is to prove a similar
result for graphs of valency 4 and girth 4 admitting/2-transitive group action.

Let X be an oriented graph. A pathof X is calleddirectedif every vertex ofP of
valency 2 is the tail of one and the head of the other of its two incident arcs. Similarly,
adirected cyclén X is a cycle whose every vertex is the tail of one and the head of the
other of its two incident arcs. An even length cy€lén X is aparallel cycleif it may
be decomposed into two arc-disjoint directed subpaths of equal length intersecting
in two vertices, one of which is the tail and the other the head of the corresponding
incident arcs. An even length cydkin X is analternating cyclef every other vertex
of C is the tail and every other vertex 6fis the head of its two incident arcs.

Let X be a graph of valency 4 admitting @2ttransitive action of some subgroup
G < AutX. Let us assign an orientation, fixed from now on, to a given edge
of X. Then, via the 12-transitive action of5, this orientation extends uniquely to
an orientation of the edge set ¥f thus giving rise to an oriented graph whose every
vertex has two predecessors and two successors and whose underlying undirecte
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graph isX. Concepts peculiar to oriented graphs, such as directed, alternating and
parallel cycles, may thus be extended t@ransitive graphs, via the above orientation

of the edge set induced by its automorphism group. We may now state one of the two
main results of this paper.

THEOREM1.1. Let X be al/2-transitive graph of valencg and girth4. Then the
set of4-cycles ofX decomposes the edge &&tX) and, furthermore, either

(i) every4-cycleis alternating or
(i) everyd-cycle is directed.

Moreover, in caséii) the vertex stabilizetAut X),, v € V(X), is Z,.

In order to prove Theorerh.1, 1/2-transitive group actions on graphs of valency 4
and girth 4 are studied, resulting in their characterizationin Thedr&nin Section?
certain concepts arising in the study of2ltransitive group actions on graphs are
introduced. Next, in SectioB some exceptional arc-transitive graphs of valency 4
and girth 4 admitting a /2-transitive group action are dealt with, setting the stage for
the proofs of Theorerh.1and Theorerd.1in Sectiord. Finally, two infinite families
of 1/2-transitive graphs of valency 4 and girth 4 satisfying, respectively, conditions
(i) and (ii) of Theoreml.1are given at the end of this paper.

2. Preliminaries

Let X be agraph and l&s < Aut X act 1/2-transitively. There will be instancesin
our discussion where information on the vertex stabili@grv € V(X), is relevant.
We shall say thaK is (G, 1/2, H)-transitive providedH = G, for somev € V (X).

There are two essentially different types gRitransitive group actions on graphs
of valency 4. Namely, given a graptiof valency 4 admitting a /2-transitive action
of asubgrous < Aut X and avertex € V(X), the restrictiorG\™ of the stabilizer
G, to the neighbourhool (v) = {u, w, X, y} of v is isomorphic either t&, or to Z3.

In other words,X is either(G, 1/2, Z,)-transitive or(G, 1/2, H)-transitive, where
H = G, contains a copy o¥5. (Note thatH is a 2-group.) Le{x, y} and{u, w}
be the two orbits of5, on N(v). In the first caseG\™ = ((xy)(uw)) and it is easy
to see that the restriction homomorphism is a monomorphism af@,30= 2. In
the second cas&'™ = ((xy), (uw)) and in general the ord¢, | is not bounded
as may be seen by the lexicographic prod@;{2K,], whereC, denotes the cycle of
lengtht > 3 (see Sectiofl). TheG-heighths(X) of X is equal tch, whereg|G,| = 2",

v € V(X). Moreover, we let thbeighth(X) of X be the maximum over ab-heights
hs(X), whereG < Aut X acts Y 2-transitively onX.

A (G, 1/2)-transitive graphX of valency 4, wheré&s < Aut X, gives rise to two
oriented graphs—wittX as their underlying graph—namely, the two orbital graphs
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of the action ofG on V (X) relative to two paired suborbits of length 2. 8¢ (X) be

one of these two graphs fixed from now on. fow € V(X) we shall writeu — v

if (u,v) is an arc inDg(X) and shall say that is a predecessoof v (and thetail

of (u, v)), and thatv is asuccessoof u (and theheadof (u, v)). We remark that

by the G-orientation of the edges ofX, that is, by the orientation induced by the
1/2-transitive action o6, we shall always mean the corresponding orientation of the
edgesinDg(X). A pathP in X is aG-directed pathf it is a directed path irDg (X).

A cycle of X is a G-directed cycle a G-parallel cycleand aG-alternating cycle
respectively, provided it is a directed cycle, a parallel cycle and an alternating cycle
in Dg(X). In particular, ifG = Aut X the symbolG is omitted and we refer to an
orientationof the edges oK, and to adirected pathadirected cycleaparallel cycle
and analternating cycleof X. It transpires that alG-alternating cycles inX have

the same length and form a decomposition of the edge ¢ &0, Proposition 2.4];
half of this length is denoted his (X) and is called th&s-radiusof X. Moreover,
any two adjacenG-alternating cycles oK intersect in the same number of vertices
and this number, called th8-attachment numbeas (X) of X, divides 25 (X) [10,
Proposition 2.6]. IfX is 1/2-transitive, we let theadiusand theattachment number

of X be, respectively, the AX-radius and the AuX-attachment number of. The
following simple observation on attachment numbers is madédh [

LEmmA 2.1. Let X be a(G, 1/2)-transitive graph for some subgroup of Aut X.
If the G-attachment numbea; (X) is at least3 then theG-heighthg (X) equalsl.

If ag(X) = re(X) we say that th€G, 1/2)-transitive graptX of valency 4 idightly
G-attached In particular, a 12-transitive graptX of valency 4 igightly attachedf it
is tightly Aut X-attached. A complete classification of tightly attachég-fransitive
graphs with odd radius and valency 4 is obtainedLli® Theorem 6.2.].

By a mapwe mean a cellular decomposition of an orientable closedasearf A
common way of constructing maps is by embedding a graph into a surface. It is
well known that a magM given by an embedding of a graphinto a surface can
be completely described by means of its rotation system, that is, by listing, for every
vertexv of M, the cyclic permutation of the incident outgoing arcsvoinduced
by a chosen rotation of the ambient surface. We can therefore idévitifyith the
pair (X; R), whereR is the above rotation system fél. The mapM = (X; R)
determines the dual mag* = (X*; P), whereX* is the dual graph an@ is the one
of two possible rotations determining the geometric duaMgfwhich is consistent
with the chosen orientation of the surface. We say tais positively self-dualf
M = (X;R) is isomorphic toM* = (X*, P). The mapM is calledregular if its
automorphism group Au¥l acts transitively (and therefore regularly) on the set of
arcs ofX. We say that a regular may is of type{q, p}, whereq, p are integers, if
M is of valencyp and has face-sizg The relationship between regular and self-dual
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maps and 12-transitive group actions on graphs of valency 4 is studied 1 [

3. Exceptional graphs admitting 1/2-transitive group actions

In this section we describe seven infinite families of arc-transitive graphs of va-
lency 4 and girth 4 admitting a/2-transitive group action. These graphs arise as
exceptional graphs in Theorefnl

A circulant is a Cayley graph of a cyclic group. Latbe a positive integer and
let S= —Sbe a symmetric subset @f,. By Circ(n, S) we denote the circulant with
vertex sef{v; : i € Z,} and edges of the formv,s, i € Z,, S € S. A particular
family of circulants arises in the characterization of graphs of valency 4 admitting
a 1/2-transitive group action with respect to which they have only two alternating
cycles.

ProPOSITION3.1 ([10, Proposition 2.4, ()i). LetX be a(G, 1/2)-transitive graph
of valency4 for some subgrouf of Aut X and letr = rg(X). ThenX has only two
G-alternating cycles (both spanning(X)) ifand only if X = Circ(2r, {1, —1, s, —s})
for some odd € 73 \ {1, —1} such thats? € {1, —1}. Moreover,X is arc-transitive.

Letr,t > 3 be integers. Far odd ands € Z; satisfyings' € {1, —1}, IetX(s,t, r)
denote the graph with vertex st : i € Z,, j € Z,} and edges of the forny vﬂjf',
v) IJHS (i €2, j € 7). Inparticular, setX(t,r) = X(1;t,r). Forr andt even,
Iet Y(t, r) denote the graph with vertex sgt’ : i € 7, j € Z} and edges of the
form v v Win i1V (e 7, | € Z,). Moreover, letZ (t, r) denote the graph with
vertexsetv! : i € Z,, j € Z,} and edges of the formy v/, ,, v/ v/}~ Ve z\[-1),
j € ;) andv! jv3™% vl ™2 (j € Z,). It may be seen that the permutation
mapping according to the rule p = v/, i € Z,, j € Z,, is an automorphism of
X(s;t,r), Y(t,r)aswellasZ(t, r). Moreover, the permutatiop defined by the rule
vy =v )i €7, j €z, is an automorphism of botK (t,r) andY(t,r). Finally,

the permutatios defined by the rule

_iar/2 . .
v A =1, ez,

s — {vijl, i e Z\{-1}, | € Z;
is an automorphism dt (t, r). Besidesy tpy = p~tands1ps = p~tand sop, y)
in the case of graphX(t, r) andY(t, r) and(p, §) in the case of the grapA(t, r) is
a metacyclic subgroup of automorphisms acting vertex-transitively.

PROPOSITION3.2. Let X be a tightlyG-attached(G, 1/2)-transitive graph of va-
lency4, whereG < AutX, withr > 2 andt > 3 as its respectivé&-radius and
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the number ofG-alternating cycles. 11X contains aG-parallel 4-cycle thenX is
isomorphic toC,[2K,]ifr =2,toY(t,r) orto Z(t,r) ifr > 4is even and toX(t, r)
if r is odd.

PrOOF. The fact thatX is tightly G-attached is crucial. Supposing first thais
odd, we have by 10, Proposition 3.3] thai is isomorphic toX(s;t,r) and it is
easily seen that the existence ofaparallel 4-cycle inX forcess € {1, —1} and so
X = X(t,r).

Suppose now thatis even. The case= 2 is proved in L0, Proposition 3.1]. Let
r > 4. Letv € V(X) and letu, w be the two neighbours efon a givenG-alternating
cycle of X containingv. By [10, Proposition 3.1] there exists an automorphjsof X
takingu to w whose orbits are th&-attachment sets of, as well as an automorphism
o cyclically permuting theG-attachment sets of in such a way that—*po = p°
for somes € Z:. For each € 7, letV, be theG-attachment set containing'.
Further, for eachj € Z,, letv) = vpi andv! = wpl. Next, letv’ be the fourth
vertex in theG-parallel 4-cycle containing verticas u andw. Of coursey’ € V,
and one can easily see thép = w’, whereu’, w" € V; are the other two neighbours
of v'. For eachj € Z,, we setv) = v'pl andv, = w'p!. Continuing this way we
end up with a graph having vertex def :ic Zt, j € Z,} and edges of the form
vivl vl TV (i e 7, \ (=1}, | € Z,). As for the edges with one endvertex in
V,_; and the other iy, there are precisely two possibilities, one resulting in a graph
isomorphic toY(t, r) and the other in a graph isomorphicZgt, r). Namely, since
X is atightlyG-attached G, 1/2)-transitive graph, it follows by][O Proposition 3.1]
that there exists an involutory automorphism, safixing v = vJ and fixing each of
the setsV,, i € 7,, setwise. One may easily see thanust obey the rule/r = v, -l
j ez, fori evenand’t = v ', j € 7, fori odd. Using this automorphism we
then deduce that, for eaghe 7Z,, the neighbours OiﬁJ ', inV, are eithen; andvJ+l
or v} ™% andv)™"/?. In the first case we havk& = Y(t,r) and in the second case
X = Z(t,r). O

Letr > 3 be an integer and leX = C, x C, be the Cartesian product of two
cycles of lengthr. There is a unique quadrilateral embeddiMgof X into the
torus. Ifr is even then we can orient the edgesXofn such a way that each copy
of C, forms an alternating cycle and every 4-cycle %fbounding a quadrilateral
region inM is directed in the prescribed orientation. From the planar representation
of M one can easily see that there is an automorphisai X rotating a specific
guadrangle and preserving the above orientation. Moreover, the vertex stabilizer
(Aut X),, v € V(X), contains two reflectiong and g fixing, respectively, the two
alternating cycles meeting at It follows thatX = Cys x Cos, I = 25, is (G, 1/2, Z3)
transitive, wheré&s = («, B, p). We note that, letting the vertex setXfbeZ,s x 7,
the orientation of the edges &f which admits the 12-transitive action of the group
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FIGURE 1.

G, satisfies the following rule: the vertgk j) is a predecessor af, j + 1) and a
successorafi+1, j)if i + j is even, andis a successonifj +1) and a predecessor
of i +1,j)ifi+ ] isodd.

There is another infinite family of graphs sharing similar properties with the Carte-
sian product of two even cycles of equal length. Yet C, ® Cy, r > 3, denote
the graph whose vertex set is the edge seXot C, x C,, with two vertices ofY
being adjacent if the corresponding edges form consecutive sides of a quadrangle ir
the quadrilateral embeddingl of X into the torus. The grapl is the so called
medial graph ofM. Since the mapM is regular and self-dual it follows fromi[,
Theorem 4.1 (4)] that the graphis (G, 1/2, Z3)-transitive for a particular subgroup
G of AutY. (This fact can also be checked directly.) Moreover, Grerientation
of the edges off induced byG is such that all 4-cycles of are G-directed. The
G-alternating cycles oY have length 2 and two of them are either disjoint or meet
in two vertices (see Figuré forr = 3). Moreover, we leC, ® C, be the lexico-
graphic product,[2K,] (which is isomorphic to the complete bipartite grah,).
Alternatively, we may defin = C, ® C,,r > 2, as a particular quotient graph of
X = Cy x C,, obtained by identifying the vertic&s j) and(i +r, j +r) of X, for
alli, j € Z,, with the adjacency as well as the orientation of the edges being inherited
from that of X.

The next proposition follows from the above arguments.

PROPOSITION3.3. Let X = C, x C, or X = C, ® C, for some > 2. ThenX
is a (G, 1/2, Z%)-transitive graph for some subgroup < Aut X, and consequently
h(X) > 2. Moreover, theG-orientation of the edge set &f is such that every edge
of X lies on fourG-directed4-cycles ifX = C, ® C4 and on twoG-directed4-cycles
otherwise.
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In the next proposition we show that the converse is also true.

PrROPOSITION3.4. Let X be a (G, 1/2)-transitive graph of valency, for some
subgroupG < Aut X, such that every edge of lies on precisely twds-directed
4-cyclesandg(X) > 2. Then eitheiX = Cy x Cy, 1 > 20r X = Cy Q Cy, 1 > 3.

PrOOF. By gluing a 2-cell to everg-directed 4-cycle oX we obtain a 4-valent 4-
gonal mapM in a surfaces of Euler characteristic 0. As a consequence of transitivity
of quadrangles we have that the two alternating cycles meeting at a vec®ss
each other at. It is well known that a simple closed curve in a surface of Euler
characteristic 0 is of one of the following four types: (i) contractible—it bounds a disk,
(i) nonseparating and orientation changing, (iii) separating and noncontractible—it
bounds a Mbius band, (iv) nonseparating, noncontractible and orientation preserving.
We first show that everg-alternating cycleC of X is of type (iv).

Assuming tha€ bounds a dislo we geta quadrangulation Bfand a contradiction
can be derived using Euler’s formula.Gfis of type (ii) then the subgraph finduced
by all the quadrangles incident with forms a quadrangulation of adbius bandB
with the boundary oB being formed by anotheB-alternating cycle whose length
would be twice the length oE, a contradiction. Finally, i€ bounds a Mbius band
B, we may assume that the number of quadrangles irdideninimal, that is B does
not contain aG-alternating cycle separating adddius band. Them is a union of
guadrangles incident wit€. If C meets just one side of each quadrangl&pthen
there is aG-alternating cycle of type (i) insid®, and a contradiction is derived as
above. IfC meets two opposite sides of every quadrangle we take a quadingB
and an element € G rotatingQ. Clearly,y» mapsC onto someG-alternating cycle
C’ meetingC in the four vertices of). Thus the twdG-alternating cycles intersectin
at least four vertices and, by Lemrfd, we have thahg(X) = 1, a contradiction.

Having seen that ever§-alternating cycle ofX is of type (iv), we can cut and
open the surface along one such cyeleéWe get an annulud bounded by two copies
C, andC, of C. Let us consider &-alternating cycleC’ meetingC at a vertexu.
SinceC’ is of type (iv), it follows thatS is a torus. By Lemm&.1, C’ meetsC in
one or two vertices. In the first cagg is represented oA by a path joining the two
copiesu; andu, of u on C; andC,. In the second case, letbe the second vertex.
ThenC’ is represented by two paths joining to v, and v, to u, (see Figure?),
whereu; andv;, i = 1, 2, are the respective copieswandv onC;,i = 1,2. Now
cutting A along the paths representi@gwe get the planar representations of toroidal
embeddings o€, x C,,r > 2, in the first case an@, ® C,,r > 3, in the second
case. Moreover, note that in the second dase} is the G-attachment set arising
from theG-alternating cycle€ andC’ and so it follows that andv are antipodal on
bothC andC'. O
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FIGURE 2.

We say that a graph of valency 4 admitting /24ransitive group action isxcep-
tional if it belongs to one of the following families of (arc-transitive) graphs.

(i) the family.#, of circulants Cir¢2r, {1, —1, s, —s}), wherer > 2 ands € 73,
satisfiess® € {1, —1};

(ii) the family.%, of graphsX(t, r), wheret > 3 is aninteger and > 3 is an odd
integer;

(iii) the family.Z; of graphsY(t, r), wheret > 4 andr > 4 are even integers;
(iv) the family.Z, of graphsZ(t,r), wheret > 4 andr > 4 are even integers;
(v) the family.Z; of lexicographic product€;[2K,], wheret > 3 is an integer;
(vi) the family % of Cartesian productS, x Cy,r > 2;

(vii) the family.%; of graphsC, ® Cy,r > 3.

Let us remark that the exceptional graphs belongingZtpand to.%; are the
underlying graphs of reflexible regular maps of typed} (see p] for the classification
of such maps).

The proof of the next proposition is left to the reader.

ProPOSITION3.5. The following isomorphisms hold between members of different
families of eceptional graphs.
(i) Cy x Cyu,r > 2,isisomorphic taZ(2r, 2r);
(i) Cy ® Cy,r > 3is isomorphic toY (2r,r) if r is even and toX(2r,r) if r is
odd;
(i) Cy[2K4],r > 3,isisomorphictoX(4,r) if r is odd and to¥ (4, r) if r is even.

Let us emphasize, however, that for each of these pairs of isomorphic graphs in
Proposition3.5, the associated/2-transitive group actions are different.

PROPOSITION3.6. Every exceptional graph is arc-traitise.

PrOOF. In view of Propositior3.5, it suffices to check that every graph belonging
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to one of the familiesZ,, i = 1, 2, 3, 4,5, is arc-transitive. The arc-transitivity of
lexicographic product€,[2K] € .Z5 is obvious. The arc-transitivity of the circulants
in .Z, follows from Propositior8.1 The arc-transitivity of the graph$(t,r) € %, is
deduced from]0, Corollary 3.6]. To see that the graphig, r) € .%; and the graphs
Z(t,r) € %, are arc-transitive, note that the permutatiotiefined by the rule

1

i fu ieven jez;
v i odd j ez,

is an automorphism of (t,r) and Z(t, r). Furthermore, the permutatien defined
by the rule

viw=vl ., ez, jez,
i t—i t

is an automorphism of (t, r) and the permutatiott defined by the rule

o vk i#0 jez;
viﬂ_ j+r/2 . .
v ', 1=0, JeZ,

is an automorphism oEZ(t,r). Hence the groupép, y, 7, ®) and{p, §, 7, ), act
arc-transitively on the graphs(t, r) andZ(t, r), respectively. O

Let X be any graph of valency 4 with the property that every edge lies on precisely
two 4-cycles. A 2-path oK is calledstraightif it does not extend to a 4-cycle. A
cycleC of X is said to bestraightif every 2-path ofC is straight. Using the fact that
each edge oK is on precisely two 4-cycles, it may be seen that an arbitrary 2-path of
X which is extendable to a 4-cycle is uniquely extendable to a 4-cycle. We deduce that
every edge ofX is uniquely extendable to a straight 2-path and thus also to a straight
cycle and that, moreover, at every vertexXftwo straight 2-paths, and therefore
also two straight cycles, intersect. In particular, straight cycles form a decomposition
of E(X).

In view of the above comments, the proof of the next lemma is straightforward.

LEmMmMA 3.7. Let X be a graph of valency such that each of its edges lies on
precisely two4d-cycles. Then the straightness of cyclesfofs preserved byAut X.
Moreover, if any two adjacent straight cyclesXfneet in at least three vertices, then
the only automorphism of fixing two adjacent vertices is the identity.

PrROPOSITION3.8. Let X be an exceptional graph. Then

(i h(X) =h=>3ifand only if X = C,.1[2K;] andh > 3;

(i) h(X) = 2if and only if X is isomorphic either t&;[2K;] or to Cy x Cy =
Z(2r,2r) for somer > 2, orto C,, ® C,, = X(2r,r) for somer > 3 odd or to
Cy ®Cy = Y(2r,r) forsome > 4even
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(i) andh(X) = 1in all other cases.

PrOOF. Suppose first thaX = C,[2K,] for somet > 3. To proveh(X) >t —1
let us take one of the two possible directed orientations of the base Cyadad
extend it consistently to the edgesXf It is easily seen that the subgroGpof the
orientation preserving automorphismsXfcts(G, 1/2, Z,)-transitively onX. On
the other hand, the vertex stabilizekut X),, v € V(X), has order 2 But AutX
acts arc-transitively, forcing(X) < t and soh(X) =t — 1. (Of courseh(X) = 3
if X =C,;® C4 and, by Propositior3.5, we haveh(X) = 2r — 1 > 3if X is either
X(4,r),r >3o0dd, orY(4,r),r > 4 even).

If X =C4 x Cy = Z(4,4), then one can easily see that the vertex stabilizer acts
faithfully on the set of neighbours, thus forcihgX) = 2, in view of Propositior8.3.

Next, suppose thaK = Circ(10, {1, -1, 3, —3}). It is easy to see thaX =
Kss — 5K,. Assuming thatX is (G, 1/2)-transitive for someG, it follows that the
G-orientation of the edges determines a decompostoof E(X) into alternating
cycles (of even length). Sinc¥ has 20 edges? either consists of two 10-cycles
or it consists of five 4-cycles. In the first casg(X) = 1 by Lemma2.1 In the
second case we define a new graphlwvhose vertices are the alternating 4-cycles,
two being adjacent if the corresponding 4-cycles share a vertex in common. But two
alternating 4-cycles can have at most one vertex in common. Conseqle&tiis.
Moreover,Y admits a }2-transitive action of the grou@, the latter giving rise (via
the corresponding alternating cycles) to a decompositiok @f) into even length
cycles, which is clearly not possible ¥shas 10 edges. This contradiction shows that
h(X) = 1.

We may now assume that is neitherC,[2K],t > 3 nor X(4,r),r > 3 odd, nor
Y4, r), r > 4 even, nor Cir¢10, {1, —1,3, -3} norC, x C, = Z(4,4). We first
show thath(X) < 2. Observe that every edge Xflies on exactly two 4-cycles. This
implies that the action of the vertex stabilizéwut X),, v € V(X), acts faithfully on
the set of neighbourl,, u,, us, us} of v. Suppose thai;vu, andusvu, are the two
straight 2-paths at. Then the set$u,, u,} and{us, u,} are blocks of imprimitivity
of (Aut X),. Thus(Aut X), < Dg, whereDg denotes the dihedral group of order 8.
Consequentlyh(X) < 2. To computén(X), we go through a case to case analysis for
each of the exceptionalifalies Z;,i = 1,2,3,4,6, 7.

If either X = Cy x Cy = Z(2r,2r) or X = C, ® C, for somer > 3, then
h(X) = 2 in view of Propositior3.3.

Suppose thaX = Circ(2r, {1, —1, s, —s}), wherer > 5isodd and € Z;, satisfies
s? = 41. Itis easily seen that each edgeXofies on precisely two 4-cycles. Also,
observe thaiX has two straight cycles, namely the Hamilton cyalgg v, - - - v 1
andugusvys - - - vy _s @and by Lemma.7, we haveh(X) = 1.

Suppose now thaX = X(t,r), wheret # 4 andr odd. It follows from the
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definition of X(t,r) that the intersection of the two straight cycles meetinggat
contains the vertex" for everym € Z. Sincer is odd, the sefvg" : m € Z} contains
at most two elements if and only if= 0 (modr). Butif t > 2r then the above
intersection contains the verticesandv?.. Consequently, if # r andt # 2r we
have thath(X) = 1, by Lemma3.7. Next, sinceX(2r,r) = C, ® C, we have
h(X) = 2 fort = 2r. On the other hand, note that the grapfr, r) is isomorphic to
Y = C, x C,. Assume thahs(Y) # 1 for some subgrou of AutY. Then there is
an element of5 fixing a vertexv of Y, fixing pointwise one of the two straight cycles
meeting at and reflecting the other one. Sinces odd this automorphism inverts
an edge, contradicting the/ 2-transitive action of5. Thush(Y) = 1 and so we have
h(X) =1fort =r.

Suppose now thaX = Y(t,r), wheret # 4 andr > 4 is even. It follows from
the definition ofY (t, r) that the intersection of the two straight cycles meetingdat
contains the vertex(""’? for everym € Z. Sincer is even, the sew™’* : m € 7}
equals{vg} if and only ift = 0 (mod 2) and it contains precisely two vertices, that
is, v3 andvg, if and only ift = 0 (modr) butt # 0 (mod 2). Observe that this
intersection contains the vertek'? for all t > r and the vertex$, forallt > 2r.
Moreover, ift = r this intersection contains the vertice$; andv,," if r/2 is even
and the vertices/;?* andv;7, "% if r /2 is odd. Henceif # 2r, Lemma3.7implies
thath(X) = 1. Ift = 2r, thenY(2r,r) = C, ® C, and soh(X) = 2.

Finally, if X = Z(t,r), t # r, we can apply an argument which emulates the one
used in the previous paragraph almost word by word. The details are omitted]

4. Main results

THEOREM4.1. Let X be a(G, 1/2)-transitive graph of valencgand girth4, where
G < Aut X. Then either everg-cycle ofX is G-alternating or every-cycle ofX is
G-directed orX is one of the exceptional graphs above. Moreover, if edesycle of
X is G-directed then eithelg (X) = 1 or X is exceptional.

PrOOF. We assign to a 4-cycle in X a binary sequence of length 4, on symbols 0
and 1, by the following rule: a vertex @ is labeled by 1 if it is the head of one arc
and the tail of the other arc iDg(X) and it is labeled by 0 if it is either the head of
both arcs or the tail of both arcs Dg(X). There are then precisely four possible
binary sequences (modulo a cyclic rotation): 0000, 1111, 1100 and 1010, where the
first, the second and the third correspon@t@lternatingG-directed ands-parallel
4-cycles inX, respectively. We shall now analyze the structureXasubject to the
existence of one of these types of 4-cycles.

Casel: X contains a4-cycle of typel01Q that is, aG-parallel 4-cycle.
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Letr = rg(X) be theG-radius ofX and consider two adjace@talternating cycles
C = vovy - - vy_1vg @andC’ = UgU; - - - Uy _;Ug Meeting at the vertex, = ug. Let
vy andvy_; be the two successors, andandu,_; the two predecessors of. By
vertex-transitivity we must have that every vertexXris contained on some 4-cycle
of type 1010 as the vertex having both successors on that 4-cycle. In particular, this
means that the 2-patlyu,u, is extendable to a 4-cycle of type 1010. But the fourth
vertex of this cycle must be either or v, _; and it has to be a successougf Hence
U, = v Oru, = vy . INboth casesit is easily deduced that the two alternating cycles
C andC'’ either coincide or have precisely every other vertex in common. (See also
[10)). Inthe first case, by Propositichl, X is exceptional. In the second ca3eis a
tightly G-attached graph with girth 4 and so, by Proposito? isomorphic either to
X(,r)yorY(,r)orZ(t,r) for a suitablet or to C,[2K,], and so exceptional. (Note
that the vertex stabilizer is isomorphicZg in all of these cases except wher= 2
andX = C,[2K,] when the vertex stabilizer is isomorphicZ§*.)

Case2: X contains a4-cycle of typel 100

As in Case 1, let = rg(X) and consider tw@s-alternating cycles

C= VoV1 -+ VUr_100 and C/ = UgUy - - - Uy _1Ug

meeting at the vertex, = Uy. Letv; andv,_; be the two successors, and and

U, _; the two predecessors of. By vertex-transitivity we must have that every vertex

in X is contained on some 4-cycle of type 1100 as the vertex having both successors
on that 4-cycle. In particular, this means that the 2-patinu, is extendable to a
4-cycle of type 1100. It follows that eithe@nuiUgv,Us OF UsUiUguy_1U, IS SUCh a
cycle. Without loss of generality we may assume that the first possibility happens.
Thenv, is a predecessor ab. For symmetry reasons we have that,u, _1vov,_1Uy_»

is also a 4-cycle of type 1100. Letbe a predecessor af. Then eithervu;ugv,w

or wuU;Uov,_;w iS a 4-cycle of type 1100. If the first possibility happens we have that
wU;Uvgw IS a 4-cycle of type 1010 and as in Case 1 the grépdexceptional. If the
latter happens thew = v,,_, and so it follows thati; = v, _3. ThusC andC’ have

two consecutive vertices @' in common and we can deduce that the two vertex sets
coincide, thatisy (C) = V(X) = V(C'). Asin Case 1, by Propositidh1, the graph

X is exceptional. (In factin this case one can see ¥at Circ(10, {1, —1, 3, —3}.)

Case3: X contains4-cycles of type®000and 1111, that is, G-alternating and
G-directed4-cycles.

If two adjacentG-alternating cycles have two vertices in common then the graph
is tightly G-attached and therefore exceptional. (In fact it must be isomorphic to
C4[2K;]. Assume that two adjace@®-alternating cycles intersect in one vertex only.
We letY = Alt(X) be the graph whose vertices are Gwalternating cycles oK, with
two vertices joined by an edge if and only if the correspondiglternating cycles
have a common vertex. It may be seen tifaadmits a ¥2-transitive action of the
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groupG and that every edge of is contained on &-directed 4-cycle. Moreovey,
has half the number of vertices #f and so the corresponding stabilizer of the action
of G onY contains a copy of3. But then every edge of must lie on at least two
G-directed 4-cycles. Let, v be a pair of adjacent vertices ¥hwith u — v in the
G-orientation onY, and letuy, u, andv,, v, be the two predecessors vfand the
two successors aof, respectively. Since the vertex stabiliz&s and G, contain a
copy ofZ2, we may easily see that the bipartite graph induced by the{segts,}
and{vy, vp} is regular and so isomorphic either ko, , or to 2K;. In the first case,
{uy, Uy, vy, vo} induces &-alternating 4-cycleify, forcingY = C4[2K,] = C,®C,,
and consequentlX = C4 x Cy4, an exceptional graph. In the second case, we see that
the edgeuv, and hence every edge ¥f is contained on precisely tw@-directed 4-
cycles. By Propositiofd.4, we have that eithéf = Cy xCy,r > 2,0rY = C5 QCy,

r > 3. Now going back tX we have thak = C, ® C4, 1 > 2, in the first case, and
X = C, x Cyu, r > 3, inthe second case. Thixsis again exceptional. (Observe
that, with the exception of the cage= C, x C,, the vertex stabilizer of the above
1/2-transitive group action oiX, which induces alternating cycles of length 4, is
isomorphic toZ,.)

Cased: All 4-cyclesinX are of typel11], that is,G-directed.

We show that eithehg(X) = 1, that is, the vertex stabilizer is isomorphicZg
or X is isomorphic to one of the grapl@y x C,,r > 2, orCy ® Cy, r > 3.
Clearly,r =rg(X) > 3. Consider twds-alternating cycle€ = vgv; - - - vo_1v9 and
C’ = UgUy - - - Uy _1Ug Meeting aby = U,. Letv;, andv,,_; be the two successors, and
u; andu,_; the two predecessors af. There exists a vertexof X such that; — X
andx — uj, giving rise to a directed 4-cychgv;xusvo. If there was another vertex
y such thaty; — y andy — u; thenu;xv;yu; would be a forbidden 4-cycle of type
1010. Similarly,u;xv;yu; would be a forbidden 4-cycle of type 1100vif — y and
u, — yorify - v, andy — u;. Finally, if u; — y andy — v; thenvv,wu;vg
would be a forbidden 4-cycle of type 1010. We have therefore proveduthand
v; have a unique common neighboxir It follows that in X a directed 2-path is
extendable to a unique (directed) 4-cycle. This implies that every edelies on
either one or two directed 4-cycles. We now show that the assumption that the vertex
stabilizerG,, is not isomorphic ta&Z, forces the latter possibility.

So, assume thag,, is not isomorphic taZ,. Then there existae € G whose
restriction to{vg} U N(vp) is the permutation{vg) (v1) (vor_1) (UtUx_1). If X = X,
then we must have — Uy _; and soxu; vgU,, 1 X is a forbidden 4-cycle of type 1010.
Thusw = xa # X. Itfollows thatvyv,wuy _1vg is another directed 4-cycle containing
the edgev;. We conclude that the graphis specified by the characteristic property
that every edge is contained on precisely two 4-cycles, both of them of directed
orientation. Now the proof is completed using Propositich O

As an immediate consequence of Theorérhand Propositior8.6 we have the
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following result.

COROLLARY 4.2. Let X be al/2-transitive graph of valency¢ and girth4. Then
either

(i) every4-cycleis alternating or
(i) everyd-cycle is directed.

Moreover, in caséii) X is of heightl.

We are now ready to prove Theordni

PrOOF OFTHEOREM 1.1 Using Corollary4.2 together with the fact that in a/2-
transitive graph of valency 4 the set of alternating cycles decomposes the edge se
[10, Proposition 2.4], we may assume that 4-cyclexXirare all directed. Further
h(X) = 1. We now show that the set of these cycles decompB$¥3. If not then
Corollary4.2implies that every edge of lies oni > 2 directed 4-cycles. If > 2,
then X is isomorphic toC4[2K;]. Thusi = 2 and applying 11, Proposition 2.2]
we conclude thaX is the medial graph of a regular map of tyfse 4}. It follows
from the classification of regular maps of type 4} (see p, page 103]) that all of
these maps are positively self-dual. Hences arc-transitive by11, Theorem 4.1], a
contradiction. O

The conclusion of our analysis is that2ttransitive graphs of valency 4 and girth 4
fall into two disjoint classes. Graphs belonging to the first class have alternating 4-
cycles, in other words their radius is 2. Recently, an infinitaifaof such graphs has
been constructed i9] as follows. For each = 2k+1 > 17 let X, denote the Cayley
graph CayA,, {a,a—1, b, b~1}), whereais then-cycle(0, 1, ..., n—1) andb = tat
is a conjugate o byt = (02)(47). ThenX, is a 1/2-transitive graph of valency 4
and radius 2 (with the automorphism groApx Z,). Graphs belonging to the second
class have directed 4-cycles and their height equals 1. It follows from the results
proved in [L1] that every such graph is the medial graph of an irreflexible regular map
of valency 4. Controlling irreflexibility of maps, however, is not at all an easy task.
Also, there are examples of irreflexible regular maps that give rise to arc-transitive
medial graphs. Nevertheless, there exists an infinite family of graphs belonging to
the second class above. Lebe any even number and let= 1 + s + s? + s
It follows from [14, Theorem 3.1] that the grapX(s; 4,r), defined in Sectiof3, is
1/2-transitive. Moreover, it is obvious that its girth is 4 and that all of its 4-cycles are
directed.
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