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Abstract

This paper is a continuation of the study of the rings for which every principal right ideal (respectively,
every right ideal) is a direct summand of a right annihilator initiated by Stanley S. Page and the author in
[20, 21].
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Introduction

In this paper, we continue the study of left AP-injective and left AGP-injective rings
which were introduced and discussed in [20]. Following [20], a ring R is calledleft
AP-injectiveif every principal right ideal is a direct summand of a right annihilator,
and the ringR is called left AGP-injectiveif, for any 0 6= a ∈ R, there exists
n > 0 such thatan 6= 0 andan R is a direct summand ofrl .an/. Recall that a ring
R is left principally injective(P-injective) if every principal right ideal is a right
annihilator, and the ringR is left generalized principally injective(GP-injective) if,
for any 0 6= a ∈ R, there existsn > 0 such thatan 6= 0 andan R is a right annihilator.
The detailed discussion of left P-injective and left GP-injective rings can be found
in [3, 7, 12, 15, 16, 17, 22, 23, 24, 26]. Clearly, every left AP-injective ring is left
P-injective and every left AGP-injective ring is left GP-injective. But there exist left
AP-injective rings which are not left GP-injective [20]. In fact, a left AP-injective
ring is not necessarily a left mininjective ring. (The ringR is left mininjectiveif,
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for any minimal left idealRa, a R is a right annihilator [18], and every left GP-
injective ring is left mininjective.) In [20], several results which are known for left
P-injective (respectively, left GP-injective) rings were shown to hold for left AP-
injective (respectively, left AGP-injective) rings. It has been noted that it is unknown
whether there exists a left GP-injective ring that is not left P-injective (see [6, 24]).
This may put a bit more weight on our excuse for carrying on the study of the left
AGP-injective rings. In this paper, we discuss left AGP-injective rings with various
chain conditions.

It is well known that a ringR is quasi-Frobenius (QF) if and only ifR is left self-
injective and left (or right) noetherian. In [9], Faith proved that any left self-injective
ring satisfying the ACC on left annihilators is QF. Bj¨ork [2] extended this result from
a left self-injective ring to a left f-injective ring, and then Rutter [23] further proved
that, if R satisfies the ACC on left annihilators, thenR is QF if and only if R is left
2-injective, where the ringR is calledleft f-injective(respectively,left 2-injective)
if, for any finitely generated (respectively, 2-generated) left idealI of R, every R-
homomorphism fromI to Rextends to anR-homomorphism fromR to R. Note that a
left f-injective rings need not be left self-injective, and a left P-injective ring need not
be left 2-injective. It was also proved in [23] that any left P-injective ring satisfying
the ACC on left annihilators is right artinian. The latter result was extended from a left
P-injective ring to a left GP-injective ring in Chen and Ding [7]. It is clear, by Rutter’s
example in [23], that a left P-injective ring satisfying the ACC on left annihilators
need not be left artinian, and hence not be QF. The main result in Section2 states that
a left AGP-injective ring with the ACC on left annihilators is always semiprimary, but
is not necessarily right artinian.

A ring is called aright dual ring if every right ideal is a right annihilator. The
study of right noetherian, right dual rings was initiated by Johns [14], and continued
by Faith and Menal in [10, 11] where they gave a counterexample to Johns’ result that
every right noetherian, right dual ring is right artinian. Recently, G´omez Pardo and
Guil Asensio [12] proved that ifR is right noetherian and left P-injective, thenJ.R/
is nilpotent andl.J.R// is essential both as a left and a right ideal ofR, and this result
allows them to show that every left Kasch, right noetherian and left P-injective ring is
right artinian. In Section2, among other things, we prove that, for a right noetherian
and left AGP-injective ringR, J.R/ is nilpotent andl.J.R// is essential both as a left
and a right ideal ofR. As a corollary of this, we show that every right noetherian, left
AGP-injective ring with right (GC2) is right artinian.

In Section3, we consider right quasi-dual rings. A ringR is calledright quasi-dual
if every right ideal ofR is a direct summand of a right annihilator [21]. The right
quasi-dual rings form an interesting class of left AP-injective rings. In Section3, it
is proved that, for a right quasi-dual ring,J.R/ = r .Sr /, Sr = r .Zr / and l.J.R//
is essential inRR. Consequently, for a two-sided quasi-dual ringR, the left socle
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coincides with the right socle and is essential both as a left and a right ideal ofR.
We also improve a result of [21] by showing that a ringR is a two-sided PF-ring if
and only if every right Goldie torsionR-module is cogenerated byRR and every left
Goldie torsionR-module is cogenerated byRR.

Throughout,R is an associative ring with identity and modules are unitary. We
use MR (respectively,RM) to indicate thatM is a right (respectively, left) module
over R. For a subsetX of R, l.X/ (respectively,r .X/) is the left (respectively, right)
annihilator ofX in R, and we writel.x/ (respectively,r .x/) for l.{x}/ (respectively,
r .{x}/) whenx ∈ R. The left socle, right socle, left singular ideal, right singular ideal
and Jacobson radical ofR are denoted bySl ; Sr ; Zl ; Zr andJ.R/, respectively. For a
submoduleN of M , we useN ≤e M to mean thatN is essential inM .

1. Left AGP-injective rings with left chain conditions

Following [20], the ring R is left AP-injectiveif, for any a ∈ R, a R is a direct
summand ofrl .a/, andR is left AGP-injectiveif, for any 0 6= a ∈ R, there existsn > 0
such thatan 6= 0 andan R is a direct summand ofrl .an/. Every left P-injective ring is
left AP-injective and every left GP-injective ring is left AGP-injective. The ringsR in
[21, Examples 2.3, 2.4] are commutative AP-injective rings, but not mininjective and
hence not GP-injective.

In this section, we prove several results of left AGP-injective rings with some chain
conditions on left ideals.

A moduleM is said to satisfy thegeneralizedC2-condition(or (GC2)) if, for any
N ⊆ M andN ∼= M , N is a summand ofM . Note that the GC2-condition is the same
as the (∗)-condition in [20, page 713].

LEMMA 1.1. Let RM satisfy(GC2). If M is finitely dimensional, thenEnd.M/ is
semilocal.

PROOF. Let ¦ : M → M be a monomorphism. ThenM = ¦.M/ ⊕ N for
someN ⊆ M . It must be thatN = 0 sinceM is finitely dimensional. So,¦ is an
isomorphism. Therefore,M satisfies the assumptions in Camps-Dicks [5, Theorem 5],
and so End.M/ is semilocal.

The next corollary extends [21, Proposition 2.12].

COROLLARY 1.2. Let R be a left AGP-injective ring.

.1/ If RR is of finite Goldie dimension, thenR is semilocal.

.2/ R is left noetherian if and only ifR is left artinian.
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PROOF. (1). By [20, Proposition 2.13],RR satisfies (GC2). SinceRR has finite
Goldie dimension,R is semilocal by Lemma1.1.

(2). If R is left noetherian, thenR is semilocal by (1). By [20, Corollary 2.11],
J.R/ is nilpotent. So,R is left artinian.

LEMMA 1.3 ([20]). If R is a left AGP-injective ring, thenJ.R/ = Zl .

LEMMA 1.4. Let R be a left AGP-injective ring anda ∈ R. If a =∈ J.R/ then there
existsr ∈ R such that the inclusionl.a/ ⊂ l.a − ara/ is proper.

PROOF. Let a ∈ R but a =∈ J.R/. By Lemma1.3, a =∈ Zl and hencel.a/ is not
essential inRR. So, we havel.a/∩ I = 0 for some 06= I ⊆ RR. Take 06= b ∈ I . Then
ba 6= 0. By the hypothesis, there existsn > 0 such that.ba/n 6= 0 andrl ..ba/n/ =
.ab/n R⊕ X whereX is a right ideal ofR. Sincel.a/∩ I = 0, l..ba/n/ = l..ba/n−1b/.
It follows that.ba/n−1b ∈ rl ..ba/n−1b/ = rl ..ba/n/ = .ba/n R⊕ X. Thus, there exists
r ∈ R such that.ba/n−1b = .ba/nr + x wherer ∈ R andx ∈ X. This gives that
.ba/n−1b.1 − ar / = x and hence.ba/n−1b.a − ara/ = xa ∈ .ba/n R ∩ X. It follows
that.ba/n−1b.a − ara/ = 0. Letc = a − ara. Thenl.a/ ⊆ l.c/. Since.ba/n−1b is
in l.c/ but not inl.a/, the inclusionl.a/ ⊂ l.c/ is proper.

The next result extends [7, Theorem 3.4, Corollary 3.6]. Following [1], a module
M is calledfinitely projective(respectively,singly projective) if, for each epimorphism
f : N → M and each finitely generated (respectively, cyclic) submoduleM0 of M ,
there existsg ∈ HomR.M0; N/ such that the restriction ofg ◦ f to M0 is the identity
on M0.

THEOREM 1.5. The following are equivalent for a left AGP-injective ringR:

.1/ R is a left Perfect ring.

.2/ Every flat leftR-module is finitely projective.

.3/ Every flat leftR-module is singly projective.

.4/ For any infinite sequencex1; x2; x3; : : : of elements inR, the chainl.x1/ ⊆
l.x1x2/ ⊆ l.x1x2x3/ ⊆ · · · terminates.

PROOF. (1) implies (2) and (2) implies (3) are obvious. (3) implies (4) is by [1,
Corollary 25].

(4) implies (1). Firstly, we proveR=J.R/ is a von Neumann regular ring. For any
x ∈ R, let x̄ = x+ J.R/. Leta1 ∈ Rbuta1 =∈ J.R/. We want to show that̄a1 = ā1x̄ā1

for somex ∈ R. By Lemma1.4, there existsr1 ∈ R such thatl.a1/ ⊂ l.a2/ where
a2 = a1−a1r1a1. If a2 ∈ J.R/, thenā1 = ā1r̄1ā1 and we are done. Ifa2 =∈ J.R/, then,
by Lemma1.4, there existsr2 ∈ R such thatl.a2/ ⊂ l.a3/ wherea3 = a2 − a2r2a2.
The induction principle and the hypothesis ensure the existence of a positive integer
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n and two sequences{ai : i = 1; : : : ;n + 1} and{r i : i = 1; : : : ;n} of elements inR
such thatan+1 ∈ J.R/ andai +1 = ai − ai ri ai for i = 1; : : : ;n. Thus,ān = ānr̄nān. It
follows that

ān−1 = ān + ān−1r̄n−1ān−1

= .ān−1 − ān−1r̄n−1ān−1/r̄n.ān−1 − ān−1r̄n−1ān−1/+ ān−1r̄n−1ān−1

= ān−1[.1̄ − r̄n−1ān−1/r̄n.1̄ − ān−1r̄n−1/+ r̄n−1]ān−1;

so ān−1 is also a regular element. Continuing this process, we see thatā1 is a regular
element.

Secondly, we prove thatZl is left T-nilpotent. Letai ∈ Zl for i = 1;2; : : : . We
have a chainl.a1/ ⊆ l.a1a2/ ⊆ · · · . By our assumption, there existsn > 0 such
that l.a1 · · · an/ = l.a1 · · · anan+1/. Thus, l.an+1/ ∩ Ra1 · · · an = 0. Sincel.an+1/

is essential inRR, we havea1 · · · an = 0, so Zl is left T-nilpotent. Therefore, by
Lemma1.3, we have proved thatR=J.R/ is a von Neumann regular ring andJ.R/
is left T-nilpotent. So, it suffices to show thatR=J.R/ is an artinian semisimple
ring. By [13, Corollary 2.16], we only need to show thatR=J.R/ contains no infinite
sets of nonzero orthogonal idempotents. This can be proved by arguing as in [7,
page 2107].

COROLLARY 1.6. If R is a left AGP-injective ring with ACC on left annihilators,
thenR is semiprimary.

PROOF. It is well known that Zl is nilpotent for any ringR with ACC on left
annihilators. By Lemma1.3and Theorem1.5, R is semiprimary.

COROLLARY 1.7. Let R be a left AGP-injective ring with ACC on left annihilators
and Sr ⊆ Sl . ThenR is right artinian if and only ifSr is a finitely generated right
ideal of R.

PROOF. By Corollary1.6, R is semiprimary. By [20, Corollary 2.7],Sl ⊆ Sr , and
so S = Sl = Sr by the hypothesis. Now the result follows from [4, Lemma 6].

A left GP-injective ring with the ACC on left annihilators is always right artinian
[7, Theorem 3.7]. The ringR [21, Example 2.4] is a commutative AP-injective ring
with the ACC on annihilators, butR is not artinian.

Recall that a ringR is called left Kasch ifr .K / 6= 0 for every maximal left idealK
of R.

COROLLARY 1.8. Let R be a left AGP-injective ring with ACC on left annihilators.
If every minimal right ideal is a right annihilator, thenR is right artinian. Moreover,
R is left artinian if and only ifSl is finitely generated as a left ideal ofR.
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PROOF. By Corollary1.6, R is semiprimary. By [18, Corollary 3.15],R is right
finite dimensional withSr = Sl . Now, by [4, Lemma 6],R is right artinian. The last
assertion follows from [4, Lemma 6] again.

Now the following result, [7, Theorem 3.7], is an immediate corollary of the above:

COROLLARY 1.9 ([7]). Every left GP-injective ring with ACC on left annihilators
is right artinian.

PROOF. If R is a left GP-injective ring, then every minimal right ideal is a right
annihilator. For, ifI is a minimal right ideal ofR, then I = eRwheree2 = e ∈ R
or I 2 = 0. If I = eR, clearly I is an annihilator. On the other hand, ifI = x R
for somex ∈ R with I 2 = 0, it follows from the definition of left GP-injectivity that
I = x R= rl .I /. Now the result follows from Corollary1.8.

2. Left AGP-injective rings with right chain conditions

In this section, we first consider right noetherian, left AGP-injective rings. We
prove that, for a right noetherian, left AGP-injective ringR, J.R/ is nilpotent and
l.J.R// is essential as a left and as a right ideal ofR. As a corollary of this, we prove
that every right noetherian, left AGP-injective ringR such thatRR satisfies (GC2) is
right artinian. We next prove that every maximal left (respectively, right) annihilator
of a semiprime left AGP-injective ring is a maximal left (respectively, right) ideal
generated by an idempotent.

The next result extends [12, Theorem 2.7] from a left P-injective ring to a left
AGP-injective ring.

THEOREM 2.1. Let Rbe a right noetherian, and left AGP-injective ring. ThenJ.R/
is nilpotent andl.J.R// is essential both as a left and as a right ideal ofR.

PROOF. Let J = J.R/. First we prove thatl.J/ ≤e RR. Let 0 6= x ∈ R. Since
R is right noetherian, the non-empty setF = {r ..ax/k/ : a ∈ R; k > 0 such that
.ax/k 6= 0} has a maximal element, sayr ..yx/n/.

We claim that.yx/n J = 0. If not, then there existst ∈ J such that.yx/nt 6= 0.
Since R is left AGP-injective, there existsm > 0 such that..yx/nt/m 6= 0 and
..yx/nt/m R is a direct summand ofrl ...yx/nt/m/. Write ..yx/nt/m = .yx/ns where
s = t ..yx/nt/m−1 ∈ J. Thenrl ..yx/ns/ = .yx/ns R⊕ X for some right idealX of R.
We proceed with the following two cases.

Case 1.rl ..yx/n/ = rl ..yx/ns/. Then.yx/n ∈ rl ..yx/n/ = .yx/ns R⊕ X. Write
.yx/n = .yx/nsv + z, wherev ∈ R andz ∈ X. Then.yx/ns = .yx/nsvs + zs and
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so zs ∈ .yx/ns R∩ X. Thus,zs = 0 and hence.yx/ns = .yx/nsvs. It follows that
.yx/ns.1 − vs/ = 0. Sinces ∈ J, 1 − vs is a unit in R. So, we have.yx/ns = 0.
This is a contradiction.

Case 2.rl ..yx/n/ 6= rl ..yx/ns/. Thenl..yx/n/ 6= l..yx/ns/. It follows that there
existsu ∈ l..yx/ns/ butu =∈ l..yx/n/. Thus,u.yx/ns = 0 andu.yx/n 6= 0. This gives
thats ∈ r .u.yx/n/ands =∈ r ..yx/n/. So, the inclusionr ..yx/n/ ⊂ r .u.yx/n/ is proper.
This is a contradiction because 06= u.yx/n = .u.yx/n−1y/x andr .u.yx/n/ ∈ F .

We have proved that.yx/n J = 0, and soRx ∩ l.J/ 6= 0. Therefore,l.J/ is an
essential left ideal ofR.

Next we prove thatJ is nilpotent. SinceR is right noetherian, there existsk > 0
such thatl.Jk/ = l.Jk+n/ for all n > 0. SupposeJ is not nilpotent. ThenJk 6= 0
and soMR = R=l.Jk/ is a nonzeroR-module. SinceR is right noetherian, the set
{r R.m/ : 0 6= m ∈ M} has a maximal element,r R.m1/ say. Writem1 = x + l.Jk/

wherex ∈ R. Thenx Jk 6= 0. Sincel.J2k/ = l.Jk/, we seex Jk 6⊆ l.Jk/. So, there
existsb ∈ Jk such thatxb =∈ l.Jk/. Sincel.J/ ≤e RR, Rxb∩ l.Jk/ 6= 0. So, we have
0 6= axb ∈ l.Jk/ for somea ∈ R. Let m2 = ax + l.Jk/ ∈ M . Thenm2 6= 0 and
b ∈ r R.m2/. But, b =∈ r R.m1/. So, the inclusionr R.m1/ ⊂ r R.m2/ is proper. This
contradicts the choice ofm1.

Finally, for any 0 6= x ∈ R, x J = 0, or x Jn 6= 0 andx Jn+1 = 0 for somen > 0.
It follows thatx R∩ l.J/ 6= 0. So,l.J/ is an essential right ideal ofR.

The next result extends [12, Corollary 2.9]. (Note that, ifR is left Kasch, thenRR

satisfies (C2) (see [25]) and hence satisfies (GC2)).

COROLLARY 2.2. Every right noetherian, left AGP-injective ringR such thatRR

satisfies(GC2) is right artinian.

PROOF. SinceR is right finitely dimensional andRR satisfies (GC2),R is semilocal
by Lemma1.1. By Theorem2.1, J.R/ is nilpotent. So,R is semiprimary. SinceR is
right noetherian,R is right artinian.

Next, we consider semiprime left AGP-injective rings.

LEMMA 2.3. Let R be an arbitrary ring anda ∈ R such thatl.a/ is a maximal left
annihilator or r .a/ is a maximal right annihilator. Thenl.at/ = l.a/ for anyt =∈ r .a/
and Zl ⊆ r .a/, andr .ta/ = r .a/ for anyt =∈ l.a/ and Zr ⊆ l.a/.

PROOF. Let x ∈ Zl . Then l.x/ is essential inRR. So, l.x/ ∩ Rr 6= 0 for any
0 6= r ∈ R. Thus, there existsy ∈ R such that 06= yr andyr x = 0. So, the inclusion
l.r / ⊂ l.r x/ is proper.
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Case 1. Letl.a/ be a maximal left annihilator. As above,l.a/ ⊂ l.ax/ for all
x ∈ Zl . It must be thatax = 0. This shows thata ∈ l.Zl /. Clearly, in this case
l.at/ = l.a/ for anyt =∈ r .a/.

Case 2. Letr .a/ be a maximal right annihilator. Ift =∈ r .a/, thenat 6= 0. For
x ∈ l.at/, t ∈ r .xa/ and so the inclusionr .a/ ⊂ r .xa/ is proper. By the maximality
of r .a/, xa = 0. Thus,l.at/ = l.a/. It follows that Ra∩ l.t/ = 0. Thus,t =∈ Zl .
Therefore,Zl ⊆ r .a/.

The remaining part is by the left-right symmetry of the hypothesis.

The next theorem extends [7, Theorem 3.1].

THEOREM 2.4. Let R be a semiprime left AGP-injective ring. Then every maximal
left (respectively, right) annihilator is a maximal left(respectively, right) ideal of R
which is generated by an idempotent.

PROOF. Let L be a maximal left (respectively, right) annihilator. ThenL = l.a/
(respectively,r .a/) for some 0 6= a ∈ R. Since R is semiprime,Zl ∩ l.Zl / = 0.
Claim: a =∈ Zl . Otherwise,a =∈ l.Zl /, that is,aZl 6= 0. Takex ∈ Zl such that
ax 6= 0. Sincex =∈ r .a/, l.ax/ = l.a/ by Lemma2.3. Thus, l.x/ ∩ Ra = 0, a
contradiction, sincex ∈ Zl . Therefore,a =∈ Zl . By Lemma1.3 and Lemma1.4, the
inclusionl.a/ ⊂ l.a − ara/ = l[a.1− ra/] is proper for somer ∈ R. It follows from
Lemma2.3 thata − ara = 0. Therefore,L = l.ar / (respectively,L = r .ra/) with
ar (respectively,ra) an idempotent. So we can assume thata = e is an idempotent.
To seeL is a maximal left (respectively, right) ideal, we show thatRe(respectively,
eR) is a minimal left (respectively, right) ideal ofR. SinceR is semiprime, it suffices
to show thateReis a division ring. Let 06= d ∈ eRe. SinceR is left AGP-injective,
there existsn > 0 such thatdn 6= 0 anddn R is a direct summand ofrl .dn/. By
Lemma2.3, l.dn/ = l.e/ and sorl .dn/ = rl .e/ = eR. Thus,dn R is a direct summand
of eRand hence ofRR. It follows thatdn R = rl .dn/ = eR. Write e = dnb where
b ∈ R. Thene = d.dn−1be/ with dn−1be∈ eRe. So,eReis a division ring.

A ring R is a left PP ring if every principal left ideal ofR is projective. The next
result extends [6, Theorem 2.9] from a left GP-injective ring to a left AGP-injective
ring.

PROPOSITION2.5. The ringR is a von Neumann regular ring if and only ifR is left
PP and left AGP-injective.

PROOF. One direction is obvious. Suppose thatR is left PP and left AGP-injective.
For any nonzero elementa ∈ R, there existsn > 0 such thatan 6= 0 andrl .an/ =
an R ⊕ X whereX is a right ideal ofR. SinceR is left PP, Ran is projective, and



[9] Generalized principally injective rings 343

hence 0→ l.an/ → R → Ran → 0 splits. Thus,l.an/ = Rewheree2 = e ∈ R. It
follows thatrl .an/ = r .Re/ = .1− e/R. Thus,an R is a direct summand of.1− e/R,
and hence a direct summand ofRR. This implies thatan is a regular element ofR. If
a 6= 0 buta2 = 0, the argument above shows thata is a regular element. So, by [6,
Theorem 2.9],R is a regular ring.

3. Right quasi-dual rings

Following [21], a ring R is called right quasi-dual if every right ideal ofR is a
direct summand of a right annihilator. As shown in [21], the ringR is right quasi-dual
if and only if every essential right ideal ofR is a right annihilator if and only if every
singular cyclic rightR-module is cogenerated byR. Every right dual ring is certainly
right quasi-dual, and every right quasi-dual ring is left AP-injective.

LEMMA 3.1. Let R be a right quasi-dual ring. For any right idealI of R and
a ∈ R, r [Ra∩ l.I /] = I + .XaI : a/r with .XaI : a/r ∩ I ⊆ r .a/ and.XaI : a/r =
{x ∈ R : ax ∈ XaI }, whereXaI is a right ideal ofR such thatrl .aI / = aI ⊕ XaI .

PROOF. Let x ∈ r [Ra∩ l.I /]. Thenl.aI / ⊆ l.ax/, and soax ∈ rl .ax/ ⊆ rl .aI / =
aI ⊕ XaI . Writeax = at + y wheret ∈ I andy ∈ XaI . Thena.x − t/ = y ∈ XaI and
thusx−t ∈ .XaI : a/r . Therefore,x ∈ I +.XaI : a/r andr [Ra∩l.I /] ⊆ I +.XaI : a/r .
It is easy to see that.XaI : a/r ∩ I ⊆ r .a/and thatI ⊆ r [Ra∩l.I /]. Let y ∈ .XaI : a/r .
Then ay ∈ XaI ⊆ rl .aI /. For anyra ∈ Ra ∩ l.I /, ra I = 0. This gives that
r ∈ l.aI /. Sinceay ∈ rl .aI /, it follows thatray = 0. Thus,y ∈ r [Ra∩ l.I /] and
.XaI : a/r ⊆ r [Ra∩ l.I /].

THEOREM 3.2. Let R be a right quasi-dual ring andJ = J.R/. Then

.1/ J = Zl = r .Sr /; Sr = r .Zr /, and R is right Kasch.

.2/ l.J/ is essential inRR.

PROOF. (1). Clearly,Sr ⊆ r .Zr /. Let K be any essential right ideal ofR. Then
l.K / ⊆ Zr and soK = rl .K / ⊇ r .Zr /. It follows that Sr ⊇ r .Zr / sinceSr is the
intersection of all essential right ideals. Thus,Sr = r .Zr /. By [21, Lemma 2.5 and
Lemma 2.6],J = Zl andR is right Kasch. SinceR is right Kasch,J = r .Sr /.

(2). Let 0 6= a ∈ R and assume thatRa ∩ l.J/ = 0. Then, by Lemma3.1,
R = r [Ra ∩ l.J/] = J + .Xa J : a/r where Xa J is a right ideal ofR such that
rl .a J/ = a J⊕ Xa J. SinceJ is small inRR, R = .Xa J : a/r . It follows thata R ⊆ Xa J

and soa J ⊆ a J ∩ Xa J = 0. Thus,a ∈ Ra∩ l.J/ = 0, a contradiction.

COROLLARY 3.3. Let R be a quasi-dual ring. ThenS = Sr = Sl is essential as a
left and a right ideal ofR.
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PROOF. By [21, Theorem 2.8] and Theorem3.2.

It was proved in [21] that, for a two-sided quasi-dual ringR, every Goldie torsion
right R-module is cogenerated byRR if and only if the second singular right ideal
Z2.RR/ of R is injective. This result can be improved as follows.

THEOREM 3.4. Consider the following conditions on a ringR:

.1/ Every Goldie torsion rightR-module is cogenerated byRR.

.2/ Z2.RR/ is injective andR is right Kasch.

.3/ R is right self-injective and right Kasch.

Then (3) implies (2) and (2) implies (1). In addition (1) implies (3) if R is left
quasi-dual.

PROOF. (3) implies (2) is obvious, and (2) implies (1) is by the proof of [21,
Theorem 4.1].

SupposeR is left quasi-dual and (1) holds. By [21, Theorem 4.1],Z2.RR/ is
injective. WriteRR = Z2.RR/ ⊕ K whereK is right ideal ofR. It suffices to show
that K R is injective. Note thatR is a two-sided quasi-dual ring, soZl = Zr and
Sr = l.Zl / by [21, Theorem 2.8]. It follows thatK ⊆ l..Z2.RR// ⊆ l.Zl / = Sr . So,
K R is semisimple. Thus, to show thatK R is injective, it suffices to show thatK is
Z2.RR/-injective. But, this is clear becauseK is non-singular andZ2.RR/ is Goldie
torsion.

A ring R is right PF if R is an injective cogenerator for Mod-R. It is known thatR
is right PF if and only ifR is right self-injective and right Kasch. The next corollary
improved [21, Corollaries 4.4–4.6].

COROLLARY 3.5. R is a two-sided PF-ring if and only if every Goldie torsion right
R-module is cogeneratedbyRR and every Goldie torsion leftR-module is cogenerated
by RR.

Dischinger and M¨uller [8] constructed a left PF-ring that is not right PF. By Corol-
lary 3.5, the left PF-ring in [8] does not cogenerate every Goldie torsion rightR-
module. Osofsky [19] constructed a non-injective cogenerator for Mod-R. We note
that Osofsky’s ringR has the property thatZ2.RR/ = R (since J.R/2 = 0 and
J.R/R ≤e RR). This shows the conditions (1) and (2) in Theorem3.4are not equiva-
lent.

PROPOSITION3.6. The following are equivalent for a ringR:

.1/ R is right PF.

.2/ Z2.RR/ is injective,R is right Kasch andR = Z2.RR/+ Sr .
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PROOF. (2) implies (1). It suffices to show thatR is right self-injective. Since
R = Z2.RR/+ Sr , R = Z2.RR/⊕ K whereK is a non-singular semisimple right ideal
of R. Clearly, K R is Z2.RR/-injective andK R-injective. So,K R is injective. Thus,
RR is injective.

(1) implies (2). We only need to show thatR = Z2.RR/ + Sr . SinceZ2.RR/ is
injective, writeR = Z2.RR/⊕ K whereK is a right ideal ofR. SinceR is right PF,
J.R/ = Zr ⊆ Z2.RR/ andSr is a finitely generated essential right ideal ofR. Thus
Soc.K R/ is finitely generated and essential inK R. Since every minimal right ideal
contained inK is idempotent, Soc.K R/ is a summand ofRR and hence ofK R. Thus,
K = Soc.K R/ is semisimple.

We do not know if the condition thatR = Z2.RR/ + Sr in Proposition3.6 can be
removed.
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