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Abstract

This paper is a continuation of the study of the rings for which every principal right ideal (respectively,
every right ideal) is a direct summand of a right annihilator initiated by Stanley S. Page and the author in
[20, 21].

2000Mathematics subject classificatioprimary 16D50, 16P60.

Introduction

In this paper, we continue the study of left AP-injective and left AGP-injective rings
which were introduced and discussed 4] Following [20], a ring R is calledleft
AP-injectiveif every principal right ideal is a direct summand of a right annihilator,
and the ringR is calledleft AGP-injectiveif, for any 0 # a € R, there exists

n > 0 such tha@” # 0 anda"R is a direct summand af (a"). Recall that a ring

R is left principally injective(P-injective if every principal right ideal is a right
annihilator, and the rindR is left generalized principally injectiv€GP-injectivg if,
forany 0# a € R, there exists1 > 0 such thaf" # 0 anda” R is a right annihilator.
The detailed discussion of left P-injective and left GP-injective rings can be found
in [3, 7,12, 15, 16, 17, 22, 23, 24, 26]. Clearly, every left AP-injective ring is left
P-injective and every left AGP-injective ring is left GP-injective. But there exist left
AP-injective rings which are not left GP-injectiv&(]. In fact, a left AP-injective
ring is not necessarily a left mininjective ring. (The rifgis left mininjectiveif,
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for any minimal left idealRa, aR is a right annihilator 18], and every left GP-
injective ring is left mininjective.) In20], several results which are known for left
P-injective (respectively, left GP-injective) rings were shown to hold for left AP-
injective (respectively, left AGP-injective) rings. It has been noted that it is unknown
whether there exists a left GP-injective ring that is not left P-injective (8e24]).

This may put a bit more weight on our excuse for carrying on the study of the left
AGP-injective rings. In this paper, we discuss left AGP-injective rings with various
chain conditions.

It is well known that a ringR is quasi-Frobenius (QF) if and only R is left self-
injective and left (or right) noetherian. 18]} Faith proved that any left self-injective
ring satisfying the ACC on left annihilators is QF.dBK [2] extended this result from
a left self-injective ring to a left f-injective ring, and then Rutt@B] further proved
that, if R satisfies the ACC on left annihilators, th&is QF if and only ifR is left
2-injective, where the rindR is calledleft f-injective (respectivelyleft 2-injective
if, for any finitely generated (respectively, 2-generated) left ideaf R, every R-
homomorphism fronh to R extends to afR-homomorphism froniRto R. Note thata
left f-injective rings need not be left self-injective, and a left P-injective ring need not
be left 2-injective. It was also proved i23)] that any left P-injective ring satisfying
the ACC on leftannihilators is right artinian. The latter result was extended from a left
P-injective ring to a left GP-injective ring in Chen and Dirfg.[It is clear, by Rutter’s
example in 3], that a left P-injective ring satisfying the ACC on left annihilators
need not be left artinian, and hence not be QF. The main result in S€ciiares that
a left AGP-injective ring with the ACC on left annihilators is always semiprimary, but
is not necessarily right artinian.

A ring is called aright dual ring if every right ideal is a right annihilator. The
study of right noetherian, right dual rings was initiated by Johd§, [and continued
by Faith and Menal in10, 11] where they gave a counterexample to Johns’ result that
every right noetherian, right dual ring is right artinian. Recentlgn@z Pardo and
Guil Asensio [LZ] proved that ifR is right noetherian and left P-injective, théiiR)
is nilpotent and(J(R)) is essential both as a left and a right ideaRyfand this result
allows them to show that every left Kasch, right noetherian and left P-injective ring is
right artinian. In Sectior2, among other things, we prove that, for a right noetherian
and left AGP-injective rin@R, J(R) is nilpotent and(J (R)) is essential both as a left
and a rightideal oR. As a corollary of this, we show that every right noetherian, left
AGP-injective ring with right (GC2) is right artinian.

In Section3, we consider right quasi-dual rings. A rimjis calledright quasi-dual
if every right ideal ofR is a direct summand of a right annihilatd1]. The right
guasi-dual rings form an interesting class of left AP-injective rings. In Se&idn
is proved that, for a right quasi-dual rind(R) = r(S), § = r(Z,) andl(J(R))
is essential ik R. Consequently, for a two-sided quasi-dual riRgthe left socle
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coincides with the right socle and is essential both as a left and a right idéal of
We also improve a result oR[l] by showing that a ringR is a two-sided PF-ring if
and only if every right Goldie torsiofR-module is cogenerated B9z and every left
Goldie torsionR-module is cogenerated R.

Throughout,R is an associative ring with identity and modules are unitary. We
use Mg (respectivelyz M) to indicate thatM is a right (respectively, left) module
over R. For a subseX of R, |(X) (respectivelyr (X)) is the left (respectively, right)
annihilator ofX in R, and we writel (x) (respectivelyr (x)) for |({x}) (respectively,

r ({x})) whenx € R. The left socle, right socle, left singular ideal, right singular ideal
and Jacobson radical & are denoted bg, S, Z;, Z, andJ(R), respectively. For a
submoduleN of M, we useN <. M to mean thalN is essential irM.

1. Left AGP-injective rings with left chain conditions

Following [20], the ring R is left AP-injectiveif, for any a € R, aR is a direct
summand ofl (a), andRis left AGP-injectivef, forany 0 # a € R, there exists > 0
such tha®" # 0 anda"R is a direct summand af (a"). Every left P-injective ring is
left AP-injective and every left GP-injective ring is left AGP-injective. The rifjis
[21, Examples 2.3, 2.4] are commutative AP-injective rings, but not mininjective and
hence not GP-injective.

In this section, we prove several results of left AGP-injective rings with some chain
conditions on left ideals.

A module M is said to satisfy thgeneralizedC2-condition(or (GC2)) if, for any
N € M andN = M, N is asummand oM. Note that the GC2-condition is the same
as the §)-condition in R0, page 713].

LEMMA 1.1. Let gM satisfy(GC2). If M is finitely dimensional, theBnd(M) is
semilocal.

PrROOF. Leto : M — M be a monomorphism. TheM = o(M) @ N for
someN C M. It must be thatN = 0 sinceM is finitely dimensional. Sog is an
isomorphism. Thereford/ satisfies the assumptions in Camps-DickSheorem 5],
and so EndM) is semilocal. O

The next corollary extend2], Proposition 2.12].

COROLLARY 1.2. Let R be a left AGP-injective ring.

(1) If gRis of finite Goldie dimension, theR is semilocal.
(2) Ris left noetherian if and only iR is left artinian.
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PrOOF. (1). By [20, Proposition 2.13]zR satisfies (GC2). SincgR has finite
Goldie dimensionR is semilocal by Lemma.1

(2). If Ris left noetherian, theR is semilocal by (1). By 20, Corollary 2.11],
J(R) is nilpotent. SoR is left artinian. O

LEmmA 1.3 ([20]). If Ris a left AGP-injective ring, thed (R) = Z,.

LEMMA 1.4. Let R be a left AGP-injective ring and € R. If a ¢ J(R) then there
existsr € R such that the inclusiol(a) C I(a — ara) is proper.

PrROOF. Leta € Rbuta ¢ J(R). By Lemmal.3 a ¢ Z and hencé(a) is not
essentialigkR. So, we havi(a)nl = Oforsome G4 | C gR. Take O£ b € |I. Then
ba # 0. By the hypothesis, there exists> 0 such thaiba)" # 0 andrl (ba)") =
(ab)"R@ X whereX is arightideal ofR. Sincel(a)N1 = 0,I((ba)") = I((ba)"1b).
It follows that(ba)" b e rl (ba)"tb) = rl ((ba)") = (ba)"Ra X. Thus, there exists
r € R such thattba)"'b = (ba)'r + x wherer € Randx € X. This gives that
(ba)"*b(1 — ar) = x and hencégba)"'b(a — ara) = xa € (ba)"RnN X. It follows
that(ba)"*b(a — ara) = 0. Letc = a — ara. Thenl(a) < I(c). Since(ba)"*bis
in I(c) but not inl(a), the inclusiori(a) c I(c) is proper. O

The next result extends [ Theorem 3.4, Corollary 3.6]. Followind], a module
M is calledfinitely projectivgrespectivelysingly projectiveif, for each epimorphism
f : N - M and each finitely generated (respectively, cyclic) submotiyef M,
there existg € Homg (Mo, N) such that the restriction @fo f to Mg is the identity
on M.

THEOREM 1.5. The following are equivalent for a left AGP-injective rifg

(1) Ris aleft Perfect ring.

(2) Every flat leftR-module is finitely projective.

(3) Every flat leftR-module is singly projective.

(4) For any infinite sequencey, X», X3, ... of elements inR, the chainl(x;) €
[(X1Xo) C (X1 XoX3) C - -- terminates.

PrROOF. (1) implies (2) and (2) implies (3) are obvious. (3) implies (4) is ty [
Corollary 25].
(4) implies (1). Firstly, we prové&/J(R) is a von Neumann regular ring. For any
X € R, letX = x+J(R). Leta; € Rbuta; ¢ J(R). We wantto show tha; = a,xa,
for somex € R. By Lemmal.4, there exists; € R such thal(a;) C I(ay) where
a=a —ana. Ifa, € J(R), thena, = a;r,a, andwe are done. & ¢ J(R), then,
by Lemmal.4, there exists, € R such thal(a,) C I(az) whereas = a, — ar,a,.
The induction principle and the hypothesis ensure the existence of a positive integer
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nand two sequencds; :i =1,...,n+1}and{r; :i =1,...,n}ofelementsinR
such thag,,; € J(R)anda_; =a —ar;g fori =1,...,n. Thus,a, = a,/,a,. It
follows that

AQy_1 = & + ap_1M1801
Ay_1 — @n_1fh_1@n- D) (@h-1 — An_1fn—18n-1) + an_afh_18n1
=8y a[(1 — Fo 180 D)1 — 80 aFn 1) + Tn_1]80 1,

~

s0§,_, is also a regular element. Continuing this process, we se@tlgf regular
element.

Secondly, we prove th&f, is left T-nilpotent. Leta; € Z, fori = 1,2,.... We
have a chail(a;) C l(aya,) € ---. By our assumption, there exists> 0 such
thatl(a;---a,) = (& -+ - awan11). Thus,l(@;1) N Ra---a, = 0. Sincel(a,.1)
is essential inkR, we havea; ---a, = 0, soZ is left T-nilpotent. Therefore, by
Lemmal.3, we have proved thaR/J(R) is a von Neumann regular ring ald R)
is left T-nilpotent. So, it suffices to show th&/J(R) is an artinian semisimple
ring. By [13, Corollary 2.16], we only need to show thaf J(R) contains no infinite
sets of nonzero orthogonal idempotents. This can be proved by arguing as in [
page 2107]. O

CoROLLARY 1.6. If R is a left AGP-injective ring with ACC on left annihilators,
thenR is semiprimary.

PrOOF It is well known thatZ, is nilpotent for any ringR with ACC on left
annihilators. By Lemma&.3and Theoreni.5 R is semiprimary. O

COROLLARY 1.7. Let R be a left AGP-injective ring with ACC on left annihilators
andS§ C S. ThenRis right artinian if and only ifS is a finitely generated right
ideal of R.

PrOOF. By Corollary1.6, R is semiprimary. By 20, Corollary 2.7],S € S, and
s0S= § = § by the hypothesis. Now the result follows frody Lemma 6]. [

A left GP-injective ring with the ACC on left annihilators is always right artinian
[7, Theorem 3.7]. The rindR [21, Example 2.4] is a commutative AP-injective ring
with the ACC on annihilators, buR is not artinian.

Recall that a ringR is called left Kasch if (K) # O for every maximal left ideaK
of R.

COROLLARY 1.8. Let R be a left AGP-injective ring with ACC on left annihilators.
If every minimal right ideal is a right annihilator, theR is right artinian. Moreover,
Ris left artinian if and only ifS is finitely generated as a left ideal &
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PrOOF. By Corollary 1.6, R is semiprimary. By 18 Corollary 3.15],R is right
finite dimensional with§ = §. Now, by 4, Lemma 6],R is right artinian. The last
assertion follows from4, Lemma 6] again. O

Now the following result, 7, Theorem 3.7], is an immediate corollary of the above:

CoROLLARY 1.9 ([7]). Every left GP-injective ring with ACC on left annihilators
is right artinian.

PrOOF. If R is a left GP-injective ring, then every minimal right ideal is a right
annihilator. For, ifl is a minimal right ideal ofR, thenl = eRwheree’ = e € R

orl?2 =0. If| = eR clearlyl is an annihilator. On the other hand,lif= xR
for somex € Rwith 12 = 0, it follows from the definition of left GP-injectivity that
I = xR=rl(l). Now the result follows from Corollar{.8. O

2. Left AGP-injective rings with right chain conditions

In this section, we first consider right noetherian, left AGP-injective rings. We
prove that, for a right noetherian, left AGP-injective rilRy J(R) is nilpotent and
I(J(R)) is essential as a left and as a right ideaRofAs a corollary of this, we prove
that every right noetherian, left AGP-injective rifgsuch thatRy satisfies (GC2) is
right artinian. We next prove that every maximal left (respectively, right) annihilator
of a semiprime left AGP-injective ring is a maximal left (respectively, right) ideal
generated by an idempotent.

The next result extends ?, Theorem 2.7] from a left P-injective ring to a left
AGP-injective ring.

THEOREM 2.1. Let R be aright noetherian, and left AGP-injective ring. Thi(R)
is nilpotent and (J(R)) is essential both as a left and as a right idealRf

PrOOF. Let J = J(R). First we prove that(J) <. gR. Let0# x € R. Since
R is right noetherian, the non-empty s&t = {r((ax)*) : a € R, k > 0 such that
(ax) # 0} has a maximal element, sag(yx)").

We claim that(yx)"J = 0. If not, then there exists € J such that(yx)"t # 0.
Since R is left AGP-injective, there existemn > 0 such that((yx)"t)™ £ 0 and
((yx)"t)™Ris a direct summand of (((yx)"t)™). Write ((yx)"t)™ = (yx)"s where
s=t((yx)"t)™?* e J. Thenrl ((yx)"s) = (yx)"s R® X for some right ideaX of R.
We proceed with the following two cases.

Case L.rl ((yx)") = rl ((yx)"s). Then(yx)" € rl (yx)") = (yx)"sR® X. Write
(yx)" = (yx)"sv + z, wherev € Randz € X. Then(yx)"s = (yx)"svs + zsand
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sozse (yx)"sRN X. Thus,zs = 0 and hencéyx)"s = (yx)"svs. It follows that
(yx)"s(1 — vs) = 0. Sinces € J, 1 — vsis aunitinR. So, we havegyx)"s = 0.
This is a contradiction.

Case 2.1l ((yx)") # rl ((yx)"s). Thenl((yx)") # I((yx)"s). It follows that there
existsu € [((yx)"s) butu ¢ I((yx)"). Thus,u(yx)"s = 0 andu(yx)" # 0. This gives
thats € r(u(yx)") ands ¢ r((yx)"). So, the inclusion((yx)") C r(u(yx)")is proper.
This is a contradiction because®u(yx)" = (u(yx)"ty)x andr (u(yx)") € .Z.

We have proved thatyx)"J = 0, and soRxN [(J) # 0. Therefore)(J) is an
essential left ideal oR.

Next we prove thatl is nilpotent. SinceR is right noetherian, there exisks> 0
such thatl(J¥) = [(J*") for all n > 0. Suppose&] is not nilpotent. Therd® # 0
and soMgr = R/I(J¥) is a nonzercR-module. SinceR is right noetherian, the set
{rr(m) : 0 # m € M} has a maximal elementz(m,) say. Writem; = x + [(J%)
wherex € R. ThenxJX # 0. Sincel(J%) = 1(J¥), we seex J* & 1(J¥). So, there
existsb € J* such thatxb ¢ [(J%). Sincel(J) <. rR, RxbN1(J¥) # 0. So, we have
0 # axb e I(J¥) for somea € R. Letm, = ax + [(J¥) € M. Thenm, # 0 and
b € rr(my). But,b ¢ rg(my). So, the inclusiomg(m;) C rr(m,) is proper. This
contradicts the choice of;.

Finally, for any 0# x € R, xJ = 0, orxJ" # 0 andx J""! = 0 for somen > 0.
It follows thatx RN [(J) # 0. So,l(J) is an essential right ideal d?. O

The next result extend4 ®, Corollary 2.9]. (Note that, iR is left Kasch, therRg
satisfies (C2) (se€p]) and hence satisfies (GC2)).

COROLLARY 2.2. Every right noetherian, left AGP-injective ring such thatRg
satisfiegGC2)is right artinian.

PrROOF. SinceRis right finitely dimensional an&y satisfies (GC2)R is semilocal
by Lemmal.l By Theoren?.1, J(R) is nilpotent. SOR is semiprimary. Sinc& is
right noetherianR is right artinian. O

Next, we consider semiprime left AGP-injective rings.

LEMMA 2.3. Let R be an arbitrary ring anda € R such that(a) is a maximal left
annihilator orr (a) is a maximal right annihilator. Thelat) = I(a) for anyt ¢ r(a)
andZ, Cr(a), andr(ta) =r(a) foranyt ¢ I(a) andZ, C I(a).

PrROOF. Let x € Z,. Thenl(x) is essential ikR. So,l(x) N Rr # 0 for any
0 #r € R. Thus, there existg € Rsuch that 0% yr andyrx = 0. So, the inclusion
I(r) c I(rx) is proper.
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Case 1. Let(a) be a maximal left annihilator. As abovEa) C I(ax) for all
X € Z,. It must be thabx = 0. This shows thaa < I(Z). Clearly, in this case
I(at) = I(a) for anyt ¢ r(a).

Case 2. Let(a) be a maximal right annihilator. If ¢ r(a), thenat # 0. For
x € I(at), t € r(xa) and so the inclusion(a) C r(xa) is proper. By the maximality
of r(a), xa= 0. Thus,l(at) = I(a). It follows thatRanI(t) = 0. Thus,t ¢ Z.
ThereforeZ, C r(a).

The remaining part is by the left-right symmetry of the hypothesis. O

The next theorem extends, [Theorem 3.1].

THEOREM 2.4. Let R be a semiprime left AGP-injective ring. Then every maximal
left (respectively, rightannihilator is a maximal lef{respectively, rightideal of R
which is generated by an idempotent.

PrROOF. Let L be a maximal left (respectively, right) annihilator. Then= |(a)
(respectivelyr (a)) for some 0# a € R. SinceR is semiprime,Z, N 1(Z)) = 0.
Claim: a ¢ Z,. Otherwisea ¢ 1(Z)), that is,az, # 0. Takex € Z, such that
ax # 0. Sincex ¢ r(a), l(ax) = I(a) by Lemma2.3. Thus,l(x) " Ra= 0, a
contradiction, since € Z,. Thereforea ¢ Z,. By Lemmal.3and Lemmal.4, the
inclusionl(a) c I(a—ara) = I[a(1—ra)] is proper for some € R. It follows from
Lemma2.3thata — ara = 0. ThereforeL = I(ar) (respectivelyL = r(ra)) with
ar (respectivelyra) an idempotent. So we can assume that eis an idempotent.
To seeL is a maximal left (respectively, right) ideal, we show tlfie (respectively,
eR) is a minimal left (respectively, right) ideal &. SinceR is semiprime, it suffices
to show thak Reis a division ring. Let 0% d € eRe SinceR is left AGP-injective,
there existsn > 0 such thad" # 0 andd"R is a direct summand af (d"). By
Lemma2.3 [(d") = I(e) and sal (d") =rl (e) = eR Thus,d"Ris a direct summand
of eRand hence oRg. It follows thatd"R = rl (d") = eR Write e = d"b where
b € R. Thene = d(d"'be) with d"'be € eRe So,eReis a division ring. O

Aring Ris a left PP ring if every principal left ideal &R is projective. The next
result extends€, Theorem 2.9] from a left GP-injective ring to a left AGP-injective
ring.

PrROPOSITION2.5. The ringR is a von Neumann regular ring if and onlyRis left
PP and left AGP-injective.

PrOOF. One direction is obvious. Suppose tiis left PP and left AGP-injective.
For any nonzero element e R, there exist1 > 0 such thag" # 0 andrl (@") =
a"R @ X whereX is a right ideal ofR. SinceR is left PP,Rd" is projective, and
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hence 0— I(@") - R — Ra — 0 splits. Thus|(@") = Rewheree? =ec R. It
follows thatrl (@") =r(Re) = (1—e)R. Thus,a"Ris a direct summand @fL — e) R,
and hence a direct summandRg. This implies thaf" is a regular element dr. If
a # 0 buta? = 0, the argument above shows tlaais a regular element. So, bg,[
Theorem 2.9]R is a regular ring. O

3. Right quasi-dual rings

Following [21], a ring R is called right quasi-dual if every right ideal & is a
direct summand of a right annihilator. As shown21i], the ringR is right quasi-dual
if and only if every essential right ideal &t is a right annihilator if and only if every
singular cyclic rightR-module is cogenerated By. Every right dual ring is certainly
right quasi-dual, and every right quasi-dual ring is left AP-injective.

LeEmmA 3.1. Let R be a right quasi-dual ring. For any right idedl of R and
aec R r[Ranl(H] =1+ (Xy :a), with (X :a), Nl Cr(@ and(X, :a) =
{x € R:ax e X, }, whereX,, is aright ideal ofR such thatl (al) = al & X,.

ProOOF. Letx e r[Ranl(l)]. Thenl(al) € I(ax),and s@ax € rl(ax) Crl(al) =
al @ X,,. Writeax = at+ywheret € | andy € X,,. Thena(x —t) =y € X, and
thusx—t € (X, : @),. Thereforex € | +(X,, : @), andr[RanI(1)] C | +(Xy : a),.
Itiseasytoseetha,, : a),Nl Cr(a) andthal C r[Ranl(l)]. Lety € (X, : @);.
Thenay € X, C rl(al). For anyra € Ranl(), ral = 0. This gives that
r € I(al). Sinceay € rl(al), it follows thatray = 0. Thus,y € r[RanI(l)] and
(Xa @), Cr[Ranl()]. O

THEOREM 3.2. Let R be a right quasi-dual ring and = J(R). Then

Q1 =2 =r(S),S =r(Z),andRisright Kasch.
(2) 1(J) is essential IkR.

PrOOF. (1). Clearly,S C r(Z;). Let K be any essential right ideal &. Then
I(K) € Z, and soK = rl(K) 2 r(Z,). Itfollows thatS§ 2 r(Z) sinceS§ is the
intersection of all essential right ideals. Th&,= r(Z,). By [21, Lemma 2.5 and
Lemma 2.6],J = Z, andRis right Kasch. Sinc& is right Kasch,J = r(S).

(2). Let0# a € R and assume thaRan|(J) = 0. Then, by Lemma&.1,
R = r[RanI(J)] = J + (Xa; : @), where X,; is a right ideal ofR such that
rl(ad) = aJ® X,;. SincedissmallinRg, R = (X,; : a),. ItfollowsthataR C X,
andscaJ € aJN X3 = 0. Thus,a € Ran|(J) = 0, a contradiction. O

COROLLARY 3.3. Let R be a quasi-dual ring. TheB = S = S is essential as a
left and a right ideal ofR.
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PrOOF. By [21, Theorem 2.8] and Theore®n2 O

It was proved in 21] that, for a two-sided quasi-dual ring, every Goldie torsion
right R-module is cogenerated by if and only if the second singular right ideal
Z,(Rg) of Ris injective. This result can be improved as follows.

THEOREM 3.4. Consider the following conditions on a rirfg;

(1) Every Goldie torsion righR-module is cogenerated b3k.

(2) Z»(Rg) is injective andR is right Kasch.

(3 Risright self-injective and right Kasch.

Then (3) implies (2) and (2) implies (1). In addition (1) implies (3) if R is left
quasi-dual.

ProOOF. (3) implies (2) is obvious, and (2) implies (1) is by the proof af.[
Theorem 4.1].

SupposeR is left quasi-dual and (1) holds. By, Theorem 4.1],Z»(Rg) is
injective. WriteRgr = Z,(RRr) @ K whereK is right ideal ofR. It suffices to show
that Ky is injective. Note thatR is a two-sided quasi-dual ring, s§ = Z, and
S =1(Z) by [21, Theorem 2.8]. It follows thaK < [((Z,(Rg)) € I(Z) = S. So,
Kr is semisimple. Thus, to show thHtx is injective, it suffices to show thd is
Z,(Rg)-injective. But, this is clear becauseis non-singular and,(RR) is Goldie
torsion. O

Aring Ris right PF if R is an injective cogenerator for MoR: It is known thatR
is right PF if and only ifR is right self-injective and right Kasch. The next corollary
improved R1, Corollaries 4.4—4.6].

CoROLLARY 3.5. Ris a two-sided PF-ring if and only if every Goldie torsion right
R-module is cogenerated Bk and every Goldie torsion leR-module is cogenerated
by rR.

Dischinger and Mller [8] constructed a left PF-ring that is not right PF. By Corol-
lary 3.5, the left PF-ring in 8] does not cogenerate every Goldie torsion right
module. Osofsky19] constructed a non-injective cogenerator for MBd-We note
that Osofsky’s ringR has the property thaZ,(Rg) = R (since J(R)> = 0 and
J(R)r <e RR). This shows the conditions (1) and (2) in Theorg@are not equiva-
lent.

PrROPOSITIONS.6. The following are equivalent for a ring:
(1) Risright PF.
(2) Z»(Rg) isinjective,Ris right Kasch andR = Z,(Rg) + §.
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PrOOF. (2) implies (1). It suffices to show tha is right self-injective. Since
R=Z,(RR)+ S, R= Z,(Rg) ® K whereK is a non-singular semisimple right ideal
of R. Clearly, Ky is Z,(Rg)-injective andK z-injective. So,Ky is injective. Thus,
Rk is injective.

(1) implies (2). We only need to show thRt= Z,(Rg) + S§. SinceZ,(Rg) is
injective, writeR = Z,(Rg) ® K whereK is a right ideal ofR. SinceR is right PF,
J(R) = Z, C Z,(Rg) and§ is a finitely generated essential right idealRf Thus
SoaKp) is finitely generated and essentialktk. Since every minimal right ideal
contained inK is idempotent, Sadr) is a summand oRg and hence oK. Thus,

K = SoqKg) is semisimple. O

We do not know if the condition tha® = Z,(Rg) + S in Proposition3.6 can be
removed.
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