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Abstract

We define equivariant completion of aG-complex and define residually finiteG-spaces. We show that the
group ofG-homotopy classes ofG-homotopy self equivalences of a finite, residually finiteG-complex,
is residually finite. This generalizes some results of Roitberg.
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1. Introduction

The notion of profinite completion in group theory is well understood and it is well
known that profinite completion of a group is residually finite. The notion of profinite
completion of Sullivan [8] in homotopy theory motivated Roitberg to introduce the
notion of residual finiteness in the homotopy category [7]. He showed that the profinite
completion of a path connected CW-complex is residually finite [7, Theorem 1 (a)].
He further showed that for a finite CW-complexX which is residually finite,E .X/,
the pointed homotopy classes of self homotopy equivalences is residually finite [7,
Theorem 3]. This is the homotopy theoretic analogue of the well-known result of
Baumslag that the automorphism group of a finitely generated residually finite group
is residually finite. The aim of this paper is to prove equivariant versions of the above
results of Roitberg.

Let G be a finite group andGH denote the category ofG-path connectedG-
CW-complexes (which we abbreviate toG-complexes) with base point. All maps
and homotopies are based. Following Sullivan, we define the profinite completion
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X̂G of a G-complexX (for equivariant completion, generalizing the non equivariant
completion of Bousfield-Kan, see [3]). We also introduce the notion of residual
finiteness forG-spaces and show that for anyX ∈ GH , the profinite completion̂XG

is residually finite. LetEG.X/ denote the group ofG-homotopy classes of equivariant
homotopy self equivalences ofX. One of the main results of the paper is

THEOREM 1.1. Let X ∈ GH be finite. Assume thatX is residually finite. Then
EG.X/ is a residually finite group.

Recall that a theorem of Sullivan [9] and Wilkerson [11] says that ifX is a nilpotent
finite complex, thenE .X/ is commensurable with an arithmetic group and hence, is
finitely presented. Thus ifX is a finite, nilpotent complex which is also residually
finite, thenE .X/ being residually finite and finitely presented, is Hopfian. The
equivariant analogue of the Sullivan-Wilkerson theorem is proved in [10]. We use this
to prove

THEOREM 1.2. If X ∈ GH is finite and nilpotent, thenEG.X/ is Hopfian.

Convention Throughout,G will denote a finite group and all spaces, maps and
homotopies are based and ‘X ∈ GH is finite’ is meant thatX is a finite G-CW-
complex.

2. Equivariant completion and residual finiteness

Recall that a spaceF is totally finite if the homotopy groups³n.F/, n ≥ 1 are finite
and if in addition there exists a positive integern0 such that³n.F/ = 0 for n > n0. A
space is offinite typeif all its homotopy groups are finitely generated.

A G-spaceX is totally finite if for every subgroupH of G, the H fixed point set
XH is totally finite.

DEFINITION 2.1. A G-spaceX is residually finiteif for any finite G-complexW
andÞ; þ ∈ [W; X]G, Þ 6= þ there exists aG-map f : X → Z with Z totally finite
such thatf∗.Þ/ 6= f∗.þ/ where f∗ : [W; X]G → [W; Z]G is the map induced byf .

A G-map f : X → Y betweenG-spaces is aF-monomorphismif for every finite
W ∈ GH the induced mapf∗ : [W; X]G→ [W;Y]G is a monomorphism.

Here is an example of a residually finite space.

EXAMPLE 2.2. Let X = S1∨S1. ThenX can be given the structure of aZ2-complex
as follows. X has one 0-cell of the typeZ2=Z2 and one 1-cell of the typeZ2=e. X
can then be readily recognized as an equivariant Eilenberg-MacLane spaceK .½;1/
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where½ is theOZ2-group½.Z2=e/ = F2, the free group of rank two, and½.Z2=Z2/ is
the trivial group. We claim thatX is residually finite asZ2-space. First note that ifW
is a finiteG-complex then

[W; K .½;1/]G ∼= HomOG
.³1.W/; ½/:

(This is true more generally [6]). Now letÞ; þ ∈ [W; K .½;1/]G be such thatÞ 6= þ.
Then clearlyÞ.Z2=e/ 6= þ.Z2=e/ : ³1.We/→ ½.Z2=e/. SinceF2 is residually finite
there exists a finite groupF and a homomorphism¼ : ½.Z2=e/ → F such that
¼◦Þ.Z2=e/ 6= ¼◦þ.Z2=e/. Define anOG-group½′ by½′.Z2=e/ = F and½′.Z2=Z2/ to
be the trivial group. Then, the map¼ : ½→ ½′ defined by¼.Z2=e/ = ¼ and¼.Z2=Z2/

being the trivial homomorphism, defines a natural transformation. This gives rise to
a G-maph : K .½;1/→ K .½′;1/ of equivariant Eilenberg-MacLane spaces. Clearly
h∗.Þ/ 6= h∗.þ/. Observe thatK .½′;1/ is totally finite. Note thatX is not nilpotent as
aZ2-space (compare Proposition2.9).

PROPOSITION2.3. If X is residually finite as aG-space, thenXG is residually finite.

PROOF. LetÞ; þ ∈ [W; XG]; Þ 6= þ with W a finite CW-complex. Then endowing
W with the trivial G-action,Þ; þ can be considered as elements of[W; X]G and it
is easy to see thatÞ 6= þ, as elements of[W; X]G. Hence there is a totally finite
G-spaceZ and aG-map f : X → Z, such that,f∗.Þ/ 6= f∗.þ/. Then, it follows that
f G
∗ .Þ/ 6= f G.þ/.

We can now construct aG-spaceX which is residually finite, if one forgets the
group action but is not residually finite when considered as aG-space.

EXAMPLE 2.4. Let G = Z2. Let f : Q → Z denote the only homomorphism
between the additive group of rationals and the integers. This map is then realized
as a mapf : K .Q;1/→ S1 of Eilenberg-MacLane spaces. Consider theOG-space
T , defined by,T.G=G/ = K .Q;1/ andT.G=e/ = S1, with all structure maps as
the identity, except the mapT.ê/ : T.G=G/ → T.G=e/, which equalsf . Then, by
the Elmendorf construction [2], there exists aG-spaceCT, such that,CT has the
homotopy type ofS1, whereasCTG has the homotopy type ofK .Q;1/. Corollary 1
of [7] shows thatCTG is not residually finite, but the underlying space of theG-space
CT, is clearly residually finite. It follows from the above proposition that,CT is not
residually finite, as aG-space.

We now turn to the definition of equivariant completion. Recall [4, Theorem 3.1,
page 134] that, a contravariant functor fromGH to the category of sets, isrepre-
sentable, if and only if, it satisfies the Brown’s axioms (the wedge and the Mayer-
Vietoris axioms). A functor satisfying the wedge and the Mayer-Vietoris axioms will
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be called aBrownian functor. A compact Brownian functoris a Brownian functor
taking values in compact Hausdorff spaces.

We shall need the following two properties of compact Brownian functors.

.1/ Supposek′ is a contravariant functor defined on the subcategory ofGH consist-
ing of finite G-complexes taking values in compact Hausdorff spaces. Suppose that
k′ satisfies the Brown’s axioms, whenever they make sense. Then, there is a unique
extension ofk′ to a compact Brownian functork, defined by,k.X/ = inv lim Þ k′.XÞ/,
where the inverse limit is over the finiteG-subcomplexesXÞ of X.
.2/ The arbitrary inverse limit of compact Brownian functors, over a small filtering
category, is a compact Brownian functor.

The proofs of both these facts are analogous to the nonequivariant case [8, page 36]
and are therefore omitted. We shall use the above properties of compact Brownian
functors to introduce equivariant completion as follows.

Step 1 For X ∈ GH , letFX denote the categorywhose objects areG-mapsX → F
with F a totally finiteG-space and morphisms are homotopy commutative diagrams.

LEMMA 2.5.FX is a small filtering category.

PROOF. Recall ([8]) that, to show that the categoryFX is small filtering we need
to check the smallness, the directedness ofFX and the essential uniqueness of maps
in FX . The first condition is clear since we can replaceFX by an equivalent small
category, by picking a representative from eachG-homotopy type ofF ’s. The second
property is also clear as given objectsf1 : X → F1 and f2 : X → F2 in FX we can
imbed them in f1 × f2 : X → F1 × F2. The essential uniqueness of maps inFX

follows from the co-equalizer construction in equivariant homotopy theory, which is
given by a suitable pushout diagram [4, page 39]. Explicitly, for two morphisms from
³ ′ : X → F ′ to ³ : X → F in FX given byG-maps f1; f2 : F ′ → F , consider the
G-space

{.p; x/ ∈ F I × F ′ : p.0/ = f1.x/; p.1/ = f2.x/}
with diagonal action, where theG-action onF I is induced by the action onF . Let
F ′′ be the component of the aboveG-space containing the base point, the base point
being the constant path at the base point ofF in the first factor and the base point of
F ′ in the second factor. Then, as in the non-equivariant case [4, page 40], we have an
exact sequence

· · · → ³i .F
′′/H → ³i .F

′/H → ³i .F
H/→ · · · ;

for every subgroupH of G. From this exact sequence it follows thatF ′′ is a totally
finite G-space. Now, one gets the required co-equalizer by using aG-homotopy from
f1 ◦ ³ ′ to f2 ◦ ³ ′.
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Step 2 Let Z ∈ GH be finite andF a totally finite G-space. Then by equiv-
ariant obstruction theory [1], it is easy to see that, the homotopy set[Z; F]G is
finite. This yields a contravariant functor defined on the sub category ofGH con-
sisting of finite G-complexes and taking values in compact Hausdorff spaces. A
direct verification shows that this functor satisfies the Brown’s axioms whenever they
make sense. Then by property (1), we get a compact Brownian functor defined by
SF.Y/ = inv lim Þ[YÞ; F]G = [Y; F]G, where the inverse limit is taken over the finite
G-subcomplexes ofY.

From Step 1 and Step 2 we get a functor onFX which assigns to each object
³ : X → F , the compact Brownian functorSF obtained as in Step 2. By property (2)
of compact Brownian functors inv limFX

SF is again a compact Brownian functor,
which assigns, to eachY ∈ GH , the compact Hausdorff space inv limFX

[Y; F]G.
Therefore, by Brown’s representation theorem [4, Theorem 3.1, page 134], there
exists a spacêXG in GH such that for everyG-complexY there is a bijection

[Y; X̂G]G ←→ inv limFX
[Y; F]G:

DEFINITION 2.6. The spacêXG is called theequivariant profinite completionof X.

Clearly, X̂G comes equipped with aG-mapi : X → X̂G, which is determined by
the objects ofFX and is called the completion map.

We now prove an important property of equivariant completion. First recall that a
G-spaceX is nilpotent if every fixed point set is nilpotent. An equivariant Postnikov
decomposition for aG-spaceB consists ofG-mapsÞn : B→ Bn andrn+1 : Bn+1→
Bn, n ≥ 0 such thatB0 is a point andÞn induces an isomorphism³q.B/ → ³q.Bn/

for q ≤ n, rn+1Þn+1 = Þn, andrn+1 is theG-fibration over aK .³n+1.B/;n + 2/ by
a mapkn+2 : Bn → K .³n+1.B/;n + 2/. On passage toH -fixed points, a Postnikov
system forB gives a Postnikov system forBH . Moreover, every nilpotentG-space
admits a Postnikov decomposition [4, 2].

PROPOSITION2.7 (Hasse principle).Let Y ∈ GH be finite andB ∈ GH be a
nilpotent space of finite type. Iff; g : Y → B are G-maps such thati ◦ f is
G-homotopic toi ◦ g, then f is G-homotopic tog.

PROOF. The proof is by induction over the stages in the equivariant Postnikov
system ofB and is parallel to the nonequivariant case. LetK → Bn+1→ Bn be a part
of the equivariant Postnikov decomposition ofB (see [4, 2]), whereK = K .³;n+1/
and³ = ³n+1.Bn+1/. Supposefn : Y → Bn and fn+1 : Y → Bn+1 are theG-maps
constructed fromf . Now consider theG-fibration

Map.Y; K /→ Map.Y; Bn+1/
r→ Map.Y; Bn/
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with the obvious action on the function spaces so that

Map.Y; Bn+1/
G = MapG.Y; Bn+1/:

We then have an ordinary fibration

MapG.Y; K /→ MapG.Y; Bn+1/
r→ MapG.Y; Bn/:

Consider the homotopy exact sequence of the above fibration

· · · → ³1.MapG.Y; Bn/; fn/
I→ ³0.MapG.Y; K /; fn+1/

f̃n+1→ ³0.MapG.Y; Bn+1/; fn+1/
r→ ³0.MapG.Y; Bn/; fn/:

Note that³0.MapG.Y; K /; fn+1/ = Hn+1
G .Y;³/whereHn+1

G .Y;³/denotes the Bredon
cohomology group with coefficients in theOG-group³ [1]. Here f̃n+1 denotes the
map given by the action ofH n+1

G .Y; ³/ on . fn+1/ ∈ ³0.MapG.Y; K /; fn+1/ obtained
by equivariant obstruction theory [5]. Clearly, the imageI = I . fn+1/ is the isotropy
subgroup of the point. fn+1/ and the mapr collapses the orbits of the action of
H n+1

G .Y; ³/. Thus we get an exact sequence

0→ I . fn+1/→ Hn+1
G .Y; ³/→ orbit. fn+1/→ 0:

We proceed as in the non-equivariant case and repeat the above argument for maps
into completionŝBG, to get a ladder whose top row being the above exact sequence,
the base row being the exact sequence

0→ I . f̂n+1/→ Hn+1
G .Y; ³̂ /→ orbit. f̂n+1/→ 0;

and with induced mapsc0 : I . fn+1/ → I . f̂n+1/; c : H n+1
G .Y; ³/ → H n+1

G .Y; ³̂ /
andc1 : orbit. fn+1/ → orbit. f̂n+1/. Here, theOG-group³̂ is defined by the group
completion³̂.G=H / = \³.G=H /. Also note that by property (1) of compactBrownian
functor the mapc : H n+1

G .Y; ³/ → H n+1
G .Y; ³̂ /, is a finite completion. With this at

our disposal the rest of the proof is exactly similar to the non-equivariant case.

Equivariant completion yields, as in the nonequivariant case ([7, Theorem 1]),
examples of residually finite spaces.

PROPOSITION2.8. If X ∈ GH , thenX̂G is residually finite.

Suppose thatf : X → Y is a G-map with Y residually finite. If f is a F-
monomorphism, thenX is residually finite. The Hasse principle implies that if
X ∈ GH is nilpotent and of finite type, then the completion mapi : X → X̂G is a
F-monomorphism. Both these facts put together imply

PROPOSITION2.9. If X ∈ GH is nilpotent and of finite type, thenX is residually
finite.
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3. Proof of the main theorem

In this section we prove our main theorem which gives a sufficient condition for the
groupEG.X/ to be Hopfian. The main step in proving this (as in the non-equivariant
case) is showing that, under suitable conditions, the groupEG.X/ is residually finite.

DEFINITION 3.1. Let [ f ] : X → Y be a morphism inGH . f is said torepresent
an epimorphism inGH if for any two mapsÞ; þ : Y → Z in GH , Þ ◦ f is
G-homotopic toþ ◦ f impliesÞ is G-homotopic toþ.

Suppose thatX and Y0 are in GH and [X;Y0]G = {[ f1]; : : : ; [ fr ]}. Define
Y = Y0 × · · · × Y0 with r factors. ThenY is a G-complex with the diagonalG
action. Consider theG-map f : X → Y by f = . f1; : : : ; fr /. Let M.Y/ denote
the monoid of equivariant self homotopy equivalences ofY preserving the base point.
Each element of the symmetric groupSr induces a self map of theG-spaceY by
permuting its coordinates. This gives an embedding ofSr into M.Y/.

LEMMA 3.2. With the above notation, ife : X → X represents an epimorphism in
GH , thene determines a unique¦ ∈ Sr ⊆ M.T/ such that f ◦ e is G-homotopic to
¦ ◦ f . The assignmente 7→ ¦ induces a monoid homomorphism : E.X/→ Sr ⊆
M.T/, whereE.X/ is the monoid of equivariant self epimorphisms of theG-spaceX.

PROOF OFTHEOREM 1.1. Let � ∈ EG.X/, � 6= id. We shall exhibit a homomor-
phism� : EG.X/→ F with F a finite group such that�.�/ 6= id. SinceX is residually
finite, we have a mapf : X → Y0 of with Y0 totally finite such thatf∗.�/ 6= f∗.id/.
SinceX is finite andYH

0 is totally finite one observes using equivariant obstruction
theory [1] that the equivariant homotopy set[X;Y0]G is finite. Thus by Lemma3.2
there is ar > 1 and a¦ ∈ Sr ⊆ M.Y0/ such thatf ◦ � is G-homotopic to¦ ◦ f and
f∗.�/ 6= f∗.id/. Hence¦ 6= 1. Now the monoid homomorphism : E.X/ → Sr

of Lemma3.2 restricted toM.X/ induces a group homomorphism� : EG.X/ → Sr

such that�.�/ 6= id. This completes the proof.

PROOF OFTHEOREM 1.2. Recall that by Proposition 2.9, X is residually finite. Thus
EG.X/ is a residually finite group. Moreover it follows from the work of Triantafillou
[10, Theorem 1.2] thatEG.X/ is commensurable with an arithmetic subgroup of
EG.X0/, where X0 is the equivariant rationalisation ofX. ThusEG.X/ is finitely
generated. The theorem now follows as finitely generated residually finite groups are
Hopfian. This completes the proof.

There are situations where it is not difficult to recognize the groupEG.X/ as being
residually finite.
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EXAMPLE 3.3. Let ½ be anOG-group. Letn ≥ 1. If n > 1, then½ is abelian. Then
if ½ has the property that½.G=H / is finitely generated residually finite group for all
subgroupsH , then it is not difficult to see thatEG.X/ is residually finite whereX is
the equivariant Eilenberg-MacLane spaceK .½;n/.

EXAMPLE 3.4. As another example, suppose thatX ∈ GH is a finite nilpotent
space such that for anyG-homotopy equivalencef : X → X which is not G-
homotopic to identity, there exists a subgroupH of G such thatf H : XH → XH is not
homotopic to the identity. ThenEG.X/ is residually finite (compare Proposition3.5).

We end with the following

PROPOSITION3.5. SupposeX ∈ GH is a finite and nilpotent. Further assume that
for each subgroupH , K of G

.1/ [XK ; XH ] is a group and

.2/ [XK ;�n XH ] is trivial for n ≥ 1.

ThenEG.X/ is residually finite.

PROOF. First note that for every subgroupH of G, XH is nilpotent of finite type and
henceXH is residually finite [7]. Now let [ f ] ∈ EG.X/ such that[ f ] 6= [id]. Then
there exists a subgroupH of G such that[ f H ] 6= [id], otherwise, by [2, Theorem 3],
the natural family{[ f H ]} would correspond toid : X → X and this would mean
f 'G id. The groupE .XH / is residually finite by [7, Theorem 3]. Using the obvious
homomorphismEG.X/ → E .XH / one sees that the groupEG.X/ is also residually
finite. This completes the proof.

COROLLARY 3.6. SupposeX ∈ GH is a finite and nilpotent. Moreover suppose
that theG-action onX is free outside the base point. ThenEG.X/ is residually finite.

EXAMPLE 3.7. Let X = S2 ∨ S2. ThenX can be given aZ2-complex structure by
interchanging the copies ofS2. ThenX satisfies the hypothesis of the corollary and
henceEG.X/ is residually finite. It is easy to see that this group is non-zero.
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