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Abstract

We define equivariant completion of&complex and define residually fini@-spaces. We show that the
group ofG-homotopy classes @-homotopy self equivalences of a finite, residually fir@ecomplex,
is residually finite. This generalizes some results of Roitberg.
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1. Introduction

The notion of profinite completion in group theory is well understood and it is well
known that profinite completion of a group is residually finite. The notion of profinite
completion of Sullivan §] in homotopy theory motivated Roitberg to introduce the
notion of residual finiteness in the homotopy categ@tyHe showed that the profinite
completion of a path connected CW-complex is residually finiteTheorem 1 (a)].
He further showed that for a finite CW-compl&xwhich is residually finite £ (X),
the pointed homotopy classes of self homotopy equivalences is residually finite [
Theorem 3]. This is the homotopy theoretic analogue of the well-known result of
Baumslag that the automorphism group of a finitely generated residually finite group
is residually finite. The aim of this paper is to prove equivariant versions of the above
results of Roitberg.

Let G be a finite group and.># denote the category db-path connecte@-
CW-complexes (which we abbreviate @complexes) with base point. All maps
and homotopies are based. Following Sullivan, we define the profinite completion
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Xs of a G-complexX (for equivariant completion, generalizing the non equivariant
completion of Bousfield-Kan, see]). We also introduce the notion of residual
finiteness foiG-spaces and show that for aye G.>#, the profinite completioiXg

is residually finite. Le#s(X) denote the group ds-homotopy classes of equivariant
homotopy self equivalences &f. One of the main results of the paper is

THEOREM1.1. Let X € G# be finite. Assume th&X is residually finite. Then
£s(X) is a residually finite group.

Recall that a theorem of Sullivag]land Wilkerson [L1] says that ifX is a nilpotent
finite complex, therf (X) is commensurable with an arithmetic group and hence, is
finitely presented. Thus iX is a finite, nilpotent complex which is also residually
finite, then& (X) being residually finite and finitely presented, is Hopfian. The
equivariant analogue of the Sullivan-Wilkerson theorem is provetidh fWe use this
to prove

THEOREM1.2. If X € G2# is finite and nilpotent, the&s (X) is Hopfian.

Convention Throughout,G will denote a finite group and all spaces, maps and
homotopies are based an¥ ‘c GJ7 is finite’ is meant thatX is a finite G-CW-
complex.

2. Equivariant completion and residual finiteness

Recall that a spack is totally finiteif the homotopy groups,(F), n > 1 are finite
and if in addition there exists a positive integgrsuch thatr,(F) = 0 forn > ny. A
space is ofinite typeif all its homotopy groups are finitely generated.

A G-spaceX is totally finiteif for every subgroupgH of G, the H fixed point set
X" is totally finite.

DEFINITION 2.1. A G-spaceX is residually finiteif for any finite G-complexW
anda, 8 € [W, X]g, @ # B there exists &-map f : X — Z with Z totally finite
such thatf, (@) # f.(B8) wheref, : [W, X]g — [W, Z]; is the map induced by.

A G-mapf : X — Y betweenG-spaces is &-monomorphisnif for every finite
W e Gs# the induced mad, : [W, X]g — [W, Y]¢ is @a monomorphism.
Here is an example of a residually finite space.

EXAMPLE 2.2. Let X = S'v St. ThenX can be given the structure oZa-complex
as follows. X has one 0-cell of the typ#&,/Z, and one 1-cell of the typ&,/e. X
can then be readily recognized as an equivariant Eilenberg-MacLane Kpacé)
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wherex is the Oz,-groupi(Z,/e) = F,, the free group of rank two, andZ,/Z,) is
the trivial group. We claim thaX is residually finite aZ,-space. First note that W
is a finite G-complex then

[W, K&, D]e = Homg, (z, (W), 2).

(This is true more generally]). Now leta, 8 € [W, K (%, 1)]g be such that # 8.

Then clearlyx(Z,/e) # B(Z,/e) : w1 (W®) — A(Z,/€e). SinceF; is residually finite
there exists a finite group and a homomorphisnu : A(Z,/€) — F such that
noa(Z,/€) # wopB(Z,/e). Define anOg-group)’ by )'(Z,/e) = F andA'(Z,/7,) to

be the trivial group. Then, the map: » — A’ defined byw(Z,/e) = p andu(Z,/Z,)

being the trivial homomorphism, defines a natural transformation. This gives rise to
aG-maph: K(1,1) — K/, 1) of equivariant Eilenberg-MacLane spaces. Clearly
h,(a) # h,(B). Observe thaK (1, 1) is totally finite. Note tha¥X is not nilpotent as
aZ,-space (compare Propositi@rd).

PropPOSITION2.3. If X is residually finite as &-space, theiX® is residually finite.

PROOF. Leta, B € [W, X®], a # B with W a finite CW-complex. Then endowing
W with the trivial G-action,«, 8 can be considered as elementgWf, X]¢ and it
is easy to see that # 8, as elements ofW, X]s. Hence there is a totally finite
G-spaceZ and aG-mapf : X — Z, such thatf,(«x) # f.(8). Then, it follows that

£8(a) # f8(B). O

We can now construct &-spaceX which is residually finite, if one forgets the
group action but is not residually finite when considered & space.

ExAMPLE 2.4.Let G = 7Z,. Let f : @ — Z denote the only homomorphism
between the additive group of rationals and the integers. This map is then realized
as a mapf : K(Q, 1) — St of Eilenberg-MacLane spaces. Consider @gspace
T, defined by, T(G/G) = K(Q, 1) andT(G/e) = S', with all structure maps as
the identity, except the map(é) : T(G/G) — T(G/e), which equalsf. Then, by
the Elmendorf constructior?], there exists a&-spaceCT, such thatCT has the
homotopy type ofSt, whereas<C T¢ has the homotopy type &€ (Q, 1). Corollary 1
of [7] shows thaC T€ is not residually finite, but the underlying space of Gespace
CT, is clearly residually finite. It follows from the above proposition tf@&T; is not
residually finite, as &-space.

We now turn to the definition of equivariant completionedll [4, Theorem 3.1,
page 134] that, a contravariant functor fr@dw# to the category of sets, iepre-
sentable if and only if, it satisfies the Brown’s axioms (the wedge and the Mayer-
Vietoris axioms). A functor satisfying the wedge and the Mayer-Vietoris axioms will
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be called aBrownian functor A compact Brownian functois a Brownian functor
taking values in compact Hausdorff spaces.
We shall need the following two properties of compact Brownian functors.

(1) Supposk is a contravariant functor defined on the subcatego.¢f consist-

ing of finite G-complexes taking values in compact Hausdorff spaces. Suppose that
k' satisfies the Brown'’s axioms, whenever they make sense. Then, there is a unique
extension ok’ to a compact Brownian functde, defined byk(X) = invlim, k'(X,),

where the inverse limit is over the finite-subcomplexe¥X, of X.

(2) The arbitrary inverse limit of compact Brownian functors, over a small filtering
category, is a compact Brownian functor.

The proofs of both these facts are analogous to the nonequivarian8cpagé 36]
and are therefore omitted. We shall use the above properties of compact Brownian
functors to introduce equivariant completion as follows.

Stepl ForX e GJ7, let.#y denote the category whose objects@renapsX — F
with F a totally finite G-space and morphisms are homotopy commutative diagrams.

LEMMA 2.5. Zy is a smalll filtering category.

ProoF. Recall (B]) that, to show that the categosF is small filtering we need
to check the smallness, the directednesggfand the essential uniqueness of maps
in Zx. The first condition is clear since we can replagg by an equivalent small
category, by picking a representative from e&homotopy type of’s. The second
property is also clear as given objedts: X — F;andf, : X — F, in .#x we can
imbed them inf, x f, : X — F; x F,. The essential uniqgueness of maps#i
follows from the co-equalizer construction in equivariant homotopy theory, which is
given by a suitable pushout diagra# page 39]. Explicitly, for two morphisms from
7' X - F'tor : X — Fin %y given byG-mapsf,, f,: F* — F, consider the
G-space

{(p,x) € F' x F": p(0) = f1(x), p(1) = f2(x)}

with diagonal action, where th&-action onF' is induced by the action oR. Let

F” be the component of the abo@space containing the base point, the base point
being the constant path at the base poinEadh the first factor and the base point of
F’ in the second factor. Then, as in the non-equivariant cggmpe 40], we have an
exact sequence

- —> ﬂi(F//)H — ﬂi(F/)H — 7Ti(FH) — e,
for every subgroupd of G. From this exact sequence it follows that is a totally

finite G-space. Now, one gets the required co-equalizer by usghamotopy from
floJT/'[O sz?T/. O
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Step 2 Let Z € Gs# be finite andF a totally finite G-space. Then by equiv-
ariant obstruction theoryl], it is easy to see that, the homotopy $&t F]g is
finite. This yields a contravariant functor defined on the sub catego@.4f con-
sisting of finite G-complexes and taking values in compact Hausdorff spaces. A
direct verification shows that this functor satisfies the Brown’s axioms whenever they
make sense. Then by property (1), we get a compact Brownian functor defined by
S (Y) =invlim,[Y,, Flg = [Y, Flg, where the inverse limit is taken over the finite
G-subcomplexes of'.

From Step 1 and Step 2 we get a functor.@iy which assigns to each object
7w : X — F, the compact Brownian funct&@: obtained as in Step 2. By property (2)
of compact Brownian functors invliga, S is again a compact Brownian functor,
which assigns, to eact € G277, the compact Hausdorff space inv (Y, Flg.
Therefore, by Brown’s representation theorefn Theorem 3.1, page 134], there
exists a spac¥ in G.2# such that for everz-complexY there is a bijection

[Y, Xgls «<—> invlimz,[Y, Fls.

DEFINITION 2.6. The spacé is called theequivariant profinite completioaf X.

Clearly, Xg comes equipped with @-mapi : X — Xg, which is determined by
the objects ofZy and is called the completion map.

We now prove an important property of equivariant completion. First recall that a
G-spaceX is nilpotent if every fixed point set is nilpotent. An equivariant Postnikov
decomposition for &-spaceB consists 0fG-mapsa, : B — B, andr,,; : B,y —

B,, n > 0 such thatB, is a point andy, induces an isomorphismq(B) — 7,(By)
forq < n, roa0n1 = a,, andr,, is the G-fibration over aK (z,,,(B), n + 2) by
a mapk™? : B, — K(z,,,(B),n+2). On passage tbi-fixed points, a Postnikov
system forB gives a Postnikov system f@&". Moreover, every nilpotenG-space
admits a Postnikov decompositiofy P].

PROPOSITION2.7 (Hasse principle)Let Y € G.# be finite andB € G# be a
nilpotent space of finite type. If,g : Y — B are G-maps such that o f is
G-homotopic td o g, then f is G-homotopic tag.

ProOOF. The proof is by induction over the stages in the equivariant Postnikov
system ofB and is parallel to the nonequivariant case. Ket> B,,; — B, be a part
of the equivariant Postnikov decomposition®{see §, 2]), whereK = K(z,n+1)
andz =z, ,(B,;1). Supposef, : Y — B, and f,,, : Y — By, are theG-maps
constructed fromf. Now consider thé&-fibration

Map(Y, K) — Map(Y, B,.1) — Map(Y, By)
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with the obvious action on the function spaces so that
Map(Y, By.1)® = Map; (Y, Byia).
We then have an ordinary fibration
Mapg (Y, K) — Mapg (Y, By.1) — Mapg (Y, By).
Consider the homotopy exact sequence of the above fibration

oo = m(Maps (Y. By, fn) = mo(Mapg(Y, K), foy)

fn+1

5 mo(Mapg (Y, Bria), far1) — mo(Maps(Y, By), fo).

Note thatro(Map; (Y, K), fo1) = HEH(Y; ) whereHZ(Y; ) denotes the Bredon
cohomology group with coefficients in tH@s-groupz [1]. Here f,.; denotes the
map given by the action dfig™ (Y, z) on (f,.1) € mo(Mapg(Y, K), f,.1) obtained
by equivariant obstruction theor§][ Clearly, the image = | (f,,;) is the isotropy
subgroup of the pointf,.;) and the map collapses the orbits of the action of
HZ (Y, ). Thus we get an exact sequence

0 — I (fo1) — HEN(Y, =) — orbit( f, ;) — O.

We proceed as in the non-equivariant case and repeat the above argument for may
into completionsBg, to get a ladder whose top row being the above exact sequence,
the base row being the exact sequence

0— I (fo 1) = HY(Y, #) — orbit(f,,.1) — O,

and with induced mapsy : | (fos1) — | (fri).c @ HINY, ) — HIYY(Y, 7)
andc; : orbit( f,.1) — orbit( fAnH). Here, theOg-groupz is defined by the group
completiont (G/H) = g(/G/\H). Also note that by property (1) of compact Brownian
functor the mag : HZ™ (Y, ) — HZTX(Y, ), is a finite completion. With this at
our disposal the rest of the proof is exactly similar to the non-equivariant casel

Equivariant completion yields, as in the nonequivariant cage Theorem 1)),
examples of residually finite spaces.

PROPOSITION2.8. If X € G.2#, thenXg is residually finite.

Suppose thatf : X — Y is a G-map with Y residually finite. If f is a [F-
monomorphism, therX is residually finite. The Hasse principle implies that if
X € G2# is nilpotent and of finite type, then the completion miapX — Xg is a
F-monomorphism. Both these facts put together imply

ProOPOSITION2.9. If X € G.J# is nilpotent and of finite type, theX is residually
finite.
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3. Proof of the main theorem

In this section we prove our main theorem which gives a sufficient condition for the
groupés(X) to be Hopfian. The main step in proving this (as in the non-equivariant
case) is showing that, under suitable conditions, the g&iX) is residually finite.

DEFINITION 3.1. Let[f] : X — Y be a morphism irG.57. f is said torepresent
an epimorphism inGs# if for any two mapse, 8 : Y — Zin G5#, a o f is
G-homotopic tog o f impliesa is G-homotopic tos.

Suppose thaX andY, are in Go# and[X, Yolg = {[fil,...,[f/]}. Define
Y = Yy x --- x Yo with r factors. ThenY is a G-complex with the diagona
action. Consider th&-mapf : X — Y by f = (fy,..., f,). Let M(Y) denote
the monoid of equivariant self homotopy equivalence¥ pfeserving the base point.
Each element of the symmetric gro% induces a self map of th&-spaceY by
permuting its coordinates. This gives an embedding afto M (Y).

LEmMMA 3.2. With the above notation, &: X — X represents an epimorphism in
G.#, thene determines a unique € S € M(T) such thatf o eis G-homotopic to
o o f. The assignmer— o induces a monoid homomorphigm: E(X) — S C
M (T), whereE (X) is the monoid of equivariant self epimorphisms of@spaceX.

PROOF OFTHEOREM 1.1 Letd € &5(X), 6 # id. We shall exhibit a homomor-
phismy : 65 (X) — F with F afinite group suchthat(®) # id. SinceX isresidually
finite, we have a map : X — Y, of with Y, totally finite such thatf,(0) # f.(id).
Since X is finite andYy' is totally finite one observes using equivariant obstruction
theory [1] that the equivariant homotopy sgX, Yol is finite. Thus by Lemm&.2
thereisa > 1landar € § € M(Yp) such thatf o 6 is G-homotopic too o f and
f.(0) # f.(id). Hences # 1. Now the monoid homomorphism : E(X) — S
of Lemma3.2restricted toM (X) induces a group homomorphism: &s(X) — S
such that)(9) # id. This completes the proof. O

PrOOF OFTHEOREM 1.2 Recallthat by Propaton 2.9, X is residually finite. Thus
&5 (X) is aresidually finite group. Moreover it follows from the work of Triantafillou
[10, Theorem 1.2] thats(X) is commensurable with an arithmetic subgroup of
£5(Xo), where X, is the equivariant rationalisation of. Thus &5 (X) is finitely
generated. The theorem now follows as finitely generated residually finite groups are
Hopfian. This completes the proof. O

There are situations where it is not difficult to recognize the gIpX) as being
residually finite.
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ExampLE 3.3. Let ) be anOg-group. Leth > 1. If n > 1, theni is abelian. Then
if A has the property that(G/H) is finitely generated residually finite group for all
subgroupsH, then it is not difficult to see thafs (X) is residually finite whereX is
the equivariant Eilenberg-MacLane spdcé, n).

ExamMPLE 3.4. As another example, suppose théte G.# is a finite nilpotent
space such that for ang-homotopy equivalencd : X — X which is not G-
homotopic to identity, there exists a subgrddipf G suchthatf" : X"# — X" is not
homotopic to the identity. The#s(X) is residually finite (compare Propositi@nb).

We end with the following

PROPOSITION3.5. SupposeX € G.# is afinite and nilpotent. Further assume that
for each subgroupd, K of G
(1) [XK¥, XH]is agroup and
(2) [XX, Q"XH]is trivial for n > 1.
Thends (X) is residually finite.

PROOF. First note that for every subgroup of G, X" is nilpotent of finite type and
henceX" is residually finite F]. Now let[ f] € & (X) such thaf f] # [id]. Then
there exists a subgroup of G such tha{ f] # [id], otherwise, by 2, Theorem 3],
the natural family{[ f "]} would correspond tod : X — X and this would mean
f ~¢ id. The groups (X") is residually finite by 7, Theorem 3]. Using the obvious
homomorphismés(X) — &(X™) one sees that the groufy (X) is also residually
finite. This completes the proof. O

COROLLARY 3.6. SupposeX € G.77 is a finite and nilpotent. Moreover suppose
that theG-action onX is free outside the base point. Th&g(X) is residually finite.

EXAMPLE 3.7. Let X = §* v S ThenX can be given &,-complex structure by
interchanging the copies &. ThenX satisfies the hypothesis of the corollary and
hencess (X) is residually finite. It is easy to see that this group is non-zero.
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