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Abstract

The first purpose of this paper is to give a tensor product formula of the characteristic invariant and
modular invariant for a tensor product action of a discrete g@um AFD factors. The second purpose

is to describe a characteristic invariant and modular invariant of the extended action to a crossed produc
in terms of the original invariants.

2000Mathematics subject classificatioprimary 46L40.

1. Introduction

The cocycle conjugacy class of an actionf a countable discrete amenable gréaip
on an approximately finite dimensional (abbreviated AFD) factomwas completed
in the recent article][1]. This was done by means of the associated characteristic
invariantx () € A(G, a (Cnt(.#)), H}(Z (.#))) and the modular invariant, €
Homg (e (Cnt(.#)), H(Z (.#'))) which is the canonical pullback of the intrinsic
invariant of the AFD factor, which is the underlying algebra of the action. These
results, due to many mathematicia@s10, 12, 13, 14, 17, 19, 20], started from the
work of Connes 3, 6]. A comprehensive account of the subject is presented in the
joint work of Katayama, Sutherland and Takesaki cited above. In this article we are
concerned with the problem of determining these invariants for tensor product actions
and actions on crossed product from those associated with the original action.

In the case that both carrier algebr@g of oy and.#, of «, are of type I, the
invariants of the tensor product actien® «», saya, on.# = .#, @ .#, are almost
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just products of the original ones. So it does not pose any particular difficulty. But
in the case that#; and.#, are not semi-finite, it poses an interesting challenge.
For example, the tensor produgt ® o, of o € Cnt(.#;) ando, € Cnt(.#>) is not
necessarily in Crit#, ® .#5) which means thata; ® o,) Y Cnt(.7, ® .#,)) #

a1 Y (Cnt(.#1)) N a,"1(Cnt(.#5)). Thus, the basic ingredieat *(Cnt(.#)) of the
characteristic invariang («¢) has to be determined based on more dgta;), v,,}
and{x (o), vy,} NOt justN; = oy, 1(Cnt(.#7)) andN, = o, }(Cnt(.#5)) (See The-
orem2.1). Every lll-factor is a crossed product of ivon Neumann algebra” by

dual actiond of modular automorphism groug]] and the centr& of .4 with an
actiond is called the smooth flow of weight for an AFD Il factor. The AFD llI
factors are classified up to isomorphism by4, 7, 15. In the case of an AFD factor,

it is well known that every centrally trivial automorphism is an extended modular
automorphism up to inner automorphism and the canonical extensiofl és also
inner [2, 8, 13]. Therefore in the proof of Theorethl, we deal with automorphisms
on.#". To show that the tensor product formula is computable, we give a standard
form of characteristic invariant and modular invariant in the case pflll< A < 1)
factors and we propose the tensor product formula of them exactly in this case.

The second purpose is to describe the characteristic invariant and modular invarian
of the action, which is extended to a crossed product, in terms of the original invariants.
Sekine [L8] already gave the smooth flow of weight of the crossed product by making
use of the original smooth flow of weight and the invariants of an action. We utilize
his frame to define the characteristic invariant of the extended action. Here our
problem is also how to define the normal subgrousoivhich is a centrally trivial
part of the extended action. We characterize this normal subgroup with a cocycle
(See Theoren3.2). Once we characterize it successfully, the computations of the
invariants for the extended action are relatively easy. Itis shown in Propo8ition
that its invariants are computed explicitly in the case of the crossed producf of Il
(0 < 2 £ 1) factors by discrete abelian group.

The first author would like to express her sincere gratitude to Professor Hisashi
Choda for his helpful suggestions and constant encouragement.

2. Characteristic invariant for the tensor product of actions

First we give a brief review of the properties of characteristic invariants (see for
example Q).

Let G be a separable locally compact group with a normal subgiemda be
an action ofG on an abelian von Neumann algebra

The setZ, (G, N,  (&/)) consists of pairgx, i) such that

AMNxG— %) and u:Nx N — Z (&)
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are Borel maps satisfying the following conditions:

(1) p(m, mumnl) = an(un, Hum,nl), mnleN;
(2) ag(A(g7'ng, h)A(n,g) = A(n,gh), meN,g,heG;
(3) Am,m) = pw(m, minmum, m*, mneN;
(4) A(M, Qam(2(n, g)HA(MN, g)*

= ag(u(g~'ng,g-'mg)n(n,m’, mneN,geG;
(5) umn) =1 and A(n,g)=1

if and only if m,n € N, g € G is the identity

The seB, (G, N,  (&)) consists of pairss, d, 9,d), wherethe mag : N - %/ (&)
is Borel and

(8,d)(n, 9) = ag(d(g'n@))d(n)*;

(02d)(M, n) = d(M)ar, (d(n))d(Mn)*.

The quotient group\, (G, N, % («)) is as follows
Au(G, N, % () = Z,(G, N, (U(#))/B,(G, N, Z (<)),

and it is called aharacteristic invariant for the actior. The actionx is extended
to an action ofG x R (denoted by the samg andN acts trivially on«/, andR acts
ergodically ones'.

By [20, Theorem 2.2], we have a natural exact sequence

Au(G x R, N, % () — Ay(G, N, % (/))* x Homg (N, H:(R, % (/)))
5 HLXR, B, (G, N, % (&/))).

For x = [A, u] € AL(G x R,N, % (&)), a restricted characteristic invariant
[Alnxe, 1] on G is an element ofA, (G, N, % (&)® andthe ma : n € N —
Alnxr(n,©) = c()() induces a map : n € N — [c(n)] € Hi([R,OZ/(;za/))
which is aG-equivariant homomorphism. This is calledvedular invariant For

x =[A, u]l € Ay (G, N, Z (&)}, we define

{X(t, N, g) = & ()A*(N, 9);
w(t,n, g9 = a () (m,n), (teR,mneN, andg € G),
and
811X € Ao(G, N, % (/) — 81(x) = [ 1] € HE(R, B,(G, N, % (&)));
8, : v € Homg (N, H (R, 7 ()))
— 8,(v) = [3iC, 9,€] € HE(R, B,(G, N, Z ())),
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where the mag : n € N — c(n) € Z}(R, Z (<)) is a Borel map liftingv. For
(x,v) € Ay(G, N, % (&)* x Homg (N, Hi([R{,  (&))), we define

8(x,v) = 81(x) — 82(v).

We remark that by40, Lemma 2.1], fott € R, g € G,
2.1) a(MA*(N, 9) = ag(A(g'ng, 1)A(n, 1)*;
' o () (M, n) = A(mM, Hom (A (N, 1)A(MN, 1)*

forr € Z,(G x R, N, Z (&)).

From now on, we assume that the groGpis discrete. We consider a tensor
product of two actions o6 on AFD factors of type Ill. Our aim is to show that the
characteristic invariant and the modular invariant for the tensor product of two actions
can be expressed bg.@) and .5. We give an example in which its invariants can
be computed explicitly.

Let .# be approximately finite dimensional (AFD) factor of type Il asmdbe an
action of G on.#. We may suppose that the actieradmits an invariant dominant
weighty on.#. A dual actiong, of the modular automorphisa? associated witkp
is defined on a crossed produ¢t = .# x,. R by

01 (7, (X)) = 7, (X), 6 (1, (8)) = €A, (S),

wherex € .# andt, s € R and the sefr,(x), 2,(S) : X € .#, s € R} generates/’.

Thanks to Connes’ Radon-Nikgah cocycle [L], the isomorphic class of the crossed

product.# x,. R is independent of the choice of weights. For an automorphism

y € Aut(.#), we can extend canonically an automorphigna Aut(.4")

2.2) Y (7, (X)) = 7, (v (X)) forx e 4
Yy (9) = 7,((Dey~t : Dp)yr,(s) forse R,

where(Dgy ! : Dg), is Connes’ cocycleq, 8]. The centre of 4" is isomorphic
to a smooth flow of weight for# and the restricted actiagh on % is called aflow.
Let o be an action of5 on.#. The restricted actiofi; on % is just modeg Which
is called themodule We sometimes denote the above restricted actions by the same
symbol6; andeg.
The definition of characteristic invariant and modular invariant for the aetion
flow of type Ill are found in 0] or [13]. Here we give definitions which are equivalent
to the original ones ing0]. Let N = N, be a normal subgroup @& defined by

N, = {n € G : & = Adu(a), for someu(a), € % (A}
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and the unitaryu, = u(a), yields a characteristic invariamt («) = [A, u] €
A, (G, N, % (%)) and a modular invariant, = [c(n)] € Homg (N, Hg([R{, U (6)))
for the actionx as follows:

&g(ugflng) = )“(n, g)un;
(23) UpUn = (M, N)Upp;
0r(Un) = c(n)(t)un,

wheren,me N, g € G andt € R.

Let .#, and.#, be AFD factors of type Il and andg be actions ofG on .#;
and.#, respectively. With notation as above for eagh and.#,, we define crossed
products4; = .#; X,, R and.4, = .#, x,+ R for invariant dominant weightg
andy. The actione and g can be extended to actian, and Bg on 4 and _15.
Moreovera, and 8, commute with each dual actigff and6?, which are denoted
by « and g, respectively. We denote a product actigg®! of G x R on .4; by
g1, Without any confusion. Similarly, we defing,,, = f,62. Itis easy to check
that the crossed product; = (#; ® .#,) X,.» R is isomorphic to a subalgebra
(AL Q@ A3) Hgegor {1, 1) 1t € R} Of (A, Xye R) @ (A, X, R). By the Galois
correspondence[l, Theorem 7.2], the von Neumann algeb#g is isomorphic to
the fixed point algebrdy € 41 ® 45 : o ® B_i(y) = y}, which is identified
with _43. The smooth flow of weight; = Z(.43) for .#; ® .#, is isomorphic to
({ye 1% 1 @ B_i(Y) =Y, t € R}, oy ®1), whered;, = Z(.4).

Let x2 = [A1, u1] @and x, = [, 2] be characteristic invariants in, (G, N,
2 (61)) and Agz(G, N, % (%>)) associated with the actionsand g andc (n)(t),

(i = 1,2) be their modular invariants. We identifs with {y € 61 %, : ¢ ®
B (y) =y, t € R}. We define a normal subgroly of G andxs(n, g), us(m, n) €
63 by

Nz ={ne NN Nz:ci(n,t) ® C(n, —t) = dy(oq ® B_p) (),

for somed, € % (61 ® %65)};
AN, @) = 21N, @) ® 2o(N, 9)(@g ® By)(dy )y, g € G;
ps(m, n) = dr dndh (M, N) @ pa(m, n), m, n € Na.

(2.4)

We also define, fon € N3, t € R,
(2.5) cz(n, 1) = (o ®1)(dy)d;(Ca(n, 1) ® 1),
wherec;(n, t) ® c;(n, —t) = dy( ® B_y)(d). Using

(e @ () = (1 ® B (D) (cr(n, ) ® Bi(C(N, —1))),
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it is easy to check thaz(n, t) = (1 ® ;) (dh)d* (1 ® ca(n, 1)).

It was shown in 16], by an algebraic method, that the tensor product of invariants
is well defined and it satisfies the conditiorig—«{(5) of characteristic invariant and
modular invariant with§ ([As, us], [Cs]) = 0. The proof is valid even when the real
field R is replaced by another locally compact group. Here we shall prove the tensor
product formula of invariants in the operator algebraic way.

THEOREM 2.1 (Tensor product formula)Vith notation as above, the characteristic
invariant and modular invariant for the product actien® g of G on .#; ® .5
is [A3, i3] € Augs(G. N3, % (%3))* and [cs(n, -)] € Homg(Ns, Hi@([R, U (%3))),
where s, us and c; are derived in(2.4) and (2.5 from the invariants(;, ;) and
v = [ ()], (i =1, 2) for the actionsy and 8 on.#; and.#, respectively.

PrROOF. By (2.2) we have thatx/@g/ﬂ on .45 is the restriction oft ® 8 on.#; C
N ® N3 FOrn € Nugp, takeU, € 45 such that(@, ® B,)(x) = AdU,(x) for
X € 3. By [3, 5, 13], the element is contained ifN, N Ny. Therefore, we have

(@ ® B)(X) = Ad U(@)y ® U(B)n(X)

forx e A4 ® .4, and

Ad U, (x) = Adu(a), ® u(B)n(x)
for x € 3. It follows from .43 D .#, ® .#, and [L1, Lemma 1.1] that there exists
d, € % (%61 ® %>) such thatJ, = d,(u(x), ® u(B),). Since(x ® B_;)(U,) = U, for
t € R, we have, byZ.3),

d (U(@)n @ U(B)n) = (e ® B_)(Gh)a (U(@)) @ B (U(B)n)

= (ot ® B-0)(dh)Ca(N, HU()y ® Co(N, —HU(B)n,

which implies that,o; ® B_(d}) = ci(n, t) @ cx(n, —1).

Conversely, suppose that fore N, N Ng, there is somel, € % (41 ® %) such
thatd, (o ® B_1)(d}) = ci(n, t) ® Cy(n, —t). We setU,, by d,(U(x), @ U(B)n). Then

Ad U, (x) = Ad dy (@ ® Bn) (X) = (@ ® Bn)(X)
for x € 41 ® .45. Moreover, since we compute

(o ® B_)(Up) = (o ® B_)(d)ci(n, Hu(er), @ (N, —t)u(p),
= d,(U(a)n, ® U(B)n) = Uy,
the unitarylU, is in .#3. We have shown that

Nuws = {n € Ny N Ny 2 do(on ® B-) (D) =Ci(n, 1) ® Co(n, —t)
for somed, € 7 (6, ® %,)}.
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Using (2.3) we obtain

A3(n, 9) = (&g ® Bg)(Ug-1ng)Uys
= (@g ® Bg) (g-1ng) (@g (U())g-1ng) ® Bg(U(B)g-1ng) (U(); ® U(B);)d:
= (&g ® By) (dg-1ng)diA1(N, Q) ® A2(N, Q);
13(m, n) = UpU,Ur = di Ao (2.(M, N) ® 11o(m, 0));
(N 1) = (or ® UV = (o ® 1)(dy)d; (ci(n, 1) ® 1). O

In the case of I§-factors, the tensor product formula of characteristic invariant
and modular invariant depends heavily on the flow of weights and we cannot give its
formula explicitly. We give a standard form of characteristic invariant and modular
invariant in the case of IJHfactors(0 < A < 1) and we show the tensor product
formula of them exactly.

Let.# be afactorof type Il (0 < A < 1). Itis well known that the flow of weight
(Z (M), F") = (%,6) is regarded ad(*([0, — log 1)), translation by-t) and the
cohomology group HR, % (%)) is as follows

les;seR/TZ} O<Ai<1)

Hy (R, % (6)) = {{eitS;s € R} (r =1,

whereT = —27/log .. We may choose the modular invarigot)] € H; (R, % (%))
to be of the formc(n)(t) = €™, wherev(n) € [0, T). We identify the real number
v(n) with the modular invariant(n) = [c(n)] € Hi (R, % (%)). The following lemma
was proved in20], we include here a brief proof.

LEMMA 2.2. Leta be an action ofG on AFD factor.# of typelll, (0 < 1 < 1).
The characteristic invarianth, ] of « is of the form(up to cohomology

(2.6) {)”(”’ g)(w) is a constant functign

p(m, n)(w) = m(m, n)gremv=rm-—rmo),
for w € [0, —log A) and7x(m, n) is T-valued function satisfying

2.7 p(m, mz(mn, D) =%, Hzm,nl);
7 [ MM 9A(n, g)A(mn g) =Ti(g'mg. g Ing)z(m, me @ Mmoo,

wheremodag( f)(w)=f (w—1(g)), for feL>([0,—logA)), wherer (g)€[0,—logA).
PrROOF. We may assume(n)(t) = €™, By (2.1) andv(g~*ng) = v(n), we have

a(MA*(N, g) = Gg(c(g~ing, )c(n, t)* = gteE oo — 7
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Sinceq; is ergodic, the unitary(n, g) must be constant. By the Fourier expansion
of w, w(m, n)(w) =Y, aer*@/looh 'wherea, € C. By (2.1), we have

o () (M, n) = c(m, t)c(n, t)c(mn, t)* = tem+vm-vmn)

By comparison of the Fourier coefficients, we get

akefithn/ logx — it(v(m)+v(n)—v(mn))ak

for k € Z. Then there exists a uniqi€2z/ log A) = v(mn) — v(mM) — v(n) such that
a, # 0. Thereforep(m, n) is of the formz(m, n)gwCMP—vm—v) “wherer(m, n)
is scalar. The statemert.{) follows from conditions {) and @). O

Let .#;, and.#, be AFD factors of type Il and Ill,, (0 < A3, 2, < 1), anda
and 8 be actions of the grou® on .#; and.#, respectively. We remark that the
following lemma is related tol[3, Lemma 1.7].

LEMMA 2.3. Letv; be the modular invariants far and 8, wherev;(n) € [0, T))
andT, = —2r/log %; respectivelyi = 1, 2).

(D) If .#1and.#, are of typdll,, andlll,, withO < A4, 2, < 1, there is an operator
d e L*([0, —log ;) x [0, —log A»)) such that

(2.8) o ® Bu(d)d = cy(N)(t) ® Cy(n)(—t) = g!tam—z™)

if and only if there existgk; (n), k»(n)) € 72 such that

(2.9) v1(N) + K (M Ty = va(N) + k(M) T

Moreover, the operatod can be chosen to be of the form

(210) d(wl’ wz) — e—i(wlkl(n)T1+wzkz(n)T2)

for (wy, wy) € [0, —logAy) x [0, —logAy).

(2) If .4 is of typelll;, with O < &, < 1and.#, is of typelll ;, we may replace the
condition(2.9) and the operatod in (2.10 by

(2.9) v1(N) + ke (N) Ty = vp(n);
(2.10) d(w;) = e kT,

PrROOF. (1) The operatod is expressed by the Fourier expansion

d(wl’ U)z) — Zak’mefiwlle X e*inmTz'

k,m
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We compute

o ® ,B,t(d) — Zakme—i(wl—t)le % e—i(w2+t)mT2

k,m

— Zakmeit(lefmTz)efiwlle % e—iwzmTz.

k,m

e itum—nm) g — Ze—it(m(n)—w(n»ak’me—iwlle x @ 1w

k,m

By (2.9), there existgk; (n), k»(n)) € Z? such that

Aq ).k 7= 0,
v1(N) — v(N) = =k (MTy + k(N To.

Conversely, take a functiod(w,, w,) as followsd(w,, w,) = e wikWThtwiemT)
then by the conditionZ.9), we conclude

o ® '3 t(d*)d — ei((wlft)k1(n)T1+(w2+t)k2(n)Tz)efi(wlkl(n)Tlerzkz(n)Tz)

— e*it(kl(n)Trkz(n)Tz) — eit(w(n)*vz(n))'

(2) If .4, is of type lll;, the smooth flow of weigh#Z, is trivial. Therefore the operator
d is a function or{0, —log 1,). The statements in (2) can be shown by repeating the
argument of (1). O

If the invariants(x;, u;) are of the form 2.6) for i = 1,2, then we compute
Cs, A3 andus using the definition, with the functiody, = d in (2.10

(2.11) C(n, t) = (¢ @1)(d)d5(ci(n, 1) ® 1)

— e*i ((wlft)kl(n)T1+wzkz(n)Tz)ei (wiki(N)Ti+wokz(N)T2) eitvl(n)
— @tim+k(MTy).
(2-12) )»3([1, 9) = (&g ® ,Bg)(dgflng)d:()\l(n» g) ® )\z(n» g))
= A1(N, @)Ap(n, )€ R @KENITi+e@k@ N9 T2)
% @ 1wtki@ g -k T g=iwa(ke(@~ NG —ka (M) Tz -
(2.13)  pa(m,n) = d; dndn(p1(M, N) @ p2(M, N))
— m(m’ n)m(m’ n)el wl(“l(mn)*ul(m)*vl(n))ei wa(v2 (MN)—v2 (M) —v2(N)

X ei wa(ky (M) —ky (M) —ky (N) Ty ei wa(ke(Mn)—ka (M) —k2(N)) T2)
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In the case when#, is of type Ill;, we can takel, asin .10). Then

c(n,t) = gtoim+k(mT).
As(N, 1) = (N, @)Az(n g)eiu(g)kl(g*lngme—iw1<k1<g*1ng>—k1<n>m.

u3(mM, N) =7 (M, N)zz(m, N)
X eiwl(vl(mn)*vl(m)*vl(n))eiwl(kl(mn)*kl(m)*kl(n))Tl'

(2.14)

If log A,/ logx; is rational with logr,/logi; = 1,/1; simple fraction(l,, l; € N),
then we set; = 12" = 11/"*, and the tensor product factef; ® .#, is of type Ill;,.
We set

(2.15) v3(N) = (ke (N) Ty + v1(N)) — [(ka(N) Ty + v1(N))/ T3] T3 € [0, T3),

whereT; = —27/log A3 and[ -] is the Gauss symbol. If lokp/log 2, is irrational or
A =1, then#, ® #, is of type lll;. Hence we set

(216) U3(n) = kl(n)Tl + l)l(n) e R.

ProPOsSITION2.4. (1) If logX,/log A, is rational, then the characteristic invari-
ant (A3, u3) for the product actiorr ® g of G on.#; ® .#, is cohomologous to

A1(N, @)Ax(n, g)€ (@ +@)s(@ NY—r1(@(g'nY ~T2(9)2(g N0
72 (m, n)zz(m, n)e' w(v3(MM) —vs(M)—v3(n))

for w € [0, — log A3).

(2) Ifloga,/loga, isirrational or .#5 is of typelll 1, then the invariantis, us) for
a ® B is cohomologous to

AN, g)Aa(n, g)ei((r1(9)+rz(g))vs(gflng)fn(g)vl(gflng)frz(g)vz(gflng));
{m(m, n)uz(m, n).
PrOOF. (1) By identifying L>°([0, —log A3) x {0}) = L*([0, —log A3)) with
{f € L*((0, —log A1) x [0, —logxy)) : f(wy —t, wy+1) = f(wy, wi)},
we may regard.; andus in (2.12—(2.13 as

A3(N, @) = AN, g)Ax(n, g)e @@ NI R@k(@ O T)
(2.17) x g iwk@ g —tam)T.

M3(m n) =m(m n)m(m n)eiw(vl(mn)*vl(m)*vl(n))eiw(kl(mn)*kl(m)*kl(n))Tl
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forw € [0, —log A3). Sincek; (N)T; +v1(N) —v3(n) € TzZ, we can consider a function
f(n) on[0, —logxs)

f(n)(w) = dwkMTatva(m—rsm)

We perturbi; andus by f (n). Thenwe have, by;(g~tng) = vi(n) andvs(g~*ng) =
v3(N),

g Q -1
A3(N, 9) (&g ® By)(f (g nY)) f(N)*
—  (w—11(9)—72(0)) (ki (g7NY T +v1(g7 NG —va(g ™ NG) g =i w(Ka(M Tr+v1 (M) —vg(N))
= A3(n, g)€ e
= Az(n g)eiw(kﬂg*lng)—kl(n)me—i<r1<g>+rz<g>><k1<g*1ng>T1+ul<g*1ng>fv3<g*1ng>>
sincevy(nN) + ky (N) Ty = vo(N) + ke (N)T, and @.17),
= 21(n, 9)Aa(N, g)ei(<r1<g>+rz<g>>v3(g*lng>—n<g>v1<g*1ng>—rz<g>vz<g*1ng>>

and

ps(m, n) f(m) f(n) f(mn)*
— (M, )@ KT b s )T () ()~ (M 40— ()

= (M, N)Tz(m n)eiW(w(mn)*vz(m)*w(n))'

(2) Sincev(mn) = v(m) + v(n), k(g tng) = k(n) andk(mn) = k(m) + k(n), we
have, by £.19,

A3(n, @) = A1(N, )A,(N, 9)€ 1(@ki(@ QT
ws(n, g) = w1(m, N)az(m, n).

Itis easy to show (use(9)) that

(ki (97 NY Ty = (11(9) + 72(9)vs(g7'NY) — T1(Pvi(g'NY) — T2(P)v2(g~'NQ).

Thus we obtain the conclusion of (2). O

3. Characteristic invariant for discrete crossed product

Here we deal with characteristic invariant and modular invariant of the action
induced up to a discrete crossed product and we give an example in which its invariants
are computed explicitly.

Let G andH be discrete groups ardandj be actions ofG andH on an AFD
factor.# with oy, = Brogforg € G andh € H. The actiong is supposed to be an
outer action of an amenable grotpin order that a crossed produet x; H is an



368 Yukako Miwa and Yoshikazu Katayama [12]

AFD factor. The actiorr of G on.# can be extended to an action (which is denoted
by @) on the discrete crossed produ#f x; H satisfying

(B.1)  @(mp(X) = me(ag(X)).  Tg(hs(h) =Az(h), X e.Z, heH,

where.#Z x; H is generated by, (x), A5(h) : X € .#,h € H}. In this section
we compute the characteristic invariant and modular invariant for the agtidBy
perturbing an actiow x By n = agfn by a cocycle, we may assume that it admits
ana x B-invariant dominant weighp on .# [20, Proposition 1.1]. We extend the
actionse andp to actionsa andg on.#" = .# x,, R. Since(.# Xg H) X0 Ris
canonically isomorphic tot” x; H, whereg a dual weight ofp [18], we may regard
the actionx as
(3.2 {fg(afg(x)) = 7;(@y(X). X €N
ay(hg(h)) = Ay(h), heH,

where(rm;(X), Xﬂ(h) :X e A, heH}generatest” x; H. The actiony is denoted
by the same symbai. Let N, be a normal subgroup df defined byg—*(Int(.+"))
and(X, u) andc(n, t) be the characteristic invariant and modular invariant of 8.
A twisted crossed produtt x4 ,, N4 of the centrés” = Z (") by trivial action plays
a crucial role in the description of invariants ®1([18]), wherey is a restriction of
w onNg. The invariants. andc(n, t) give actionsy of H andF of R on %’ x;q,,,, Ng
for an eIemenEleNﬁ dz € % g, Ny as follows

yk(Zdlzl> = ZMI’ K)Bi (Ch 1) Z;

(33) leNg leNg
H(ZM) = 6(d)cd, Hz,
leNg leNg

whered, € ¢, 2,2, = ug(l1, 12)z,, andé, is the flow on’. Moreover, forg € G, we
define an actiow of G by

(3.4) p( X dz) =it sz,

leNg leNg

We set a normal subgrould,.; = (@ x g)~*(Int(#")) of G x H anda,,(k) €
% Xidu, Ng :for(n,h) € Ny, 4, andk € H,

(35) an,h(k) = )\.((n, khkﬁl)9 k)M((nv h)s (ev hilkhkﬁl))*zhflkhlvl'
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LEMMA 3.1. For (n,h) € Ny.4, thea,; is y-cocycle in% xq,, Ng. Namely,
ann(Kw@n) = a,nkl). Moreover, a,, and a,, are cohomologous with
w((n, h), (e, h=1))*z, 4, for (n, h), (n,1) € N, 5, namely

a1 (K) = (M((n, h), (e, h’l|))*Zh—u)*an,h(k)n(u((n, h), (e, h’l|))*2h—1|)

fork e H.
PrROOF. We seta, , (k) = y(u(n, )iz (hy*)(u(n, h)xz (h)")*, where
W =Adrs)lyxn and @py,=Adu(n,h.

Since Adu(n, h)x, (h)*|.y = &, and B, commutes withi, thea, , (k) is an element
of A7 N (A x; H). We compute, usingh'k *h € N,
a,,(K) = Bc(u(n, )iz (kh ™k *hyu(n, hy*
= A((n, khk™), kyu(n, kKhk M B4, . un, h) )i, (h~tkhk)*
= A((n, khk™), kyu(n, khk™)
x u(e, h~*khk H*u(n, h)*u(e, h-*khk )i, (h*khk )"
= A((n, khk™), kyu(n, khk Hu((n, h), (e, h~*khk))*u(n, khk1)*
x u(e, h~*khk i, (h~*khk)*
= A((n, kKhk™), K)((n, h), (e, h~*khk 1))*
x u(e, h~*khk i,z (h~*khk*.
By the anti-isomorphisnil in [18, Lemma 2.4], we havél(a,n(K)) = &, (k). It
follows fromthe definition oy, , (k) thata, |, (k) satisfies; (a, , ())&, ,(K) = &, ,(KD).

Therefore a, (k) satisfiesa, n(K)yk(ann(1)) = a,n(kl). We choose another unitary
u(n, 1) satisfyinga x B, = Adu(n, 1) for (n,1) € N,. ;. Then we have

Adu(n, hy* Adu(n, 1) = & X Bl X By = Bru = Ad Ag(h™)|y.

Therefore, thereid € .47 N (4" x; H) such thau(n,l) = d - u(n, h)iﬂ(hfll) and
we have
d = u(n, hy*u(n, His (h1)* = u(n, h)*u((n, h) - (&, h~4)a,(h1)*
= u(n, h)*u((n, h), (e, h=))*u(n, hyue, h"1H,(h~)
= n((n, h), (e, h~))*u(e, h )iz (h~).
ThereforeT(w((n, h), (e, h~))*z,-y) = d. Since

&, (k) = m@m(un, s (K DHAg1)*)As(HAg (KD u(n, hy*d*
= n(d)a, , (kd*,
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we conclude
a1 () = (1((n, h), (& h™))*Zyu) @ n () 7 (e (N, ), (& 7)) 2. O

RemMARK. If the groupH is abelian, the/-cocyclea, (k) is justA((n, h), k). It
follows from (2) in the definition fon thatA((n, h), -) is y-cocycle. By making use
of the definition (1)—(4) for the characteristic invariant, we can prove Le@uhi
an algebraic way, but its proof is rather complicated.

Next we shall show that the characteristic invariant and modular invaria@tdan
be expressed as the operator&inq ,, Ng by making use of the anti-isomorphism
ITin [18, Lemma 2.4].

THEOREM 3.2. Let N; be a normal subgroux—*(Int(.+" x; H)) of G and let
[@n.nm ] denote the class &, ., (K) in H;(H, % Nidu, Np)-
(1) The groupN; is

{ne G:(n h(n) e N,y and [a,nm] =0, for someh(n) e H}.
(2) The characteristic invariantéx, 1) in (% Xia.,, Ng)? for a are given by

A(n, @) = ((n,h(g™'ng)), 9)
x u((n, h(n)), (e, h(m~*h(g'ng)))"
X Zh(n)*lh(gflng)/og(b(gilng))b(n)*;
(3.6) (n, m) = A((n, h(m)~*h(mh(m)), h(m)™)

x p((m, h(m)), (n, h(m)~*h(n)h(m)))
x p((mn h(mn), (e, h(mn)~*h(mh(m)))"
X Zh(mn)*lh(n)h(m)yha)(b(n))b(m)b(m ny”
for (n, h(n)), (m, h(m)) € N,.4,0 € G.
The modular invarian€(n) is given by
(3.7) c(n)(t) = c(n, h(m) )R (b(n)b(n)*,

wherea, i (K) = b(n)u(b(n)*) for someb(n) € % x4, Ng andp, y andF are
givenin(3.3) and(3.4).

PrROOF. (1) We note, firstly, that the cohomology classgf, is independent of the
choice ofh(n) by Lemma3.1 Taken € N; and choose a unitaky, € -4~ x; H such
thata, = AdU, on.4" x; H. SinceU, is of the form

Z vhhg (D),

heH
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wherev, € ./, it follows fromU,x = @,(X)U,, X € 4" x5 H that

Z UnBn )i (h) = @n(X) Z wnhg(h), for x e 4.

heH heH

Hence we haveyX = @,Bn(X)vn for h € H. By [18 Lemma 2.3], ifanf,

is not inner, thery, must bezera Hence there i$i(n) € H such that&n/f?h(n) is

an inner automorphism aff”. We choose unitary(n, h(n)) € % (.4") such that
@nPBnmy = Adu(n, h(n)). We compute, fox € .4/,

Adu(n, h(n)is(h(N)*(X) = @ Bm B (X) = @ (X) = Ad Uy, (X).

We seth’(n)* = u(n, h(n))iﬂ(h(n))*U: € AN (A x; H). Since the extended
automorphisna, satisfiesy, (.5(k1) = Az(k™1) for k € H, we have

hp (k™) = (e (kh) = Uphg (K HU;
= b'(nyu(n, h(n)Ax (h(n))*xz (K H A,z (h(n))u(n, h(n))*b'(n)*.

This implies that
V(D' (M) (N) = nu(n, hm)i, (hn)*)un, hm)is (h(n)*)* = &, ) (k)
and we have
b(my(b(n)*) = (K" (M) u (I (b'(N)*)) = T’ (M*)B'(N) = & nen)-

Conversely, suppose that ther®{®) € ¢ xiq ., Ny such thab(n)y(b(n))* = a,nn
for some(n, h(n)) € N,.z. We set

(3.8) Un = b'(nyu(n, h(n))A, (h(n))*,
whereb'(n) = IT-*(b(n)). Then we have for € 4", k € H,
Ad Un(X) = Ad b/(n)&n(x) = an(X);
AdU,(hs (k™)
= b'(nyu(n, h(N)Ax (h(n))* Az (KA, (h(n))u(n, h(n))*b'(n)*
= J.(K Ym0 (M) pu(n, h(m))i g (h(m)*) (un, h(n))iz (h(n))*) b'(n)*
= Js (K DU (M), (b ()" = Xs (k™).

Hence the automorphise, on.4" x; H is inner with the unitaryJ, in 4" x; H.
Thus we have proved the statement (1).
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(2) LetU, be as in 8.8). We compute

dg(Ug U} = ag(b'(g "ng)u(g"ng, h(g~'ng)is(h(gng))*)

x Ag(h(m)u(n, h(n))*b'(n)*

= b'(n)*ag(b'(g~'N@)A((N, h(g~*ng)), g)u(n, h(g~*ng))
x Ls(h(g~ng)"*h(n))u(n, h(n))*

= b'(n)*ag(b'(g~'N@)A((N, h(g~*ng)), g)u(n, h(g~*ng))
X Bnig-ing-nmy (UM, (M)A, (h(N)"*h(g ™ ng))*

= b'(n)*ay(b'(g~"n@)A((n, h(g™'ng)), g)u(n, h(g *ng))
x u(e, h(m)~*h(g*ng))*u(n, h(m)*u(e, h(n)*h(g~'ng))
x Ls(h(n)~*h(g'ng))*

= b'(n)*ag(b'(@ " ng)A((n, h(g™'ng)), 9)
x p((n, h(n), (e, h(n)"*h(g 'ng)))"
x u(e, h(m)~*h(g~*ng))i,(h(m)~*h(g~'ng))".

Then the characteristic invarianffor & is of the form

A(n, @) = A((n, h(g™'ng)), 9 u((n, h(n)), (e, h(n)"*h(g"ng)))"
X Zn(n)-thg-1ng g (D(G~ NG D(N)*.

We compute

UnUnUg, = b’ (mu(m, h(m))s (h(m))*b'(nyu(n, h(n))i, (h(n))*
x (b’ (mnyu(mn, h(mn)i, (h(mn))*)*
= b/ (Mmn)*b' (M), O’ (M) u(m, h(M))i4 (h(m))*u(n, h(n))
x Ag(h(n)* Az (h(mn))u(mn, h(mn))*
= b’ (Mn)*b' (M) (' (N)u(m, h(m) A((n, h(m)~*h(m)h(m)), h(m)~*)
x u(n, h(m)~*h(n)h(m))z (h(m)~*h(n)"*h(mn))u(mn, h(mn))*
= b'(mn)*b' M)y (M) A((n, h(m)~*h(n)h(m)), h(m)™)
x u(m, h(m)u(n, h(m)~*h(n)h(m))u(e, h(mn)~*h(n)h(m))*
x u(mn, h(mn))*u(e, h(mn)~*h(n)h(m))i, (h(mm)~*h(n)h(m))*
= b'(Mn)*B'(M) 0, O’ (M)A ((N, h(M)~*h(m)h(m)), h(m)~)
x u((m, h(m)), (n, h(m)~*h(n)h(m)))
x pw((mn h(mn), (e, h(mn)~*h(n)h(m)))*

x u(e, h(mn)~*h(n)h(m))i, (h(mn)~h(n)h(m))*.
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Then we obtain
a(n, m) = A((n, h(m)~"*h(nyh(m)), h(m)=H)((m, h(m)), (n, h(m)~*h(n)h(m))
x w((mn h(mm), (e, h(mn) " h(Mh(M))) " Zmn-thynim)
X Vo (B(N)b(M)b(mn)*.

Finally, we compute

6.(UU; = 1 (n)*6,(b'(n))c(n, h(n)) t)u(n, h(n))as (h(n))* a4 (h(n))u(n, h(n))*
= b'(n)*6, (' (n))c(n, h(n) (1),
wheref; is a dual action ons” x; H for the modular automorphism?’. Then we

obtainc(n, t) = c(n, h(n))(t) K (b(n))b(n)*. O

From now on, we assume that the grddps abelian and the factoy” is of type
I, (0 < 2 < 1). We shall give a form ob(n) in Theorem3.2 and the invariants
X, [, Cexplicitly. If .# is of type lll, (0 < 1 < 1), we may assume that the invariants
(A, n) andv for the actiona x B of G x H are as in Lemm&.2 Since they-
cocyclea, (k) is A((n, h), k), it follows from (2) in the definition for. that a map
k € H — A((n, h), k) € Tis acharacteroH. Therefore, we defin®(n, h) € H by

(k, ®(n, h)) = A((n, h), k)

for k € H, whereH is a dual group oH. Forp € Z, the mag € H — &™PT € T
is also a character dfl, whereT = —27/log A and we definel'(p) € H by

(., w(p)) =T

forl € H. Thenthe mapl : p € Z — W(p) € H is a homomorphism. ByX(7), we
have

A(M, ), (M, 1), K) = 2(mn, b, KB (((m, ), (0, 1)) w((m, hy, (0, 1)*
— )\‘((mn’ hl)’ k)é z(k)(u(m,h)+v(n,|)—v(mn,hl))’

which implies that
3.9) @®(m,h)+ &(n,l)=dmn, hl) +¥w@m,h)+vn, 1) —vimn hl)).

PrOPOSITION3.3. With notation as above, if# is of typelll, (0 < 2 < 1)
(respectivelyll ), we have the following statements.
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(1) They-cocyclea,y, for (n, h) € N, is coboundary witb(n) € %" g, Ng,
namelya, (k) = b(n)y(b(n)*) if and only if there id € N4 such that

v(p) = ®(n,h) + d(e 1), (respectively ®(n, h) + d(e ) =e)

for somep € Z. Moreover, we can choode(n) € H and p(n) € Z such that
(n, h(n)) € N, andW¥(p(n)) = ®(n, h(n)) (respectivelyb(n, h(n)) = e) andb(n)

can be chosento be of the fobtn) = €"P™T € % x4, Ng, (respectivelp(n) = 1),

wherew € [0, —log ).

(2) The invariantsk, i and¢ are as follows

A(n, g) = A((n, h(g™*ng)), @)1 ((n, h(n)), (e, h(m)*h(g~'ng)))"
% Zh(n)flh(gflng)eiw(p(gflng)fp(n))Tefir(g)p(gflng)T;
am, n) = w((m, h(m)), (n, h(n))A((n, h(n)), h(m)~*)
x p((mn, h(mn)), (e, h(mn) (M) Zymn-thmhm
X ei w(p(M)+p(n)—pmn)T efi rthm=YHpmT :
c(n)(t) = c(n, h(n))(t)eP™T,
respectively
A(n, @) = A((n, h(g™*ng)), @)1 ((n, h(n)), (e, h(m)*h(g"ng)))"
X Znn)-th(g-tng)s
a(m, n) = w((m, h(m)), (n, h(n)))A((n, h(n)), h(m)~*)
x p((mn h(mmn), (e, h(mn)~*h(n)h(m))*
X Zh(mn)-th(n)h(m)

c(m ) = c(n, h(m)(®).

PROOF. (1) Suppose that therelign) € ¢ xq,,, Ng With
(k, @(n, h)) = b(M)u(b(n)*).

Sinceb(n) = ZleNﬁ dz ford € ¢, we compute

(b)) =" Bu(d)r((e 1), 3;

leNg

(k, —@(n, hy)bn) = > (k, —®(n, h))dz.

leNg
By the comparison of coefficients, we have

B(d) = (k, —®(n, h) — (e, 1)d,
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foralll € Ng. Since% is isomorphic toL>([0, —log 1)), we have

Bk(d| ) = Z dl,pei (wft(k))pT’

peZ

whered =, d.,€"PT (Fourier expansion ofi). Then we obtain, again by the
comparison of coefficients,

d e " 0PT = (k, —d(n, h) — ®(e, 1))d,

for all p € Z. This implies that¥'(p) = ®(n, h) + ®(e,|) for somep € Z and
I € Ng. Conversely, we suppose that foe Ng, there arep € 7,1 € Ng andh € H
with (n, h) € N, such thatl (p) = ®(n, h) + d(e |). We set

b(n) = eiprZ| I3 X]id,uﬁ Nﬂ,
and compute

b (b)) = &P 2z (&), ke P = e WPTi((e 1), k)
= (k. ¥(p) — (e ) = k. (., h)) = A((n. h). k) = &n(K).

By (3.9, we setp(n) € Z andh(n) € Ng

p(n) = p+ v(n, hl) —v(n, h) —v(e);
h(n) = Ih,

which satisfiest (p(n)) = ®(n, h(n)). Then we may také(n) = €*P™T. Making

use ofb(n), (3.6) and @.7), we conclude that the statement (2) holds. Even wkén

is of type Ill;, we can prove the statement using the same argument. O
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