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Abstract

Davey and Quackenbush proved a strong duality for each dihedral groupDm with m odd. In this paper
we extend this to a strong duality for each finite group with cyclic Sylow subgroups (such groups are
known to be metacyclic).
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1. Introduction

The first strong natural duality for nonabelian groups was established by Davey and
Quackenbush, see [2]. They showed that the dihedral groupDm admits a strong natural
duality if m is odd. In this paper we generalize this result to finite groups having all
Sylow subgroups cyclic. We assume that the reader is familiar with [2]. The definition
of a (natural) duality is given in [1, 2]; here we give it for the special case of finite
groups:

Let G = 〈G; ·〉 be a finite group. We call̃G = 〈G; F; P; R; − 〉 a (topological) dual
structureon the same setG, if

.a/ each f ∈ F is a group homomorphismf : Gn → G for somen ∈ N,

.b/ each f ∈ P is a group homomorphismf : dom. f / → G, where dom. f / is a
subgroup ofGn for somen ∈ N,
.c/ eachr ∈ R is a subgroup ofGn for somen ∈ N,
.d/ − is the discrete topology.
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The elements ofF , P and R are called operations, partial operations and relations,
respectively, and we say that the structureG̃ is algebraic overG. One consequence
of this definition is that everyn-ary group word is a continuous homomorphism from
G̃n to G̃.

Also as a consequence of this definition we have that foreach groupA in the quasi-
varietyISP.G/, the set of homomorphisms fromA to G, denotedX̃A := Hom(A;G),
is a closed substructure ofG̃|A| and for each̃X in the topological quasivarietyIScP.G̃/,
the set of continuous homomorphisms from̃X to G̃, denotedA X̃ := Hom(X̃; G̃), is
a subgroup ofG|X̃|. Moreover, for each groupA ∈ ISP.G/ there is a natural em-
beddingeA of A into its corresponding double dualA X̃A

given by the evaluation map
eA : A → A X̃A

such thateA.a/. f / = f .a/ for each f ∈ X̃A . If eA is an isomorphism
for all A ∈ ISP.G/, then we say that̃G yields a (natural) duality for ISP.G/. If the
analogous mapžX̃ also is an isomorphism for each̃X ∈ IScP.G̃/, then we say that̃G
yields afull duality for ISP.G/.

For instance, ifG = Zm = 〈Zm; +〉 and Z̃m = 〈Zm; +; − 〉 with F = {+},
P = ∅ = R, then Z̃m yields a full duality forISP.Zm/, which in this case is the
variety of abelian groups satisfyingmx = 0; this is a fragment of the usual Pontryagin
duality for all abelian groups.

Duality theory tells us that in order to show thatG̃ yields a full duality onISP.G/
it is enough to prove the following three conditions:

CLO: for eachn ∈ N, every continuous homomorphism� : G̃n → G̃ is a group
word onG.
INJ: G̃ is injective inIScP.G̃/.
STR: for anyX̃ ≤ G̃I whereI 6= ∅, and for eachy ∈ G̃I \ X̃ there exists a continuous
homomorphism� : G̃I → G̃ such that�|X = 1 while�.y/ 6= 1.

When these three conditions are satisfied we call this astrong duality; thus, a strong
duality is a full duality. All known full dualities are actually strong dualities. It has
long been conjectured that a full duality is always strong, but this remains an open,
challenging problem. We shall exhibit a strong duality for groups having cyclic Sylow
subgroups.

2. Preliminary results

For the main goal of the paper we need some structure theorems for groups. The
first is from Robinson, [5, page 281].

THEOREM 2.1 (Hölder, Burnside, Zassenhaus).A finite groupG has all its Sylow
subgroups cyclic if and only if it has a representationZn o Zm such that.m;n/ = 1;
thus, it is metacyclic.
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Letn = pþ1

1 · · · pþk

k so thatZn
∼= Z p

þ1
1

×· · ·×Z p
þk
k

and Aut.Zn/ ∼= Aut.Z p
þ1
1
/×· · ·×

Aut.Z p
þk
k
/. Then the semidirect productZn o H is determined by a homomorphism

² = .²1; : : : ; ²k/ from H into Aut.Zn/, where²i is the corresponding homomorphism
from H into Aut.Z p

þi
i
/ andZ p

þi
i
oH is the corresponding semidirect product. The next

theorem tells us how to build recursively a strong duality forZnoH from those for the
Z p

þi
i
oH. As often happens in a recursive construction, we need to assume and prove

something a bit stronger in order to prove that the recursive construction is correct.
A strong duality forK = G o H will be calledsemidirectover H if the following
condition holds: letX̃ be a closed substructure of.K̃ /I , � : X̃ → K̃ a continuous
structure preserving map and�′ : .H̃ /I → K̃ a continuous structure preserving map
extending the restriction of� to .H̃ /I ; then there is a continuous structure preserving
map : .K̃ /I → K̃ extending both� and�′.

Now and later in the paper, we make use of the following group theoretic lemma
from [2].

LEMMA 2.2. Let G be a group and letž be a retraction ofG onto a subgroupH.
Let N be the kernel ofž and let

K := {.u; v/ ∈ G2 | ".u/ = ".v/} =
⋃

{."−1.h//2 | h ∈ H }
=
⋃

{Nh × Nh | h ∈ H }

be the congruence corresponding toN. Define a partial binary operation∗, with
domainK , by xh ∗ yh := xyh for all x; y ∈ N andh ∈ H (that is, defineu ∗ v :=
už.u/−1v = už.v/−1v for all .u; v/ ∈ K ).

.a/ (The restriction of) ∗ is a well-defined group operation onNh for eachh ∈ H.
Moreover, right translation byh is an isomorphism of〈N; ·〉 onto〈Nh; ∗〉.
.b/ The partial operation∗ is associative wherever it is defined. It will be commu-
tative wherever it is defined providedN is abelian.
.c/ The map∗: K → G is a homomorphism if and only ifN is abelian.

THEOREM 2.3. Let G1;G2;H be finite groups withG1;G2 abelian, such that their
sizes are pairwise relatively prime. IfK i = Gi oH (given by²i : H → Aut.Gi /) each
admits a strong duality, then a strong duality holds forG = .G1 × G2/oH (given by
.²1; ²2/ : H → Aut.G1/ × Aut.G2/).

PROOF. Let "i denote the retractions ofG to K i by G j for .i; j / ∈ {.1;2/; .2;1/},
" the retraction ofG to H by G1 × G2. Let K̃i = 〈Ki ; Fi ; Pi ; Ri ; − 〉 yield a strong
duality forISP.K i /. Let si .n/ = qi .n/ri .n/ be the size of then-generated free group,
Fi .n/, in the variety generated byK i , where.qi .n/; |Gi |/ = .ri .n/; |H|/ = 1. Also,
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let∗ be the partial operation given by the translation of the group operation onG1×G2

as given by Lemma2.2. We take

G̃ = 〈G; {"1; "2}; F1 ∪ F2 ∪ P1 ∪ P2 ∪ {∗}; R1 ∪ R2; − 〉;
note that full operations onGi become partial operations onG. Also note that
"1"2 = "2"1 = ". We will use the fact that"i |K1−i

is the retraction ofK 1−i ontoH by
Gi . Because of our assumption of strong dualities, we may assume that"i |K1−i

is part
of the duality forK1−i .

Let g ∈ GI for I finite or infinite, and let� : G̃I → G̃ be a continuous homomor-
phism. Then we haveg = g

1
g

2
h with g

i
∈ GI

i andh ∈ H I . Then"i .g/ = g
i
h. Since

g = g
1
h ∗ g

2
h and� preserves∗,

�.g/ = �.g
1
h/ ∗ �.g

2
h/ = �."1.g// ∗ �."2.g//:

That is,�.g/ is uniquely defined once�."1.g// and�."2.g// are known.
First we show thatCLO holds. Due to the semidirect products involved, each

Fi .n/ is itself a semidirect product of a normal subgroupNi .n/ andFH.n/, the n-
generated free group overH. Moreover,.|Ni .n/|; |FH.n/|/ = 1. That is to say,
q1.n/ = q2.n/ := q.n/ for all n ≥ 0. As eachK i is a quotient ofG, we have
|FG.n/| ≥ q.n/r1.n/r2.n/. We show that equality holds, as doesCLO , by showing
that there are at mostq.n/r1.n/r2.n/ continuous homomorphisms� : G̃n → G̃. Since
� preserves{"; "1; "2}, � mapsK n

i to Ki andH n to H . In view of the strong dualities
assumed for eachK i , there are at mostq.n/r1.n/r2.n/ restrictions of� to K n

1 ∪ K n
2 ;

we must show that this restriction has at most one extension to all ofGn. But that was
done in the last paragraph.

In order to proveINJ and that the duality will be semidirect overH, let X̃ ≤ G̃I

be a closed substructure for some setI and� : X̃ → G̃ a continuous homomorphism.
Since� preserves the retractions,�|K I

i
is a continuous homomorphism from̃X ∩ K̃ I

i

to K̃i . SinceINJ holds for K̃ I
i and the dualities are semidirect overH, we proceed

as follows: let 0 be an extension of�|H I to H̃ I and i an extension of 0 ∪ �|K I
i

to K̃ I
i for i = 1;2, and note that 1|H I =  2|H I . Let g ∈ GI whereg = g

1
g

2
h

with g
i
∈ GI

i andh ∈ H I . From what we have seen above, we must define by

 .g/ :=  1."1.g// ∗  2."2.g//. If g ∈ X̃, then ."i .g// = �."i .g//, so that 
extends�; obviously, extends 0. Since |K I

i
is a homomorphism, to show that 

is a homomorphism, it is enough to show that preserves"i . Let g = g
1
g

2
h. On the

one hand,

 ."1.g// =  1."1."1.g/// ∗ 2."2."1.g/// =  1.g1
h/ ∗  2.h/:

On the other hand,

"1. .g// = "1. 1.g1
h/ ∗  2.g2

h//:
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Let  1.g1
h/ = g1h and 2.g2

h/ = g2h′ wheregi ∈ Gi andh;h′ ∈ H . In order for
g1h ∗ g2h′ to be defined, we need to show thath = h′. We do this by showing that
 1.h/ = h and 2.h/ = h′; since 1.h/ =  2.h/, the result follows. Using the fact
that"2 commutes with 1, we have

h = "2.g1h/ = "2. 1.g1
h// =  1."2.g1

h// =  1.h/:

Similarly, 2.h/ = h′. Then,

"1. 1.g1
h/ ∗ 2.g2

h// = "1.g1h ∗ g2h/ = "1.g1g2h/ = g1h:

Finally, g1h = g1h ∗ h =  1.g1
h/ ∗  2.h/, showing that preserves"1. In a similar

manner it preserves"2 and so it is a homomorphism.
To complete the proof ofINJ we need to prove that is continuous. By construc-

tion, both 1 and 2 are continuous. Using the same finite subset ofI given by the
continuity of i , it is straightforward to prove the continuity of i ◦ "i . Note that∗
is continuous because it has finite domain. Thus, is a composition of continuous
maps and so it is continuous. Moreover, we have shown that the duality is semidirect
overH.

To showSTR we first note that restricted toK I
i , STR holds. Also recall that� is

defined ong ∈ GI if and only if it is defined on"i .g/ ∈ K I
i for i = 1;2. Let X̃ ≤ G̃I

be a closed substructure andy ∈ GI − X for some setI 6= ∅; we define�.x/ := 1
for all x ∈ X. Then, without loss of generality, we may assume that eithery ∈ H I

or "1.y/ =∈ "1.X/; in either case,"1.y/ =∈ "1.X/. Now we invokeSTR for K̃ I
1 with

respect to"1.y/ and proceed as in the proof ofINJ for G̃I , and we are done. We leave
to the reader the verification that the value of this extension aty is not 1.

3. The casen = pβ

Thus, we can build up our strong duality for finite metacyclic groups from that for
metacyclic groups of the formG = Z pþ o Zm, where.p;m/ = 1. In this section we
show that there is a strong duality semidirect overZm for these groups. We assume
thatG is not abelian.

LetZ pþ = 〈a〉, Zm = 〈b〉 andab.= bab−1/ = ak for somek ∈ N. Let
 ∈ Aut.Zpþ /

be such that
 .a/ = ab and let the order of
 be d (this means thatba = akb and
that a = 
 d.a/ = akd

, so thatpþ |.kd − 1/). As G is not abelian,d > 1; for the
same reason,p > 2, and so Aut.Zpþ / ∼= Z pþ−1.p−1/. On the one hand, as there is a
group homomorphism fromZm to Aut.Z pþ / sendingb to 
 , d|m and so.d; p/ = 1.
On the other hand, asd|pþ−1.p − 1/ and.d; p/ = 1, we have thatd|.p − 1/. Thus,
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bda = akd
bd = abd and so〈bd〉 is in the center ofG. Let us suppose thatabj = bj a.

Thena = .a/b
j = ak j

; hence,
 j .a/ = a and sod divides j . Thus,

CG.a
i / = 〈a;bd〉; CG.b

j / = 〈b〉 if d - j;

CG.b
j / = G if d | j; Z.G/ = 〈bd〉:

When Z.G/ 6= 1 (that is,d < m), there are some complications. For instance,
consider the casepþ = 3, m = 4 andab = a−1. In this 12-element group we have
Z.G/ = 〈b2〉 and G=Z.G/ ∼= S3. But S3 is not in the quasivariety generated by
G (asS3 is monolithic but not a subgroup ofG). Thus, the quasivariety generated
by G is not the variety generated byG. However, the variety generated byG is the
quasivariety generated byZ4×S3, see Olshanskii [3]. In general, the variety generated
by G = Z pþ o Zm is the quasivariety generated by

Zm × .G=Z.G// ∼= Zm × .Z pþ o .Zm=Z.G/// ∼= Zm × .Z pþ o Zd/:

In caseZ.G/ 6= 1, we will need to work ‘over the center’ by using the following
partial operation.

LEMMA 3.1. The mapping? : G × Z.G/ → G such thatg ? c = gc is a group
homomorphism.

We shall show thatIScP.G̃/ is a dual quasivariety ofISP.G/, where

G̃ = 〈G; 1; Þ;+; ∗; ◦; ?; − 〉:

Here, 1 is the constant operation andÞ is the automorphism ofG fixing a and mapping
b to ab (we omit the routine but ugly computation that shows that such anÞ exists).
The four operations+; ∗; ◦; ? are each obtained from the restriction of the group
operation· to certain subgroups ofG2; each operation is a homomorphism. Thus,+
is the restriction of the group operation· to the abelian groupZm = 〈b〉. Next,∗ is the
binary partial operation obtained via Lemma2.2 from Z pþ andZm. More precisely,
the domain of∗ is

⋃m−1
i =0 .Z pþbi × Z pþbi /, and the operation is the translation of the

group multiplication:ai bj ∗ akbj = ai +kbj . By Lemma2.2, ∗ is an algebraic binary
partial operation. Let" : G → Zm where".ai bj / = bj is the retraction ofG ontoZm

by Z pþ = 〈a〉. Note that if a map preserves∗ then it automatically preserves", since
".ai bj / = ai bj ∗ a−i bj anda−i bj is generated fromai bj by ∗. The binary partial
operation◦ is the restriction of the group operation· to the abelian groupZ pþ × Z.G/.
Finally, the binary partial operation? is as given by Lemma3.1. As always,− is the
discrete topology.

First we show that the conditionCLO holds.
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LEMMA 3.2. | Hom.G̃n; G̃/| ≤ mn.pþ /.d
n−1/.n−1/+n.

PROOF. The proof is essentially the same as that of Proposition 4 of [2]. Let
� ∈ Hom(G̃n; G̃). Since+ is the original group operation onZm, and� preserves
+, the restriction,�|.Zm/n , is an abelian group homomorphism intoZm. There are
mn such homomorphisms. Next, we examine the possible extensions of each such
homomorphism. Leth = .h1; : : : hn/ ∈ .Zm/

n and"−1.h/ = Z pþh1 × · · · × Z pþhn =
Sh. Sh is an abelian group isomorphic to.Z pþ /

n under the operation∗ with h as its
identity element.Sh must be mapped into"−1.�.h// which under∗ is isomorphic to a
subgroup ofZ pþ , and�|Sh

must be an abelian group homomorphism from〈Sh; ∗〉 to its
image. Since� preservesÞ, it is already defined onÞ.h/, hence on.〈Þ.h/〉; ∗/ which
is a subgroup of sizepþ of 〈Sh; ∗〉 if h 6= 1, and is{h} if h = 1. So there are at most
.pþ /n−1 extensions toSh if h 6= 1 and at most.pþ/n if h = 1. Finally, leth′ ∈ .Zm/

n

be such thath−1h′ ∈ .Z.G//n. Then because of?, if we know� on Sh, then we know
� on Sh′. Since|Zm=Z.G/| = d, the number of continuous homomorphisms fromG̃n

to G̃ is not more thanmn.pþ /.d
n−1/.n−1/+n.

In [2], the proof is completed by a reference to the known result that this upper bound
is the size of then-generated free group in the variety generated by the given group.
In the present case, we do not have such a formula at hand. However, since every
word is a continuous homomorphism, we only need to construct ann-generated group
of the appropriate size in the variety generated byG. One of the referees of an earlier
version of this paper gave an alternate proof by showing that the variety generated by
G is the product varietyApþAd, whose free spectrum is known. The proof we give
here is more elementary and has the advantage that it is a more general approach to
producing dualities – one ‘merely’ constructs sufficiently largen-generated algebras.

LEMMA 3.3. Let a ∈ 〈a〉q and g ∈ Gq be such that if.g/i = btas, then0 ≤ t ≤
d −1. Then for every0 ≤ t ≤ d −1 the group generated bya andg contains a vector
at such that.at /i = .a/i if .g/i = bt as and.at/i = 1, otherwise.

PROOF. Considera = .aw1; : : : ;awq/ andg = .bi1ar1; : : : ;bi j arq/. Without loss
of generality, we may assume thati u 6= i v for u; v ≤ s and that forv > s there is
u ≤ s with i u = i v. Form thes × s matrix whose.u; v/ component is the exponent
of a in the v-th component ofagu

. Then this matrix is a constant multiple of the
Vandermonde-matrixV = V.ki1; ki2; : : : ; ki s/, where the constant is

(
q∏

j =1

w j

)
k.
∑n

j=1 i j /:



384 R. Quackenbush and Cs. Szabó [8]

Notice that this constant is not divisible byp. The determinant ofV is

detV =
∏

0< j<l≤s

.ki j − kil /:

As ki j − kil = kil .ki j −i l − 1/ is coprime withp, detV is a unit inZ pþ ; hence,V is
invertible and the vectors asserted by the lemma are expressible in the terms of the
vectorsagu

.

DEFINITION. Let a ∈ 〈a〉k andg ∈ Gk. The vectors created in the previous lemma
are called theseparationof a by g at the exponentt .

EXAMPLE 1. Let a = .1;a;a2;1;a3;a;a/ and g = .b;a;ba2;b3a;b;b5a;b3/.
Thena0 = .1;a;1;1;1;1;1/, a1 = .1;1;a2;1;a3;1;1/, a3 = .1;1;1;1;1;1;a/. It
is clear thata = ∏m−1

t=0 at , andat = .1; : : : ;1/ if t does not occur ing as an exponent
of a in some component.

We exhibit ann-generated subgroupD of G.dn−1/.n−1/+n of the appropriate size. We
define ann-by-[.dn −1/.n−1/+n] matrix M with entries fromG, and take the group
generated by its rows. We defineM by giving its columns. Take all the vectorsb̄ from
〈b〉n such that if.b̄/i = br , then 0≤ r ≤ d − 1. For each such̄b take the vectors̄bi

.1 ≤ i ≤ n/, that are the same asb̄ except that thei -th coordinate is multiplied bya
from the right. For each̄b we omit the first̄bi which does not containa as a coordinate.
For example ifb̄ = .1;1;b;b2;b3;1;b/T we omit b̄3 = .1;1;ba;b2;b3;1;b/T . We
getn vectors from.1; : : : ;1/T andn − 1 from eachb̄ 6= .1; : : : ;1/T . These vectors
will be the columns ofM . Given an element̄v ∈ G.dn−1/.n−1/+n, we will index the
coordinates of̄v by the columns ofM .

DEFINITION. b̄ is called theb-part of b̄i ; a column ofM distinct fromb̄i but with
the sameb-part is called ab-mateof b̄i . A row vector of length.dn − 1/.n − 1/+ n
with ana in coordinateb̄i , and a 1 in all other coordinates is called thea-part of b̄i .

LEMMA 3.4. In the variety generated byG, there is ann-generated group of size
at leastmn.pþ /.d

n−1/.n−1/+n.

PROOF. We show thatD, the group generated by the rows ofM , is a group of the
required size. We show thatD contains

.1/ a subgroupH1 of size.pþ /.d
n−1/.n−1/+n;

.2/ a subgroupH2 of sizemn.

Since the orders ofH1 andH2 are coprime, the group generated by them has size at
leastmn.pþ/.d

n−1/.n−1/+n.
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In order to show (1), let̄g = .bt1; : : : ;bti a; : : : ;btn/ be a column ofM , vi the row
of M with bti a entry in coordinatēg. First we construct a vectorw′ ∈ D havinga
as itsḡ coordinate, and 1 in all coordinates which areb-mates ofḡ. Letw′ = vi if
ti = 0; notice that at ab-mate coordinate of̄g the entry is 1. Ifti 6= 0, consider̄g and
its b-mates (in total,n − 1 columns). Then by the construction ofM there is a unique
row v which contains noa in any of these columns, but only a fixed power ofb, br ;
this row corresponds to the first component of theb-part ofḡ which is not 1. Ifm does
not divide[r; ti ], letw′′ = vm−[r;ti ]=r · v[r;ti ]=ti

i . Then theḡ coordinate ofw′′ is az, where

z = k[r;ti ] − 1

k[r;ti ]=ti − 1
;

and the coordinate of everyb-mate ofḡ is 1. Sincem does not divide[r; ti ], p does
not dividez and so there is au ∈ N such that

zu ≡ 1 .mod pþ /:

Hence,.az/u = a. Let w′ = .w′′/u. If m divides [r; ti ], thenm does not divide
[r + ti ; ti ]; so let us usev · vi instead ofvi to constructw′′ andw′. The ḡ coordinate
of w′ is a, and the coordinate of everyb-mate ofḡ is 1.

We next constructw0 ∈ D∩〈a〉.dn−1/.n−1/+n with the same property. Since.m; p/=1,
there is anx ∈ N such that

x ≡ 1 .mod pþ/; x ≡ 0 .mod m/:

Let w0 = .w′/x . Thenw0 ∈ D ∩ 〈a〉.dn−1/.n−1/+n with a in its ḡ coordinate, and the
coordinate of everyb-mate ofḡ is 1.

Now we recursively construct thea-part of ḡ. Suppose for̄h 6= ḡ that.w0/h̄ 6= 1.
Then theb-part of h̄ differs from theb-part of ḡ, say at componentj . Look atw1,
the separation ofw0 by the j -th row of M at the exponentt j , wheret j is the j -th
component of theb-part ofḡ. Then.w1/ḡ = a and.w1/h̄ = 1. As separationpreserves
the entry 1, iteration eventually produes thea-part of ḡ. Clearly, the set of alla-parts
of the columns ofM generates a group of the required size.

In order to show (2), express".v i / with vi and H1. These elements belong to
〈b〉.dn−1/.n−1/+n and clearly generate a groupH2 of ordermn.

Now we have everything to show thatCLO holds:

THEOREM 3.5. Each continuous homomorphism from̃Gn to G̃ is a word.

PROOF. By construction, each word is a continuous homomorphism. But by
Lemma3.2 and Lemma3.4, there are at most as many continuous homomorphisms
as there are words.
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COROLLARY 3.6. The size of then-generated free group in the variety generated by
G is mn.pþ /.d

n−1/.n−1/+n and then-generated free group is a semidirect product:

.Z pþ /
.dn−1/.n−1/+n o Zn

m:

Let us now try to proveINJ andSTR and show that the duality is semidirect over
Zm. Thus, choosẽX ≤ G̃I with I not empty,y ∈ G̃I − X̃, and� ∈ Hom.X̃; G̃/. We

want to extend� to  ∈ Hom.G̃I ; G̃/ so that if� ≡ 1, then .y/ 6= 1. Also, if �′ ∈
Hom.Z̃ I

m; G̃/ and extends�|ZI
m
, then we want to find ∈ Hom.G̃I ; G̃/ extending

both� and�′.

DEFINITION. Define Xm := X ∩ ZI
m, Xp := X ∩ .Zpþ × Z.G//I , and for b ∈

Z I
m − .Z.G//I , defineXb := X ∩ 〈a〉I b. Note that 1∈ Xm, 1 ∈ Xp, but thatXb may

be empty. Each ofXm; Xp; Xb is closed.

LEMMA 3.7. .a/ + is fully defined onXm and〈Xm; +; − 〉 is a closed substructure
of 〈Z I

m; +; − 〉, to which Pontryagin duality for abelian groups of exponentm applies;
.b/ ◦ is fully defined onXp and 〈Xp; ◦; − 〉 is a closed substructure of〈.Zpþ ×
Z.G//I ; ◦; − 〉, to which Pontryagin duality for abelian groups of exponentpþm=d
applies;
.c/ for b ∈ ZI

m − .Z.G/I , ∗ is fully defined onXb and 〈Xb; ∗; − 〉 is a closed sub-
structure of〈〈a〉I b; ∗; − 〉, to which Pontryagin duality for abelian groups of exponent
pþ applies;
.d/ the effect of? is that for anyc ∈ X ∩ Z.G/I , 〈Xb; ∗; Þ; − 〉 is isomorphic to
〈Xbc; ∗; Þ; − 〉 via multiplication byc.

PROOF. Everything is clear except for part (d) where we need to prove closure
underÞ and its preservation under multiplication. This follows from the fact that in
G, Þ.bc/ = Þ.b/c, which we now prove. SinceÞ.bc/ = Þ.b/Þ.c/, we need to show
thatÞ.c/ = c. Recalling thatZ.G/ = 〈bd〉, this reduces to showing thatÞ.bd/ = bd.
But Þ.bd/ = .Þ.b//d = .ab/d = asbd for somes. On the other hand, we must have
Þ.bd/ ∈ Z.G/. This means thatas = 1 andÞ.bd/ = bd.

Thus,�|Xp
is a continuous◦-homomorphism. By Pontryagin duality for abelian

groups of exponentpþm=d, there is a continuous◦-homomorphism�1 : .Zpþ ×
Z.G//I → Zpþ × Z.G/ which extends�|Xp

. Also, sinceZ.G/ ≤ Zm and.p;m/ = 1,
we may assume that�1 extends�′|Z.G/I .

Now defineX′
m := Xm.Z.G//I ; clearly,X′

m is closed under+. Define�2 : X′
m →

Zm by �2.xc/ := �.x/�1.c/ for x ∈ Xm andc ∈ Z.G/I .

LEMMA 3.8. X′
m is a closed subset ofZ I

m, and�2 is a continuous+-homomorphism.
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PROOF. Let z =∈ X′
m, and soz =∈ Xm. Thus, there is a finiteF ⊆ I such that

z′|F = z|F implies thatz′ =∈ Xm. For c ∈ Z.G/F choosed.c/ ∈ Z.G/I with
d.c/|F = c and withd.c−1/ = .d.c//−1; note that there are only finitely many such
d.c/. Then zd.c/ =∈ X′

m as z =∈ X′
m, implying that zd.c/ =∈ Xm. Consequently,

there is a finiteEc ⊆ I such thatw|Ec
= zd.c/|Ec

implies thatw =∈ Xm. Define
E := F ∪⋃{Ec | c ∈ Z.G/F }; E is finite. Choosez′ so thatz′|E = z|E. Suppose
thatz′ ∈ X′

m; thenz′ = x′c′ for somex′ ∈ Xm andc′ ∈ Z.G/I . Takec := c′ |F . Then
z′d.c−1/ ∈ X′

m asz′ ∈ X′
m. But z′d.c−1/|Ec−1 = zd.c−1/|Ec−1 so thatz′d.c−1/ =∈ X′

m,
implying thatz′ =∈ X′

m. Thus, the clopen set{z′ | z′|E = z|E} is disjoint fromX′
m and

X′
m is closed.
Next, we need to see that�2 is well defined; letxc = x′c′ with x; x′ ∈ Xm

and c; c′ ∈ Z.G/I . We need to see that�′.x/�1.c/ = �′.x′/�1.c′/. But in X′
m

we havec′c−1 = .x ′/−1x ∈ Xm, so that�1.c′/�1.c−1/ = �1.c′c−1/ = �′.c′c−1/ =
�′.c′/�′.c−1/. Fromx = x′c′c−1 and asc′c−1 ∈ Xm, we have�′.x/ = �′.x′c′c−1/ =
�′.x ′/�′.c′c−1/ = �′.x′/�1.c′/�1.c−1/, and the result follows.

Finally, continuity follows since�′ and �1 are continuous by assumption,· is
continuous since it has a finite domain and thus,�2 is a composition of continuous
functions, and so is continuous.

If �1 extends�′ |Z.G/I , then�2 = �′ |Z.G/I . By Pontryagin duality for abelian groups
of exponentm, there is a continuous+-homomorphism�3 : .Zm/

I → Zm which
extends�2; we may assume that�3 = �′. Thus, if we can proveINJ andSTR, then
the duality will be semidirect overZm. We now describẽY, the substructure of̃GI

generated byZ I
m ∪ .Zpþ × Z.G//I , prove thatỸ is closed, define an extension�4 of

�′ to Ỹ and prove that�4 is a continuous homomorphism.

DEFINITION. We defineY to be
⋃{Yb | b ∈ .Zm/

I }, where

.a/ for b ∈ Z.G/I , Yb := 〈a〉I b, else

.b/ for b ∈ Xm, Yb := Xb, else

.c/ for b ∈ X′
m with b = b′c whereb′ ∈ Xm andc ∈ Z.G/I , Yb := Xb′ c, else

.d/ Yb := 〈Þ.b/〉.
LEMMA 3.9. Y is a closed subset of̃GI .

PROOF. Let Y′ = ⋃〈Yb | b ∈ X′
m〉, and note thatY′ = X.Z.G//I . ThenY =⋃

i 〈Þi .ZI
m/〉∪Y′. As Z I

m is closed, so is each〈Þi .ZI
m/〉. AsÞ has finite order, there are

only finitely many such sets. Thus, we need only prove thatY′ is closed. Lety′ =∈ Y′.
First suppose that".y′/ =∈ X′

m. As X′
m is closed, there is a finiteFy′ ⊆ I such that

z|Fy′ = y′|Fy′ implies that".z/ =∈ X′
m, so thatz =∈ Y′. Otherwise, let".y′/ = b′ = bc

with b ∈ Xm andc ∈ Z.G/I . Definey := y′c−1 and note thaty ∈ Yb − X. As x is
closed, there is a finiteFy ⊆ I such thatz|Fy

= y|Fy
implies thatz =∈ X. Hence, if



388 R. Quackenbush and Cs. Szabó [12]

z′|Fy
= y′|Fy

, thenz′c−1|Fy
= y|Fy

and soz′c−1 =∈ Yb implying thatz′ =∈ Y′. That is, we
have shown that ify′ =∈ Y′, then there is an open neighbourhood ofy′ disjoint from
Y′, so thatY′ is closed.

LEMMA 3.10. Y is a substructure of̃GI .

PROOF. This readily follows from Lemma3.7.

DEFINITION. We define�4 : Y → G by choosingy ∈ Yb whereb ∈ Z I
m:

.a/ for b ∈ Z.G/I , define�4.y/ := �1.y/, else

.b/ for b ∈ Xm, define�4.y/ := �′.y/, else

.c/ for b ∈ X′
m with b = b′c whereb′ ∈ Xm and c ∈ Z.G/I , define�4.y/ :=

�′.yc−1/�1.c/, else
.d/ b ∈ ZI

m − X′
m with Þ.b/ = ab for somea ∈ 〈a〉I so thaty = .a/i b for somei ,

and we define�4.y/ := �1.a/i�3.b/.

LEMMA 3.11. �4 ∈ Hom.Ỹ; G̃/.

PROOF. We have already proved thatỸ is a closed substructure of̃GI . Inspection
of the definition of�4 shows that it is a function fromY into G. Since�4 extends�3,
it preserves+, and since�4 extends�1, it preserves◦. It is easily checked that�4

preserves∗ on eachYb. For ?, cases (a) - (c) are straightforward; we prove case (d).
Note that bothb andbc fall into case (d). Lety ∈ Y andc ∈ Z.G/ I ; we must show that
�4.y ? c/ = �4.y/ ? �4.c/. Thus,�4.y ? c/ = �4.yc/ = �4.ai .bc// = �1.ai /�3.bc/ =
.�1.ai /�3.b//�3.c/ = �4.ai b/�1.c/ = �4.y/?�4.c/. Finally, using the fact thatÞ fixes
each element ofZm × Z.G/ and thatÞ commutes with multiplication by any elemet
of Z.G/I , we see that�4 preservesÞ. That is,�4 is a homomorphism. For continuity,
recall thatY = ⋃

i 〈Þi .ZI
m/〉∪ X.Z.G//I . Now,�4|.Zm/

I = �3 is continuous. Likewise
for eachi , �4|Þi ..Zm/

I / is continuous. Next, note that fory ∈ Ybc whereb ∈ Xm and
c ∈ Z.G/I , �4.y/ = �′.yc−1/�1.c/ is the composition of continuous functions and so
is continuous. Thus, we have decomposedY into finitely many closed sets such that
the restiction of�4 to each is continuous. Consequently,�4 is continuous.

THEOREM 3.12. Without loss of generality, we may assume thatZ I
m ∪ .Zpþ ×

Z.G//I ⊆ X.

PROOF. By Lemma3.9- Lemma3.11, Ỹ is a closed substructure ofG̃I containing
X̃, and�4 ∈ Hom.Ỹ; G̃/ extends�′. We need to verify that fory ∈ Y − X, we could
have chosen�4 so that�4.y/ 6= 1. If y ∈ .Zpþ × Z.G//I , then we could have chosen
�1 so that�4.y/ = �1.y/ 6= 1. Now let y ∈ Yb for b =∈ Z.G/I . As Yb ⊆ X for
b ∈ Xm, we have eitherb ∈ X′

m − Xm or b ∈ Z I
m − X′

m. In the first case,b = b′c with
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b′ ∈ X, c ∈ Z.G/I − X andyc−1 ∈ X. Then�4.y/ = �′.yc−1/�1.c/; if �′.yc−1/ 6= 1,
then we could have taken�1.c/ = 1, and otherwise have taken�1.c/ 6= 1. Finally, if
b ∈ Z I

m − X′
m, then we could have taken�3.b/ 6= 1; as�4.y/ = ai�3.b/ for somei ,

�4.y/ 6= 1.

THEOREM 3.13. Let b ∈ Z I
m; without loss of generality, we may assume that

〈a〉I b.Z.G//I ⊆ X.

PROOF. We assume thatZ I
m ∪ .Zpþ × Z.G//I ⊆ X. The proof is similar to that

of Theorem3.12 and the lemmas preceding it. We state, but do not prove, how to
proceed. LetY = X ∪ 〈a〉I b.Z.G//I ; Ỹ is a closed substructure of.G̃/I containing
X̃. Next, Xb is a closed substructure of〈〈a〉I b; ∗; − 〉, and�′ |Xb

is a continuous
homomorphism. Hence, by Pontryagin duality for abelian groups of exponentpþ ,
there is a continuous homomorphic extension�5 of �′ |Xb

to 〈a〉I b. Now define
�6 : Y → G by �6.y/ := �′.y/ for y ∈ X, and otherwise fory ∈ Xbc, define

�6.y/ := �5.yc−1/�′.c/. Then�6 is a well-defined continuous homomorphism onỸ
extending�′. If y ∈ Y − X, then we may assumey ∈ 〈a〉I b and so could have chosen
�5 so that�6.y/ = �5.y/ 6= 1.

We note two immediate corollaries.

COROLLARY 3.14. If INJ holds, then so doesSTR.

COROLLARY 3.15. If I is finite, then this special case ofINJ , whereX̃ is a sub-
structure (necessarily closed) ofG̃I , holds.

It is tempting to invoke the second corollary by noting that as�′ is continuous,
it depends only on some finite subsetF ⊆ I . Just projectX into GF and extend
the projection of�′. Unfortunately, sinceG̃ involves proper partial functions, the
projection of X need not be a substructure and the projection of�′ need not be
extendable to a structure preserving map onGF . We can invoke Theorem3.13
to extend�′ to a homomorphism oñGI , but we have no reason to believe that
this extension is continuous. The following lemma from [2] is the key to ensuring
continuity of an extension.

LEMMA 3.16. Let A and I be sets withA finite. Suppose that, for every finite
F ⊆ I , each element ofAF is labeled either ‘good’ or ‘bad’ and that ifF ′ ⊆ F and
x ∈ AF is ‘bad’, then so isx|F ′ ∈ AF ′

. Then either there is a finiteF ⊆ I such that
each element ofAF is ‘good’ or there is anx ∈ AI such thatx|F is ‘bad’ for each
finite F ⊆ I .
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Let us apply Lemma3.16to Z I
m. Forb ∈ Z I

m and finiteF ⊆ I , define

0
b
F := {.x|F ; �

′.x// | x ∈ X and".x|F/ = b|F}:

Notice that0b
F = 0

b′
F if b|F = b′|F . Call b|F ‘good’ if 0b

F is a subset of the graph of
a ∗-preserving map defined on"−1.b|F/ = "−1.b/|F ; otherwise, callb|F ‘bad’. Let
F ′ ⊆ F and let³ denote the natural restriction map from"−1.b/|F to "−1.b/|F ′. If 
 is
an extension of0b

F ′ to a∗-preservingmap on the∗-substructure generatedby"−1.b|F ′/,
then
 ◦³ is an extension of0b

F to a∗-preserving map on the∗-substructure generated
by "−1.b|F /. Hence ‘badness’ is hereditary in the sense required by Lemma3.16.
Thus, by Lemma3.16, either

.a/ there is a finite subsetF of I such that every memberb of ZF
m is ‘good’,

or
.b/ there existsb ∈ ZI

m such that for all finiteF ⊆ I , b|F is ‘bad’.

LEMMA 3.17. Case(b) cannot occur.

PROOF. Assume thatb ∈ Z I
m such that for all finiteF ⊆ I , b|F is ‘bad’; that is, for

every finite subsetF of I , the set

0
b
F = {.x|F ; �

′.x// | x ∈ X and".x|F/ = b|F}

is not a subset of a∗-preserving map defined on the∗-substructure generated by
"−1.b|F/. DefineY := X ∪ 〈a〉b.Z.G//I . Then by Theorem3.13, Ỹ is a closed
substructure of̃GI and�′ can be extended to a continuous homomorphism�′′ on Ỹ.
Consequently,�′′ depends only on some finiteF ⊆ I ; that is, for x; x′ ∈ Y with
x|F = x′|F , we have�′′.x/ = �′′.x′/. Since".b|F/ = ".b/|F and since"−1.b/ ⊆ Y,
we have

0
b
F = {.x|F; �

′.x// | x ∈ X and".x|F/ = b|F }
⊆ {.x|F; �

′′.x// | x ∈ Y and".x|F/ = b|F}
= {.x|F; �

′′.x// | x ∈ 〈a〉I .b/}:

But this latter set is the projection of the graph of a∗-homomorphism on a total∗-
algebra, and so is the graph of a∗-homomorphism on〈a〉F which extends0b

F , contrary
to assumption. This contradiction shows that Case (b) cannot occur.

Thus, we are left with Case (a). LetF be a finite subset ofI such that every member
b of Z F

m is good. LetY be the∗-closure ofX|F in GF .

LEMMA 3.18. Ỹ is a closed substructure of̃GF .
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PROOF. As G̃F is finite, every subset is closed. By assumption,Y is closed under
∗. As Z I

m ∪ .Zpþ × .Z.G//I ⊆ X, ZF
m ∪ .Zpþ × .Z.G//F ⊆ X|F ; thus,Y is closed

under+ and◦. As X is closed under? and containsZ.G/I , it is clear thatY is closed
under?. For closure underÞ, let ab;a′b ∈ X|F . ThenÞ.a′b/ = a′Þ.b/ ∈ X|F and
aa′b ∈ Y. Thus,Þ.aa′b/ = aa′Þ.b/ = ab ∗ Þ.a′b/ ∈ Y. Inductively, we see thatY
is closed underÞ.

Next, we want to define a homomorphism : Ỹ → G̃ whose graph extends the
union of the0b

F . By our assumption onF , we can do this on eachYb := Y ∩〈a〉F b for
eachb ∈ Z F

m. But unless we take care, we will not preserve?. Let b : Yb → G be
one such extension. Then for eachc ∈ Z.G/F , we must define bc.y/ :=  b.yc−1/c.
With this definition used for all cosets ofZ.G/F in Z F

m, we can readily verify that
 extends the union of the0b

F and is a homomorphism. SinceF is finite,  is
automatically continuous.

THEOREM 3.19. INJ holds inIScP.G̃/.

PROOF. By Corollary 3.15, we can extend to a continuous homomorphism
�F : GF → G. Now define� so that forx ∈ GI , �.x/ := �F .x|F/. Then� is
a continuous homomorphism extending�′.

THEOREM 3.20. The structureG̃ yields a strong duality semidirect overZm on
ISP.G/, whereG = Zpþ o Zm with .m; p/ = 1.

PROOF. By Theorem3.5, conditionCLO holds. By Theorem3.19, conditionINJ
holds. By Corollary3.14, conditionSTR holds.

THEOREM 3.21. Groups having all Sylow subgroups cyclic are dualizable.

PROOF. By Theorem2.1 all these groupsG can be represented as a semidirect
product of cyclic groupsG = Zm o Zn where.m;n/ = 1. If m = ∏

pÞi
i , then

Zm = ∏
Z p

Þi
i

, where.pi ;n/ = 1. As by Theorem3.20there is a strong duality for
the groupsZ p

Þi
i
o Zm, Theorem2.3 implies thatG is dualizable.

In a companion article [4] we prove that no finite group containing a non-abelian
nilpotent subgroup is dualizable. That is, in order for a finite group to be dualizable,
it must have abelian Sylow subgroups. From Olshanskii [3] we know that these
are exactly the finite groups generating residually small varieties. We conjecture
that every finite group with abelian Sylow subgroups is dualizable. We have only
rudimentary results in this direction; for instance, we know that the alternating group
A5 is dualizable.
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