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Abstract

Davey and Qackenbush proved a strong duality for each dihedral giygvith m odd. In this paper
we extend this to a strong duality for each finite group with cyclic Sylow subgroups (such groups are
known to be metacyclic).
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1. Introduction

The first strong natural duality for nonabelian groups was established by Davey and
Quackenbush, seg][ They showed that the dihedral groDg admits a strong natural
duality if m is odd. In this paper we generalize this result to finite groups having all
Sylow subgroups cyclic. We assume that the reader is familiar @}itfT he definition
of a (natural) duality is given inl], 2]; here we give it for the special case of finite
groups:

LetG = (G, -) be afinite group. We calt = (G; F, P, R, 7) a (topologica) dual
structureon the same séb, if
(@) eachf € F is a group homomorphismh: G" — G for somen € N,
(b) eachf e P is a group homomorphisnfi: dom(f) — G, where donif) is a
subgroup ofG" for somen € N,
(c) eachr € Ris a subgroup oG" for somen € N,
(d) 7 isthe discrete topology.
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The elements of, P and R are called operations, partial operations and relations,
respectively, and we say that the structGrés algebraic overG. One consequence
of this definition is that everg-ary group word is a continuous homomorphism from
G"toG.

Also as a consequence of this definition we have thagéah groug in the quasi-
variety ISP(G), the set of homomorphisms frofto G, denotedX, := Hom(A, G),
is a closed substructure 6f* and for eaclX in the topological quasivariets.P(G),
the set of continuous homomorphisms frofnto G, denotedAy := Hom(X, G), is
a subgroup ofcXI. Moreover, for each group € ISP(G) there is a natural em-
beddinge, of A into its corresponding double dudk, given by the evaluation map
ea: A — Ay, suchthaks(a)(f) = f(a) for eachf e Xa. If € is an isomorphism
for all A € ISP(G), then we say thab yields a (1atura|) dualllyfor ISP(G). If the
analogous mapy, also is an isomorphism for ea¢he 1S.P(G), then we say thab
yields afull duality for ISP(G).

For instance, ifG = Z, = (Zm+) and Z,, = (Zn;+, 1) with F = {4},
P = ¢ = R, thenZ, yields a full duality forISP(Z,), which in this case is the
variety of abelian groups satisfyimyx = 0; this is a fragment of the usual Pontryagin
duality for all abelian groups.

Duality theory tells us that in order to show ti@tyields a full duality oniSP(G)
it is enough to prove the following three conditions:

CLO: for eachn € N, every continuous homomorphisgt G® — G is a group
word onG.

INJ: G is injective inIS;P(G).

STR: foranyX < G' wherel # 4, and foreacly € G' \ X there exists a continuous
homomorphismp: G' — G such thaip|x = 1 whilep(y) # 1.

When these three conditions are satisfied we call tisisaang duality thus, a strong
duality is a full duality. All known full dualities are actually strong dualities. It has
long been conjectured that a full duality is always strong, but this remains an open,
challenging problem. We shall exhibit a strong duality for groups having cyclic Sylow
subgroups.

2. Preliminary results

For the main goal of the paper we need some structure theorems for groups. The
first is from Robinson,§, page 281].

THEOREM 2.1 (Holder, Burnside, Zassenhaug).finite groupG has all its Sylow
subgroups cyclic if and only if it has a representatidnx Z,, such that(m, n) = 1;
thus, it is metacyclic.
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Letn = pl .- pk sothatz, = Z o X -xZ ofi and AutZ,) = Aut(Z ﬁl)X
AUL(Z ). Then the semidirect produZt] X H |s determined by a homomorphlsm
o= (,ol, ..., pr) fromH into Aut(Z,), wherep; is the corresponding homomorphism
fromH into Aut(Z o) andZ o X H is the corresponding semidirect product. The next
theorem tells us how to bqu recursively a strong dualityZpx H from those for the
Z s ¥ H. As often happens in a recursive construction, we need to assume and prove
somethlng a bit stronger in order to prove that the recursive construction is correct.
A strong duality forK = G x H will be calledsemidirectover H if the following
condition holds: letX be a closed substructure ¢k)', ¢: X — K a continuous
structure preserving map agd: (H)' — K a continuous structure preserving map
extending the restriction @f to (H)'; then there is a continuous structure preserving
mapy : (K)' — K extending bothp and¢’.

Now and later in the paper, we make use of the following group theoretic lemma
from [2].

LEMMA 2.2. Let G be a group and let be a retraction ofG onto a subgrougH.
LetN be the kernel of and let

K :={(u,v) € G*|e(u) = e(w)} = Jite " (n)* | h e H}
=U{th Nh|he H}

be the congruence correspondingtb Define a partial binary operatior, with
domainK, by xh* yh := xyhfor all x,y € N andh € H (thatis, definau % v :=
ue(u) v = ue(v)~tv forall (u, v) € K).

(@ (The restriction of * is a well-defined group operation dih for eachh € H.
Moreover, right translation by is an isomorphism ofN; -) onto (Nh; x).

(b) The partial operationx is associative wherever it is defined. It will be commu-
tative wherever it is defined providédis abelian.

(¢) The mapx: K — G is a homomorphism if and only M is abelian.

THEOREM 2.3. Let G4, G,, H be finite groups witls;, G, abelian, such that their
sizes are pairwise relatively prime. K, = G; x H (given byp; : H — Aut(G;)) each
admits a strong duality, then a strong duality holds®e (G; x G,) x H (given by
(p1, p2) 1 H — Aut(Gy) x Aut(Gy)).

PROOF. Lete¢; denote the retractions @ to K; by G; for (i, j) € {(1, 2), (2, D},
¢ the retraction ofG to H by G, x G,. LetK; = (K;;F, P, R, ) yield a strong
duality forISP(K;). Lets (n) = g (n)r; (n) be the size of tha-generated free group,
Fi(n), in the variety generated ly;, where(g (n), |Gi|) = (r;(n), [H)) = 1. Also,
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letx be the partial operation given by the translation of the group operati@ arG,
as given by Lemma.2. We take

G = (G;{e1. 62}, FFUF, UP,UP, U (%}, Ry U Ry, 7);

note that full operations of5; become partial operations dB. Also note that
€162 = 261 = ¢. We will use the fact thad; |, , is the retraction oK ; ontoH by
G;. Because of our assumption of strong lities, we may assume thag|, , is part
of the duality forkK ,_;.

Letg € G' for | finite or infinite, and letp: G' — G be a continuous homomor-
phism. Then we havg = g,g,h with g € G! andh € H'. Thene;(g) = g h. Since
g= glh * th and¢ preserves,

$(@ = ¢, * PG, = $(e1(9)) * P (e2(9)).

That is,¢ () is uniquely defined once(s1(g)) ande (s2(g)) are known.

First we show thaCLO holds. Due to the semidirect products involved, each
Fi(n) is itself a semidirect product of a normal subgrawggn) andFy(n), the n-
generated free group ovét. Moreover, (JN,(n)|, |[Fy(n)|) = 1. That is to say,
g1(n) = g(n) := q(n) for all n > 0. As eachK; is a quotient ofG, we have
[Fe(M)| > q(nri(nry(n). We show that equality holds, as doaesO, by showing
that there are at mogtn)r(n)r,(n) continuous homomorphisngs G™ — G. Since
¢ preservese, ¢4, €2}, ¢ mapsK" to K; andH" to H. In view of the strong dualities
assumed for eacky;, there are at mogf(n)r,(n)r,(n) restrictions ofp to K{' U KJ;
we must show that this restriction has at most one extension to @ll.oBut that was
done in the last paragraph.

In order to proveNJ and that the duality will be semidirect over, let X < G
be a closed substructure for somelsandg: X — G a continuous homomorphism.
Since¢ preserves the retractionsly is a continuous homomorphism froxn K|
to K;. SincelNJ holds forK,' and the dualities are semidirect ouér we proceed
as follows: lety, be an extension af|,; to H' andy; an extension ofj, U } k!
to Ki' fori = 1,2, and note that/;[n1 = ¥oln. Letg € G' whereg = glgzh
with g € G/ andh € H'. From what we have seen above, we must definey
V() = Ya(ea(Q) * ¥a(e2(9). If g € X, thenyr(ei(9)) = #(&(9)), so thaty
extendsp; obviously,y extendsy,. Sinceys |« is a homomorphism, to show thet
is @ homomorphism, it is enough to show tijapreserves;. Letg = glgzh. On the
one hand,

Y (e1(9)) = Yu(e1(€1(9))) * Ya(e2(£1(9))) = klfl(glh) * ().
On the other hand,
e1(¥(Q) = el(wl(glh) * wz(gzn».
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Let wl(glh) = g;h andwz(gzh) = g,h’ whereg, € G; andh,h’ € H. In order for
0:h * g,h’" to be defined, we need to show that= h’. We do this by showing that
¥1(h) = h andy,(h) = h'; sinceyi(h) = ¥»(h), the result follows. Using the fact
thate, commutes with/;, we have

h = e2(qih) = e2(Y1(g9,h) = Yu(e2(g,) = Ya(h).

Similarly, ¥»(h) = h'. Then,

e1(¥1(9,h) * ¥2(g ) = e1(gih * g:h) = €1(9:0:h) = gih.

Finally, g1h = gih« h = wl(glh) x Yo(h), showing that/ preserves;. In a similar
manner it preserves and so it is a homomorphism.

To complete the proof dNJ we need to prove that is continuous. By construc-
tion, bothyr, and, are continuous. Using the same finite subseit gfven by the
continuity of ¢, it is straightforward to prove the continuity gf o &;. Note that«
is continuous because it has finite domain. Thlass a composition of continuous
maps and so it is continuous. Moreover, we have shown that the duality is semidirect
overH.

To showSTR we first note that restricted t§', STR holds. Also recall thap is
defined org € G' if and only if it is defined o (g) € K/ fori = 1,2. LetX < G!
be a closed substructure agds G' — X for some sel # ¢; we defineg(x) = 1
for all x € X. Then, without loss of generality, we may assume that eiyherH'
or ei(y) ¢ e1(X); in either casesg (y) ¢ 1(X). Now we invokeSTR for K. with

respect te; (y) and proceed as in the proofidtJ for G', and we are done. We leave
to the reader the verification that the value of this extensignighot 1. O

3. The casen = p#

Thus, we can build up our strong duality for finite metacyclic groups from that for
metacyclic groups of the for® = Z» x Z,,, where(p, m) = 1. In this section we
show that there is a strong duality semidirect c¥grfor these groups. We assume
thatG is not abelian.

LetZ, = (a),Zn, = (b)anda®(= bab™') = a*forsomek € N. Lety € Aut(Z,)
be such thay (a) = a° and let the order of bed (this means thaba = a*b and
thata = y9%@) = a*, so thatp?|(k? — 1)). As G is not abeliand > 1; for the
same reasorp > 2, and so AutZ ;) = Z-1p-1- On the one hand, as there is a
group homomorphism frori,, to Aut(Z,s) sendingb to y, djm and so(d, p) = 1.

On the other hand, a{ p#~1(p — 1) and(d, p) = 1, we have thadl|(p — 1). Thus,



382 R. Quackenbush and Cs. Saab [6]

bla = ak’b? = ab’ and so(b?) is in the center 0. Let us suppose that' = b'a.
Thena = (a)* = a*'; hencey!(a) = a and sod dividesj. Thus,

Cs(@) = (a, b?), Co(b) = (b)if d t ],
Ce() =Gifd] j, Z(G) = (b%).

WhenZ(G) # 1 (that is,d < m), there are some complications. For instance,
consider the casp’ = 3, m = 4 anda® = a~. In this 12-element group we have
Z(G) = (b?>) andG/Z(G) = S;. But S; is not in the quasivariety generated by
G (as$S; is monolithic but not a subgroup @). Thus, the quasivariety generated
by G is not the variety generated I8y. However, the variety generated Byis the
guasivariety generated By x S;, see Olshanskid]. In general, the variety generated
by G =Z X Zy, is the quasivariety generated by

Znx (G/Z(G) Z=Zn x (L N (Zn/Z(G))) =Zim X (Zps N Lg).

In caseZ(G) # 1, we will need to work ‘over the center’ by using the following
partial operation.

LEMMA 3.1. The mapping.: G x Z(G) — G such thatg x ¢ = gcis a group
homomorphism.

We shall show thatS.P(G) is a dual quasivariety dfSP(G), where

GC=(G/1la +, *0,%71).

Here, 1is the constant operation ani$ the automorphism @& fixing a and mapping
b to ab (we omit the routine but ugly computation that shows that suc arists).
The four operationst, *, o, x are each obtained from the restriction of the group
operation to certain subgroups @?; each operation is a homomorphism. Thus,
is the restriction of the group operatioto the abelian groug,, = (b). Next,x is the
binary partial operation obtained via Lemrd& from Z,» andZ,,. More precisely,
the domain of« is ™, (Z b x Z,»b'), and the operation is the translation of the
group multiplication:a'b’ * ab’ = a'**b!. By Lemma2.2, * is an algebraic binary
partial operation. Let: G — Z,, wheres(a'b’) = bl is the retraction oG ontoZ,,
by Z, = (a). Note that if a map preserveshen it automatically preservessince
g@b’) = a'b! xa7'b’ anda~'b’ is generated froma'b’ by . The binary partial
operatioro is the restriction of the group operatioto the abelian groug » x Z(G).
Finally, the binary partial operationis as given by Lemma&.1 As always is the
discrete topology.

First we show that the conditid@LO holds.
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LEMMA 3.2. [HOm(G", G)| < m"(p#)@'-Dn-1+n,

PrOOF. The proof is essentially the same as that of Proposition £pf Let
¢ € Hom(G", G). Since+ is the original group operation afy,, and¢ preserves
+, the restrictiong|z, », is an abelian group homomorphism ird@,. There are
m" such homomorphisms. Next, we examine the possible extensions of each suct
homomorphism. Leth = (hy, ... hy) € (Zy)" ande (h) = Zshy x - x Zsh, =
S.. S is an abelian group isomorphic & ,:)" under the operatiom with h as its
identity elementS, must be mapped into (¢ (h)) which under is isomorphic to a
subgroup o s, andg|s, must be an abelian group homomorphism frn =) to its
image. Since preserveg, itis already defined oa(h), hence or({«(h)), *) which
is a subgroup of size”? of (S,, ) if h # 1, and is{h} if h = 1. So there are at most
(p#)"! extensions ta, if h # 1 and at most p?)" if h = 1. Finally, leth’ € (Z,)"
be such thabh—*h’ € (Z(G))". Then because & if we know¢ on S,, then we know
¢ onS,. Since|Zy/Z(G)| = d, the number of continuous homomorphisms fréfh
to G is not more tham"(p# )@ -D(O-D+n, O

In[2], the proofis completed by a reference to the known result that this upper bound
is the size of thea-generated free group in the variety generated by the given group.
In the present case, we do not have such a formula at hand. However, since ever
word is a continuous homomorphism, we only need to constructigenerated group
of the appropriate size in the variety generate@hyOne of the referees of an earlier
version of this paper gave an alternate proof by showing that the variety generated by
G is the product variety#,s %3, whose free spectrum is known. The proof we give
here is more elementary and has the advantage that it is a more general approach
producing dualities — one ‘merely’ constructs sufficiently langgenerated algebras.

LEMMA 3.3. Leta € (a)? andg € G® be such thatifg); = b'as, then0 <t <
d—1. Thenforevery <t < d— 1the group generated tlyandg contains a vector
a, such thata); = (a); if (g); = b'a®and(a,); = 1, otherwise.

PrOOF. Considera = (a4, ...,a%) andg = (ba™,...,b'ia’). Without loss
of generality, we may assume that+ i, for u,v < s and that forv > s there is
u < swithi, =i,. Form thes x s matrix whose(u, v) component is the exponent
of a in the v-th component oB?". Then this matrix is a constant multiple of the
Vandermonde-matri¥ = V (k'*, k', ..., k'), where the constant is

q
(l_[wj> SEEUN
j=1
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Notice that this constant is not divisible gy The determinant o¥ is

detv = J] k' —k".

O<j<l=<s
As ki — k' = K'(Ki~" — 1) is coprime withp, detV is a unit inZ:; hence,V is
invertible and the vectors asserted by the lemma are expressible in the terms of the
vectorsa? . O

DEFINITION. Leta e (a)k andg € GX. The vectors created in the previous lemma
are called theseparationof a by g at the exponertt

ExaMPLE 1. Leta = (1,a,a% 1,a%a,a) andg = (b, a, ba?, b%a, b, b%a, b3).
Thena, = (1,a,1,1,1,1,1),a, = (1,1,a% 1, a3 1,1), a,=(111111a).lt
is clear thag = [ &, anda, = (1, ..., 1) if t does not occur il as an exponent
of ain some component. B

We exhibit am-generated subgroup of G@"'-D-D+1 of the appropriate size. We
define am-by-[(d" — 1)(n — 1) +n] matrix M with entries fromG, and take the group
generated by its rows. We defil by giving its columns. Take all the vectdsgrom
(b)" such that if(b); = b’, then 0<r < d — 1. For each such take the vectorb,
(1 <i < n), that are the same &sexcept that thé-th coordinate is multiplied bg
fromthe right. For each we omit the firsb, which does not contaiaas a coordinate.
For example ifo = (1,1, b, b2 b3, 1, b)™ we omitbhs = (1, 1, ba, b% b3, 1, b)T. We
getn vectors from(1, ..., 1)T andn — 1 from eachb # (1, ..., 1)". These vectors
will be the columns ofM. Given an elemeni € G@-D0-D+" e will index the
coordinates ofi by the columns oM.

DEFINITION. b is called theb-part of b; a column ofM distinct fromb; but with
the saméo-part is called @-mateof b,. A row vector of length(d” — 1)(n — 1) +n
with ana in coordinateb’, and a 1 in all other coordinates is called tapart of b;.

LEMMA 3.4. In the variety generated b§, there is ann-generated group of size
at leastm”(p#)@-D-Db+n,

ProOF. We show thaD, the group generated by the rowsMf, is a group of the
required size. We show thBtcontains
(1) asubgroupH; of size(p#)@-bn-D+n,
(2) asubgroupH, of sizem".
Since the orders dfl; andH, are coprime, the group generated by them has size at
leastm" (p#) @ -Dn-D+n,
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In order to show (1), le§ = (b", ..., bY%a, ..., b") be a column oM, v, the row
of M with b“a entry in coordinatej. First we construct a vectar’ € D havinga
as itsg coordinate, and 1 in all coordinates which &renates ofg. Letw' = v, if
t; = O; notice that at &-mate coordinate of the entry is 1. If; # 0, considei§ and
its b-mates (in totaln — 1 columns). Then by the constructionldfthere is a unique
row v which contains n@ in any of these columns, but only a fixed powertob';
this row corresponds to the first component offbhgart ofg which is not 1. Ifm does
not dividel[r, t;], letw” = py™"4/7 . yI""V%  Then theg coordinate ofw” is a?, where

kil — 1
1= ———
kirtil/t — 1’

and the coordinate of evelyymate ofg is 1. Sincem does not dividdr, t;], p does
not dividez and so there is & € N such that

zu=1 (mod p’).

Hence,(@»)" = a. Letw’ = (w”)". If m divides]r,t;], thenm does not divide
[r +t,t]; soletus use - v, instead ofy, to construcw” andw’. The @ coordinate
of w’ is a, and the coordinate of evebymate ofg is 1.

We next construab, € DN(a) @ -V-b+"with the same property. Sin¢m, p)=1,
there is arx € N such that

x=1 (modp’); x=0 (modm).

Letw, = (w)*. Thenw, € D N (@)@ -Y0-D+" with a in its § coordinate, and the
coordinate of everpp-mate ofg is 1.

Now we recursively construct treepart of§. Suppose foh # g that(w,)s # 1.
Then theb-part of h differs from theb-part of §, say at component. Look atw,,
the separation ofy, by the j-th row of M at the exponent;, wheret; is the j-th
componentof the-partofd. Then(w,)s = aand(w,)s = 1. As separation preserves
the entry 1, iteration eventually produes tipart ofg. Clearly, the set of ath-parts
of the columns oM generates a group of the required size.

In order to show (2), expressv;) with v, andH;. These elements belong to
(b)@-b=D+n and clearly generate a grotfs of orderm”. O

Now we have everything to show thatO holds:
THEOREM 3.5. Each continuous homomorphism fra®i to G is a word.

PrROOF. By construction, each word is a continuous homomorphism. But by
Lemma3.2 and Lemma3.4, there are at most as many continuous homomorphisms
as there are words. O
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CoROLLARY 3.6. The size of tha-generated free group in the variety generated by
G is m"(p?)@-D-D+1 gand then-generated free group is a semidirect product:

(Zpﬁ)(d”*l)(n*lﬁn « an'

Let us now try to provéNJ andSTR and show that the duality is semidirect over
Z. Thus, choosX < G' with | not empty,y € G' — X, and¢ € Hom(X, G). We
want to extendp to ¢ € Hom(G', G) so that if¢ = 1, thenyr(y) # 1. Also, if ¢’ €
Hom(Z!, G) and extends|, , then we want to findy € Hom(G', G) extending
both¢ and¢'.

DEFINITION. Define Xy, := XN Z), X, := XN (Zy x Z(G))', and forb €
Z, —(Z(G))', defineX, := X N (a)'b. Note that 1e X, 1 € X,, but thatX, may
be empty. Each oK, X,, X, is closed.

LEMMA 3.7. (@ +is fully defined orX, and(X,; +, ) is a closed substructure
of (Z!;+, T), to which Pontryagin duality for abelian groups of exponerdpplies
(b) o is fully defined onX, and (X,; o, r) is a closed substructure af{Z, x
Z(G))'; 0, 1), to which Pontryagin duality for abelian groups of expongfitn/d
applies
(c) forbe z! —(Z(G)', « is fully defined onX, and (Xy; *, 7) is a closed sub-
structure of((a)' b; %, ), to which Pontryagin duality for abelian groups of exponent
p? applies
(d) the effect of« is that for anyc € X N Z(G)', (Xp;*, o, 7) is isomorphic to
(Xpe; *, a, T) via multiplication byc.

PrOOF. Everything is clear except for part (d) where we need to prove closure
undera and its preservation under multiplication. This follows from the fact that in
G, a(bc) = a(b)c, which we now prove. Since(bc) = a(b)x(c), we need to show
thata(c) = c. Recalling thatZ(G) = (b?), this reduces to showing thatb?) = bd.

But a(b?) = (a(b))? = (ab)? = a%h® for somes. On the other hand, we must have
a(b?) € Z(G). This means thaa® = 1 anda/(b) = bd. O

Thus, ¢|x, is a continuous:-homomorphism. By Pontryagin duality for abelian
groups of exponenp’m/d, there is a continuous-homomorphisme;: (Z,s x
Z(G))' = Zy x Z(G) which extends|,. Also, sinceZ(G) < Z, and(p, m) = 1,
we may assume thai extendsp’|zq) -

Now defineX/. := X,(Z(G))'; clearly, X' is closed unde#-. Defineg,: X/ —
Zpy by $5(X0) 1= ¢ (X)1(0) for X € Xpn andc € Z(G)'.

LEMMA 3.8. X/ isaclosed subset & , andg, is a continuoust-homomorphism.
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PrROOF. Letz ¢ X/, and soz ¢ Xn,. Thus, there is a finitd= < | such that
Z|r = z|¢ implies thatz ¢ X,. Forc € Z(G)" choosed(c) € Z(G)' with
d(c)|r = cand withd(c™) = (d(c))"!; note that there are only finitely many such
d(c). Thenzd(c) ¢ X asz ¢ X/, implying thatzd(c) ¢ X,. Consequently,
there is a finiteE, C | such thatw|g, = zd(c)|g, implies thatw ¢ X,. Define
E:= FUU(E: | c e Z(G)T}; E is finite. Choose' so thatz|g = z|g. Suppose
thatz € X/ ; thenz = x'c for somex’ € X, andc’ € Z(G)'. Takec := c|¢. Then
zZd(c™) € Xj,asz € X;,. Butzd(c g _, = zd(cHe_, sothatzd(c™) ¢ X[,
implying thatz ¢ X/ . Thus, the clopen sét' | Z|e = z|g} is disjoint from X/, and
X}, is closed.

Next, we need to see that is well defined; letxc = x'c with x,x € X,
andc, ¢ € Z(G)'. We need to see that' (X)¢1(C) = ¢'(X)¢1(c). But in X/
we havecc™ = (x)7'x € Xp, s0 thatg;(C)¢1(c™) = ¢u(cch) = ¢'(cc™h =
#'(€)¢'(ch). Fromx = x'cctand ax’c ! € Xy, we havep'(x) = ¢'(x'cc™) =
' (X)p'(cc™ = ¢'(X)p1(C)p1(ch), and the result follows.

Finally, continuity follows sincep’ and ¢, are continuous by assumptionjs
continuous since it has a finite domain and thiisis a composition of continuous
functions, and so is continuous. O

If ¢, extendsp’|z ), theng, = ¢’|zy . By Pontryagin duality for abelian groups
of exponentm, there is a continuous--homomorphismg;: (Z,)' — Z,, which
extendsp,; we may assume that = ¢’. Thus, if we can provéNJ andSTR, then
the duality will be semidirect ovez,,. We now describ&, the substructure of'
generated by U (Z, x Z(G))', prove thatY is closed, define an extensigy of
¢ toY and prove tha, is a continuous homomorphism.

DEFINITION. We defineY to be{ J{Y, | b € (Zy)'}, where
(@ forbe Z(G)', Y, := (a)'b, else
(b) forbe Xm, Yp:= X, else
(c) forbe X/, withb=b'cwhereb € X,,andc e Z(G)', Y, := Xy, else
d Yy = (a(b).

LEMMA 3.9. Y is a closed subset @' .

PROOF. LetY' = (J(Yp | b € X],), and note tha¥’ = X(Z(G))'. ThenY =
Ui (@' (Z))uY'. AsZ! isclosed, sois eadla' (Z!)). Asa has finite order, there are
only finitely many such sets. Thus, we need only prove Yha closed. Lety’ ¢ Y.
First suppose that(y’) ¢ X,. As X/, is closed, there is a finité, < | such that
Zlr, = Y'lr, implies_thats(g) ¢ X, sothatz ¢ Y'. Otherwise, IeE(X/) =b' =bc
with b € X, andc € Z(G)'. Definey := y'c* and note thay € Y, — X. Asx is
closed, there is a finit€, | such thatz|r, = yl, implies thatz ¢ X. Hence, if
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Zlg, =Ylr, then;/g1|F¥ = ylr, and sazct ¢ Y, implying thatz ¢ Y'. Thatis, we
have shown that i/’ ¢ Y’, then there is an open neighbourhoodyotlisjoint from
Y’, so thatY’ is closed. O

LEMMA 3.10. Y is a substructure o'
PrOOF. This readily follows from Lemma&.7. O

DEFINITION. We definep,: Y — G by choosingy € Y, whereb € Z,:

(@ forbe Z(G)', defineps(y) := ¢1(y), else

(b) forb e X, defineg,(y) := ¢'(y), else

(©) forb e X/, with b = b'c whereb' € X, andc € Z(G)', defineg,(y) :=
¢'(yc Hes(0), else

(d) beZ — X, with «(b) = ab for somea ¢ (a)' so thaty = (a)'b for somei,
and we defin%(x) = $1() p3(b).

LEMMA 3.11. ¢4 € Hom(Y, G).

PROOF. We have already proved thitis a closed substructure &' . Inspection
of the definition of¢, shows that it is a function frond into G. Sinceg, extendsps,
it preservest, and sincep, extendsep,, it preserves. It is easily checked that,
preserves on eachy,. For, cases (a) - (c) are straightforward; we prove case (d).
Note that bottb andbc fallinto case (d). Ley € Y andc € Z(G)'; we must show that
Pa(y*O) = $a(Y) * Pa(C). Thus,da(y *©) = ¢a(yO) = ¢u(@' (b)) = ¢(a")s(be) =
($1(2)93(0)$3(C) = da(@'D)p1(C) = Pa(y)xha(C). Finally, using the factthat fixes
each element o, x Z(G) and thatx commutes with multiplication by any elemet
of Z(G)', we see thap, preserves. That is,¢, is a homomorphism. For continuity,
recallthaty = [, (o' (Z!)) UX(Z(G))'. Now, ¢4z, = ¢sis continuous. Likewise
for eachi, ¢4l,(z,) IS continuous. Next, note that for € Y, whereb € X, and
ce Z(G)', ¢a(y) = ¢'(yc 1 (c) is the composition of continuous functions and so
is continuous. Thus, we have decompo¥eidto finitely many closed sets such that
the restiction ofp, to each is continuous. Consequendly,is continuous. O

THEOREM 3.12. Without loss of generality, we may assume tE3tU (Z,» x
Z(G))' < X.

PROOF. By Lemma3.9- Lemma3.11, Y is a closed substructure &' containing
X, and¢, € Hom(Y, G) extendsp’. We need to verify that foy € Y — X, we could
have chosem, so thatp,(y) # 1. If y € (Z x Z(G))', then we could have chosen
@1 SO thatg(y) = ¢i(y) # 1. Now lety € Yo forb ¢ Z(G)'. AsY, C X for
b € X,,, we have eitheb € X, — Xmorb = Z! — X' In the first caseh = b'c with
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b e X,ce Z(G)' —Xandyc™ € X. Theng,(y) = ¢'(yc 1 (C); if ¢'(yc™) # 1,
then we could have takeh (c) = 1, and otherwise have taken(c) # 1. Finally, if
be z! — X then we could have takem(b) # 1; asgu(y) = a ¢s(b) for somei,

daly) # 1. 0

THEOREM3.13.Let b € Z!:; without loss of generality, we may assume that
@'b(Z(G))' < X.

PROOF. We assume thaZ U (Z,» x Z(G))' € X. The proof is similar to that
of Theorem3.12 and the lemmas preceding it. We state, but do not prove, how to
proceed. LelY = X U (a)'b(Z(G))'; Y is a closed substructure ¢f)' containing
X. Next, Xy is a closed substructure d@fa)'b;*, r), and¢'|y, is a continuous
homomorphism. Hence, by Pontryagin duality for abelian groups of expgsfent
there is a continuous homomorphic extensipnof ¢'|x, to (a)'b. Now define
#s: Y — G by ¢s(y) := ¢'(y) for y € X, and otherwise foly € Xyc, define
o6(Y) = ¢s(ycHe¢'(c). Thengy is a well-defined continuous homomorphism‘bn
extendingp’. If y € Y — X, then we may assumee (a)'band so could have chosen

¢5 S0 thatgs(y) = ¢s(y) # 1. O

We note two immediate corollaries.
COROLLARY 3.14. If INJ holds, then so doeSTR

COROLLARY 3.15. If | is finite, then this special case BJ, where X is a sub-
structure (necessarily closed) 6, holds.

It is tempting to invoke the second corollary by noting thatass continuous,
it depends only on some finite subgetC 1. Just projectX into GF and extend
the projection ofp’. Unfortunately, sinceG involves proper partial functions, the
projection of X need not be a substructure and the projectior’oheed not be
extendable to a structure preserving map@h. We can invoke Theorer.13
to extend¢’ to a homomorphism ois', but we have no reason to believe that
this extension is continuous. The following lemma fro# is the key to ensuring
continuity of an extension.

LEMMA 3.16. Let A and | be sets withA finite. Suppose that, for every finite
F C |, each element oA is labeled either ‘good’ or ‘bad’ and that iF’ € F and
X € AF is ‘bad’, then so isx|r. € AF'. Then either there is a finité < | such that
each element oAF is ‘good’ or there is anx € A' such thatx|r is ‘bad’ for each
finte F C I.
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Let us apply Lemm&.16to Z!.. Forb € Z! and finiteF C I, define
g = {(XIr, ¢'(X) | X € X ande(x[¢) = ble).

Notice thatl"% = I‘,l—’:’ if blr = b'|¢. Callb|r ‘good’ if F% is a subset of the graph of
a x-preserving map defined ant(b|r) = ¢ *(b)|¢; otherwise, calb|r ‘bad’. Let
F’ C F and letr denote the natural restriction map fremt(b)|- to e~ *(b)|¢.. If y is
an extension ol“% to ax-preserving map on thesubstructure generated by* (b|¢),
theny o7 is an extension olf% to ax-preserving map on the-substructure generated
by e7X(blr). Hence ‘badness’ is hereditary in the sense required by Lefifa
Thus, by Lemma&.16 either

(@ thereis afinite subsdt of | such that every membérof ZF is ‘good’,
or
(b) there existd € Z! such that for all finiteF C I, b| is ‘bad’.

LEmMMA 3.17. Case(b) cannot occur.

PROOF. Assume thab € Z! such that for all finiteF < I, b|¢ is ‘bad’; that is, for
every finite subsef of |, the set

T2 = {(X|r, ¢ (X)) | X € X ande(x|¢) = bl¢}

is not a subset of a-preserving map defined on thesubstructure generated by
¢ Xblg). DefineY := X U (a)b(Z(G))'. Then by Theoren3.13 Y is a closed
substructure oG' and¢’ can be extended to a continuous homomorphigron Y.
Consequentlyg” depends only on some finiteé C I; that is, forx, X" € Y with
X|r = X[, we havep” (x) = ¢"(X). Sincee(bl¢) = e(b)|r and sinces(b) C Y,
we have

MR = {(XIr. ¢'() | X € X ande(x|¢) = bl}
C{XIr, ¢"(X)) | X € Y ande(X|r) = blr}
={Xlr. ¢"X) | X € (@)' (D)}
But this latter set is the projection of the graph of-Aaomomorphism on a totad-

algebra, and so is the graph of-d@omomorphism oiga) ™ which extendf%, contrary
to assumption. This contradiction shows that Case (b) cannot occur. O

Thus, we are left with Case (a). LEtbe a finite subset df such that every member
bof ZF is good. LetY be thex-closure ofX|g in GF.

LEMMA 3.18.Y is a closed substructure 63F.



[15] Strong duality for metacyclic groups 391

PrOOF. As GF is finite, every subset is closed. By assumptiérs closed under
. ASZ) U (Zy x (Z(G))' C X, ZF U (Zy x (Z(G))F < X|g; thus,Y is closed
under+ ando. As X is closed undex and containZ (G)', it is clear thaty is closed
underx. For closure undes, letab, a’b € X|z. Thena(a’b) = a«a(b) € X|r and
aab e Y. Thus,x(aa’bh) = aad'a(b) = ab * a(a’b) € Y. Inductively, we see that
is closed unded. O

Next, we want to define a homomorphign Y — G whose graph extends the
union of thel"%. By our assumption of, we can do this on each := YN (a)"bfor
eachb € ZF. But unless we take care, we will not presesvelet y,: Y, — G be
one such extension. Then for each Z(G)", we must defing,.(y) := ¥p(yc™)c.
With this definition used for all cosets &(G)F in ZF, we can readily verify that
Y extends the union of thE% and is a homomorphism. Sinde is finite, ¥ is
automatically continuous.

THEOREM 3.19. INJ holds inlS.P(G).

ProOOF. By Corollary 3.15 we can extend/ to a continuous homomorphism
¢e: GF — G. Now defineg so that forx € G', ¢(X) := ¢ (X|¢). Theng is
a continuous homomorphism extendipg O

THEOREM 3.20. The structureG yields a strong duality semidirect ovér, on
ISP(G), whereG = Z s 1 Zp,, with (m, p) = 1.

ProOOF. By Theoren.5, conditionCLO holds. By Theoren3.19 conditionINJ
holds. By Corollary3.14, conditionSTR holds. O

THEOREM 3.21. Groups having all Sylow subgroups cyclic are dualizable.

ProOF. By Theorem?2.1 all these group$ can be represented as a semidirect
product of cyclic groupss = Z,, ¥ Z, where(m,n) = 1. If m = [[ p, then
Zyn = [[Zg, where(p;, n) = 1. As by Theoren8.20there is a strong duality for
the group<Z ;« % Zy,, Theoren.3implies thatG is dualizable. O

In a companion articled] we prove that no finite group containing a non-abelian
nilpotent subgroup is dualizable. That is, in order for a finite group to be dualizable,
it must have abelian Sylow subgroups. From Olshans}iwe know that these
are exactly the finite groups generating residually small varieties. We conjecture
that every finite group with abelian Sylow subgroups is dualizable. We have only
rudimentary results in this direction; for instance, we know that the alternating group
As is dualizable.
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