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Abstract

Let B, ¢, A and.Z denote respectively the variety of groups of exponent divigirthe variety of
nilpotent groups of class at mastthe class of nilpotent groups and the class of finite groups. It follows
from a result due to Kargapolov afirkin and independently to Groves that in a variety not containing
all metabelian groups, each polycyclic groBelongs to.4".Z. We show thaG is in fact in_#..Z,
wherec is an integer depending only on the variety. On the other hand, it is not always possible to
find an integee (depending only on the variety) such ti@telongs to.#" %., but we characterize the
varieties in which that is possible. In this case, there exists a funétisuch that, ifG is d-generated,
thenG e 454 Pe. S0, where = 1, we obtain an extension of Zel’'manov’s result about the restricted
Burnside problem (as one might expect, this result is used in our proof). Finally, we show that the class
of locally nilpotent groups of a variety’ forms a variety if and only it N A" € (¢ Be) N (B Ne)

for some integers’, €.

2000Mathematics subject classificatioprimary 20E10, 20F18.

1. Introduction

If ¢ ande are positive integers, we denote B3 the variety of groups of exponent
dividing e and by .4¢ the variety of nilpotent groups of class at mast Also,
A =J..-1: denotes the class of nilpotent groups adienotes the class of finite
groups. Recall tha# ./ is included in.4".%. More precisely,Z.4; is included in
Ne1 F foranyc > 0. Indeed, ifG contains a finite normal subgrouph such that
G/H € ¥, itis easy to see that the centralizertdfin G has finite index and belongs
to.4;,1. Moreover, itis not difficult to show that any finitely generated groug#iny;
belongs to/..Z [9, Section 1.5].
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Let F be the free group of countably infinite rank Vif is a subset of, we denote
by 7' (W) the variety of groups defined by the set of lamvs= 1, withw € W.

First suppose thaW is notincluded irF”. By a result due to Kargapolov a@irkin
[10] and independently to GroveS§][ for every integer > 0, there exist integers
¢, edepending or¥’ (W) andr such that each soluble gro@®e 7 (W) with derived
lengthr belongs to#..4.%.. We do not know ifc ande can be chosen depending
on ¥ (W) only (Proposition2 and Theoren? below will give partial answers to this
problem). Observe that each polycyclic grdape 7 (W) is nilpotent-by-finite since
FN CNZ.

Conversely, consider a variety(W) in which each polycyclic group is nilpotent-
by-finite. Since there exist metabelian polycyclic groups which are not nilpotent-
by-finite, the variety of metabelian groups is not includediqw); thusW is not
included inF”. So we have:

ProPOSITIONL. For a variety? (W) defined by a set of laws = 1 (w € W), the
following assertions are equivalent

(i) each polycyclic group ir¥’ (W) belongs to /" .Z;

(i) WgF.

This result leads to the following questions for a varig¢tyW) satisfying one of
the previous assertions:

(1) Does there exist an integersuch that each polycyclic group iff (W) belongs
to NF?
(2) Does there exist an integersuch that each polycyclic group iff (W) belongs
to AN B.?

In the next section we shall see that the first question has a positive answer (Theo:
rem1l). Itis notalwaysthe case for the second question but itis possible to characterize
the varieties in which the answer is positive; furthermore, in this case, we shall show
that each polycyclic group itt" (W) belongs in fact ta4¢. % for some integers’, €
(Theorem2). Such bounds arglobal bounds, namely they are independant of the
number of generators of considered groups. In Se@iae shall sedocal bounds,
that is, depending on the number of generators.

REMARK. Instead of questior?), one can put the following question (for a variety
7 (W) such thaW ¢ F”):
(2) Does there exist an integer such that each polycyclic group iff (W) belongs
to .V %, where.Z,, is the class of finite groups of order at mos?

Suppose that suchra exists and consider a polycyclic gro@e ¥ (W). Denote
by Fit(G) the Fitting subgroup o6& and puta = |G : Fit(G)|. For any integen > 0,
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the cartesian produ&@" = G x --- x G is polycyclic and belongs t&’(W); thus

|G" : Fit(G")| < m. Since FitG") = Fit(G)", we obtaina” < m (for any integer

n > 0) and sca = 1. Therefore, the previous question has a positive answer if and
only if each polycyclic group i’ (W) is nilpotent (and so we can take= 1).

2. Global bounds

Recall that am-Engel group is a group satisfying the ldw,,y] = 1, where
[X,n Y] is defined by[x,oy] = x and[X,c Y] = [[X,k-1 Y], y¥] for all k > 0, with
[X,y] = x“ty~Ixy. If ITis a set of primes, dl-free group is a group without
elements of ordep e I1. We shall denote by, (G) the jth term of the lower central
series of a groufs.

LEMMA 1. Let (W) be a variety such thatV ¢ F”. Then there exist a finite set
of prime number$I and an integen (depending on the variety onlguch that each
[1-free nilpotent group i (W) is n-Engel.

PrROOF. By [6, Lemma 4], (W) has a law of the form

Xom Y12 X, mi1 YIZ - Xomaen YI*o(X, y) =1 (mk > 1, v(X,y) € F),

where the exponents, ... , g are not all zero (we may assume tieat~ 0). LetIl
be the set of prime numbers dividireg and letG be a 2-generated-free nilpotent
group in 7 (W). It suffices to prove that the nilpotency class®fis bounded by
an integem depending only or#’(W). Let n be the nilpotency class d&. Put
A = y5(G), wheres is the least integer (1 + 1)/2. Notice thas < 1+ (u + 1)/2
and thatA is abelian. For ang € A, y € G, we have

[AmY]* [ ma Y1% - - [Amiker YI*v(@, y) = 1
Butv(a, y) belongs to(a, y)” = {1}, so
[mYI* [ ma YIZ - [Amk- Y] = 1

Notice that[a,, Y] belongs t0ym.s(G). Now suppose .thata,my]ei belongs to
Ymis+j(G) for some integerj > 0. By raising to theejth power, the previous
relation gives

[ V1% (At Y17 - [Qimei1 YI%E = 1.
Since[a®, y] = [&, y]¢ for anya’ € A, we may write

[ Y% [[am YIS, V1% - [[am 1% 1 y]* =1
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and so[a,my]ei+1 belongs tOyms:j+1(G). Therefore, it follows by induction that
[a,m y]® belongs toyms+j(G) for any integerj > 0. By taking j such thatm 4
S+ > u,we obtain[a,my]ei = 1 and so[a,, Y] = 1 sinceG is I1-free. Hence,
by [15, Proposition D], there exists an integerdepending only orm such that
[@a,y,...,%] = 1lforalla € Aand ally;, ...,y € G. In particular, we have
[Xg, ... Xey Y1, +.., Yyl =21forallxg, ... , Xs, V1, ..., Y € G;thusu +1 < s+t.
Sinces < 1+ (u+1)/2, we obtainu < t+(u+1)/2 andsqu < 2t, asrequired. [J

Aplying Lemmal and [3, Corollary 1] we may state

COROLLARY 1. Let”? (W) be a variety such thaV £ F”. Then there exist a finite
set of prime numberEl and an integerc (depending on the variety onlguch that
eachII-free nilpotent group ir#' (W) belongs to4¢.

As a consequence we obtain

PrROPOSITION2. Let 7 (W) be a variety such tha?w ¢ F”. Then there exists
an integerc (depending on the variety onlguch that each soluble group iff (W)
belongs to7 4.%4., whereZ’ is the class of periodic groups and whexis an integer
depending or¥’ (W) and on the derived length 3.

PROOF. Let G be a soluble group ir¥’ (W). By the result of KargapoloCurkin
and Groves quoted above, there exist normal subgriugisH <1 G such thaK and
G/H belong to%, (whereedepends o¥’ (W) and on the derived length &), H/K
being nilpotent. Denote bly the normal subgroup dfi containingK such that. /K
is the torsion subgroup dfi /K ; thusH/L is a torsion-free nilpotent group. Hence,
by Corollaryl, H/L belongs ta#;, wherec is an integer depending only ofi(W).
SincelL is periodic, the proposition is established. O

Now suppose thab is polycyclic in the preceding proof. ThdnandG/H are
finite. ThusH € Z_ 4. and soH € _#..Z since any finitely generated group.&f./;
belongs to1..Z [9, Section 1.5]. Therefor& is in .4..# and we can state

THEOREM 1. Let 7 (W) be a variety such thaw ¢ F”. Then there exists an
integerc (depending on the variety onlguch that each polycyclic group if (W)
belongs to/..Z.

Theorenm? below shows that Theorefrfails if ‘polycyclic’ is replaced by “finitely
generated soluble’; in fact, Theorehtharacterizes the varieties such that Theotem
remains true after this replacement. Before stating this theorem, we define the notion
of efficientword, introduced by Black.

Let F, denote the free group of rank 2 generatedxlbgndy; this group will be
considered as a subgroup of the free gréugf countably infinite rank. We shall write
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(xF2) (respectively(y™)) the normal closure ofx} (respectively{y}) in F,. Clearly,
sinceF, = (x72) N (y™), each element € F, may be written in the forms

i=s i=u
w = w/l_[y—ixaiyi — w//l_leiyﬂixi (w/ c (XFZ)/, w” € (sz)/)’
i=r i=t

wherer, s, t, u, o, B; are integersr(< 0 < s,t <0 < u). In[1], Black says that a
wordw € F; is efficientif w ¢ (x)’ N (y™) and if the sefa, ... , as, Biy - - -, Bu)
generates the ring of integers (thatés, ..., as, B, ... , By, are coprime). Note
that the first condition is redundant: i6 < (x™)’' N (y™)’, it follows easily from
the independence of left-normed basic commutator§ifF, thate; = g; = 0
(foralli, j) and sow;, ... ,as, B, - - - , By Cannot be coprime. The independence of
left-normed basic commutators shows also the uniqueness of the exprassiens
w T=y xay (w e (xP))andw = w' [T xTyAx (w” € (y™)).

We shall say thaty = 1 is anefficient lawif and only if w is an efficient word. A
characterization of varieties satisfying an efficient law is given by the following

PrOPOSITION3. Foravariety? (W), the following assertions are equivalent
(i) W g F'PF”for any primep.
(i) There exists i’ (W) an efficient law.

ProOF. (i) implies (ii). By [6, Lemma 4], there exists it (W) a law of the form
W= [XmYI* Komia Y1% - Xomka YI*v =1 (M k> 1, veF),

where the exponents, ... , g are coprime. In the usual way, considgfz)/(x"2)’
as a module over the polynomial ri@jT|; namely, foru € (x™) andP = A, T" +

PU =y "uhyn... y*luhyuko,
In particular, we have
w = (el(T D" b e(T — D™ o f (T — 1)m+k71)7'

The polynomialQ = e/(T — D)™ + &(T — D)™ + ... + (T — )™ ! may be
written in the form

Q= a7+ eT + e
wheree, ., ., ..., €, € are coprime integers. In other words,

w =y My Sy ™MLy Ixay xSy,
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with v’ e (x72)’. Clearly, it follows thatw is an efficient word.

(ii) implies (i). Suppose thaWWw < F’PF” for some primep. Since F'PF”
is a fully-invariant subgroup of-, we havew € F'PF” for each laww = 1 of
7 (W). Therefore, ifw € F}, then we have necessarily = w'[]=°y'x“y', with
w' e (x2)" (respectivelyw = w” [T~ xTy#ixi, with w” € (y™)'), wherep divides
each exponent,, ... , as (respectivelys,, ... , Bu). Hencew cannot be an efficient
word. O

ReEMARK. We have a similar result for a Milnor law, a concept introduced by Point
[13]: W € F’PE” (for any primep) if and only if there exists a Milnor law irt” (W)
[7, Proposition].

The nextresult gives various characterizations of varieties in which every polycyclic
group is in_4"%,, for some fixed integee.

THEOREM 2. For a variety 7’ (W), the following assertions are equivalent

(i) There exists a positive integersuch that each polycyclic group i (W)

belongs to 4" #..

(i) There exists a positive integesuch that each finitely generated soluble group
in 7 (W) belongs to.4" %..

(i) Each finitely generated soluble group (W) belongs to/".Z.

(iv) W g F'PF” for any primep.

(v) There exist positive integers, € such that each soluble group i (W)
belongs to 1y %y .

(vi) There exist positive integees, €” such that each finite group iff (W) belongs
to Ny P .

ProOF. (i) implies (ii). This is a consequence dfZ, Theorem 1].

(ii) implies (iii). This is obvious.

(iii) implies (iv). Suppose thaWV is included inF’PF” for some primep and
consider the restricted wreath prod@®t= (Z/pZ) : Z. This group is metabelian and
satisfies the lawx, y]P = 1; thusG lies in 7' (W). Moreover,G is finitely generated
but G is not nilpotent-by-finite (in fact, it is not polycyclic). Therefor&W) does
not satisfy (iii).

(iv) implies (v). [7, Proposition].

(v) implies (vi). In fact, we know that (iv) and (v) are equivalert Proposition].
Hence we may assume thét Z F’PF” for any primep. By Proposition3, there
exists an efficient law irt" (W) and so the result follows from a theorem of Bladk |

(vi) implies (i). Since a polycyclic group is residually finite, the implication is
clear. O
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Among the varieties satisfying some assertions of Thedteane can quote the
varieties defined by a non-trivial monoidal law, namely a law of the form

u(Xl’ ) Xn) = U(Xl’ cee Xn),

whereu(X, ..., X, andv(Xs, ..., X,) are distinct elements of the monoid freely
generated by, ... , X, (see B] or [11]).

In general, the integersande’ occuring in Theoren are distinct. In other words,
if G¢is nilpotent for each polycyclic group of a variety (for some fixed integey, it
is not always possible to bound the nilpotency clas&bby an integec depending
on the variety only. For example,dfis a prime-power, the variety’ defined by the
law x9 = 1 satisfies the first assertion of Theor@nwith e = 1); nevertheless, by
Razmyslov's Theoremilfg], there is no bound for the nilpotency class of finite groups
of 7if g > 3.

However, as we shall see in the next section (Thedsgni G is generated byl
elements, the nilpotency class®f may be bounded by a functiondf Whene = 1,
this question is clearly connected with the restricted Burnside problem.

3. Local bounds and restricted Burnside problem

In 1989, Zel'manov 19, 20] solved the restricted Burnside problem. More pre-
cisely, he proved that for any prime-powgr= p°®, there exists a functior such
that, for any positive integet, the nilpotency class of evedrgenerated finite group
satisfying the lank® = 1 is at mostf (d). By reduction theorems, the solution of the
restricted Burnside problem follows, namely: up to isomorphism, for any fixed inte-
gersd, e > 0, there are only a finite number dfgenerated finite groups of exponent
dividing e.

Zel'manov’s proof also affords a solution of a problem posedlig [see [L5,
Proposition D]): foreach positive integen, there exists a functiofi such that, for any
positive integed, the nilpotency class of evedrgenerated nilpotent-Engel group
is at mostf (d).

Notice that each polycyclic group satisfying the lav= 1 (whereq is a prime-
power) or the law[x,,y] = 1 is nilpotent (the second case is a consequence of a
well-known result of Gruenberd f, Result 12.3.3]).

More generally, consider a variety of grougsin which every polycyclic group is
nilpotent. A finitely generated non-nilpotent soluble group has a finite non-nilpotent
homomorphic imagel4, Result 15.5.3]; hence each finitely generated soluble group
of 7 is nilpotent (this also can be deduced from Theor®mn So the previous
statements lead to the following question: does there exist a funéti@epending
on 7’) such that, for any positive integdr the nilpotency class of eachiigenerated
soluble group of/” is at mostf (d)?



400 G. Endimioni [8]

As a consequence of Theor&below, Corollary? will give an affirmative answer
to this question.

THEOREM 3. Lete be a positive integer and let’ be a variety of groups such that
every polycyclic group of” is in .4"%4,. Then there exists a functiohsuch that, for
any positive integed, everyd-generated soluble group df belongs to 4% 4, Ze.

In order to prove this theorem, we need a preparatory lemma.

LEMMA 2. Lete be a positive integer and let” be a variety of groups such that
every polycyclic group of” is in .4"%,.. Then there exists a functignsuch that, for
any positive integed, the derived length of evedrgenerated soluble group of is
at mostg(d).

ProOF. Consider al-generated soluble group € #". By Theoren?, there exist
positive integerg’, € depending or¥” only such thaG € .1;%4,. HenceG contains
a normal subgroupd € 4% with G/H € %.. By Zel'manov’'s solution of the
restricted Burnside problem, the derived lengthGfH is bounded by an integer
0:(d, €) (depending only onl and€’). Since the derived length ¢ is bounded by
[log, ¢'] + 1, the derived length dB is at most{log, ¢'] + 1+ g:(d, €). O

PROOF OFTHEOREM 3. Let ¥ be a variety satisfying the hypothesis of the theorem
and letd be a positive integer. Le®,q, be the variety of all soluble groups of derived
length at mostg(d), whereg is the function defined in Lemma. Consider the
relatively free groug’y of rankd of the variety?” N %, It follows from Theoren?
that 'y belongs to/"%,; so there exists a positive integersuch thatl’y belongs
to the variety.#.%,. By Lemma2, eachd-generated soluble group € 7 lies in
¥ N Zqq. HenceG is a homomorphic image dfy, and soG € .#;%4.. Sincec
depends only of¥” andd, the theorem is proved. O

In the particular case wheee= 1, Theoren8 yields

COROLLARY 2. Let 7 be a variety of groups in which every polycyclic group is
nilpotent. Then there exists a functidnsuch that, for any positive integelr every
d-generated soluble group dof is nilpotent of class at modt(d). In particular, there
exists an integem depending only off” such that every soluble group %fis n-Engel
(we can taken = f(2)).

In [4], Burns and Medvedev prove for eanh> 0 the existence of integecs €
such that(_4. %) N (% -45) contains every-Engel soluble group. Therefore, by
using this result and the second part of Corollarye obtain
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COROLLARY 3. Let 7 be a variety of groups in which every polycyclic group is
nilpotent. Then there exist positive integetse’ such that every soluble group f
belongs to(.4¢ HBe) N (Bo N2).

Notice that for a variety?” and for an arbitrary positive integer the condition
‘every finite soluble group of” is in .4+ #,’ does not imply the condition ‘every finite
group of ¥ is in 4 %’ [5]. On the other hand, the conditions ‘every finite soluble
group of 7" is nilpotent’ and ‘every finite group of” is nilpotent’ are equivalent: this
follows from Schmidt’'s Theoremll, Result 9.1.9]. Hence, as another consequence
of Corollary2, we have

COROLLARY 4. In a variety in which every polycyclic group is nilpotent, each
finitely generated residually finite group is nilpotent.

This result may be considered as an extension of a theorem of Wilsgrsfating
that eachn-Engel finitely generated residually finite group is nilpotent.

4. Locally nilpotent groups of a variety

For convenience, denote 1. the class of varieties in which every polycyclic
group belongs to4"%,. Furthermore, lef be the class of varietie§ in which, for
any positive integed, the nilpotency class af-generated nilpotent groups is bounded
(the bound depending ahand?” only). Itis easy to see that a variety belongs to
X if and only if the class of locally nilpotent groups of is a variety.

By Corollary 2, X contains});. However, these classes are distinct: for example,
if m > 1is a fixed odd integer, the dihedral groOp,, satisfies a law of the form
[X,2¥] = [X,k Y], with k > 2 [2, Proposition 1]. Clearly, a nilpotent group satisfying
this law is 2-Engel, and so of nilpotency class at most48 Result 12.3.6]. Thus the
variety defined by the la\ix,, y] = [X, y] belongs taX; but since the dihedral group
D,.m is not nilpotent, this variety is not if);.

Now consider a variety”, defined by a set of laws = 1 (w € W, whereW is a
subset of the free group), and suppose th&V is included inF’?F” for some prime
p. Since the wreath produ@ = (Z/p7) : (Z/p"7) is a metabelian group satisfying
the law[x, y]P = 1, this group is in? for all positive integers. Moreover,G is a
2-generated nilpotent group of classp”" —1 [17, Result 2.2]. Henc# is notinX. In
other words, we have proved thatif belongs taX, thenW is not included inF'"PF”
for any primep; it follows from Theoren? that”” belongs td}). for some integer
e. ThusX is included inJ,_,2.. Infact,X is a strictly smaller class thdn,_,e.
Indeed the variety41.%, belongs td}),. This variety contains all dihedral groups, in
particularD,, . But since the nilpotency class of these groups is not bounded, the
variety 419, is not in X..
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In short, we hav&®); ¢ X C J,_,Ze the inclusions being strict. The following
result gives a characterization of varieti€se X

THEOREMA4. For a variety?’, the following assertions are equivalent

(i) 7 belongs taX.
(i) There exist positive integecs € (depending or¥”) such that every nilpotent
group of 7" belongs ta( ¢ By) N (Be-Ne).

Before proving this theorem, we establish two lemmas.

LEMMA 3. Letx be a nilpotent element of a ringy. Suppose that for some integers
a, A, Bo, ..., Bk (@, A > 0), we have the relations

axt = fox" + X4+ pXTR = 0.

Leta = pi'... pt* be the factorization of into a product of distinct prime powers
and pute = ¢; + - - - + . Then, if there exists an integgre {0, ... , k} such thatx
andB; are coprime, we have* < = 0.

PrROOF. The resultis obvious i& = 1.
Suppose that = pis prime (and se = 1). Let| be the leastinteger ¢0, ... , k}
such thatr andg; are coprime. Thus we have the relation

Bix T4 B x4 gxtTR =0,
For any integeg; such thag; 8; = 1 (mod p), it follows that
xAH] + ,BJ-H,BJ{X)‘H“ 4+ 'Bk'Bfo”k =0.

By a standard argument, singés nilpotent, we obtaix**! = 0 and sax*** = 0.

Now suppose that > 1 and proceed by induction an Consider a primep
dividing & and denote byA, the set of elements € A such thatpa = 0. Clearly,A,
is an ideal ofA. Writing o’ = o/ p, we have in the ringh\/ A, the relations:

a'X = X' + X4 BT =0,

It follows from the inductive hypothesis that the equaliity “ % = 0 holds inA/ A,
Therefore, we have i\ the relations

_ — — —1k+k
pX)Hr(s 1k — ﬂOX)Hr(s l)k+ﬂlx)»+(s l)k+1+ +ﬂkxk+(e 1)k+ — 0

Since in this case the result is established, we obtaiff—Vktk = x**+<k = 0, as
required. O
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LEMMA 4. Letc, € be positive integers. Then, there exists an integet m(c, €)
such that, for any nilpotent group € (.4, %¢) N (Be-4¢) and for anyH < G, we
havelh,,y] € H forallhe H,y € G.

PrROOF. LetH be a normal subgroup of a nilpotent gra@pe (4o Be) N(Be-Nz).
Denote byA the ring of all endomorphisms of the abelian grddipH’. Fory € G, the
endomorphisny € Ais defined byy(h) = y—thy (h € H); thus(y — 1)(h) = [h, yI.
Notice that,G being nilpotent,y — 1 is nilpotent. Moreover, sinc& belongs to
(A Be) N (Be-Ae), We have the relationgh, ;1 Y¢] = [h,c y]¥ = 1. Thus, we
obtain in A:

Y-t =0=€(y-1°.

By using the relationy® —1)°** = (((y—1)+1)® —1)°*1, the first of these equations
can be written in the form

Bo(Y — 1)0/ + By — 1)c/+1 + o+ By — 1)c/+k -0,

wherek = €(¢' + 1) — ¢ and wherep,, ... , B¢ are integers, with, = 1 (and
Bo = 0). Hence we may apply Lemn%a there exists an integen = m(c’, €) such
that(y — 1)™ = 0. In other words[h, ., y] belongs toH’, as required. O

PrOOF OFTHEOREM 4. (i) implies (ii). If ¥" belongs taX, the nilpotency class of
each 2-generated nilpotent group”dfis bounded by an integer. In particular, each
nilpotent group of?” is n-Engel. Hence the conclusion follows from the result of
Burns and MedvedeV] already used in the proof of Corollay

(i) implies (i). By [15, Proposition D], it is enough to prove that each nilpotent
group of 7" is n-Engel for some integen depending only or?”. Consider a 2-
generated nilpotent group € 7. SinceG belongs to.4; %, the derived length
of this group is bounded by an integek= r (¢, €). Denote byGY the jth term of
the derived series db and apply Lemma; so there existen = m(c’, €) such that
[h,my]l € GU*D forallh e GY, y e G. From an immediate induction, it follows that
[X,1+¢—nm Y] belongs toG™ for all x, y € G, and so[X,1._1ymY] = 1. Therefore,
each nilpotent group of” is n-Engel (forn = 1+ (r — 1)m), and the theorem is
proved. O
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