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Abstract

LetBe,Nc,N andF denote respectively the variety of groups of exponent dividinge, the variety of
nilpotent groups of class at mostc, the class of nilpotent groups and the class of finite groups. It follows
from a result due to Kargapolov andČurkin and independently to Groves that in a variety not containing
all metabelian groups, each polycyclic groupG belongs toN F . We show thatG is in fact inNcF ,
wherec is an integer depending only on the variety. On the other hand, it is not always possible to
find an integere (depending only on the variety) such thatG belongs toN Be, but we characterize the
varieties in which that is possible. In this case, there exists a functionf such that, ifG is d-generated,
thenG ∈ N f .d/Be. So, whene = 1, we obtain an extension of Zel’manov’s result about the restricted
Burnside problem (as one might expect, this result is used in our proof). Finally, we show that the class
of locally nilpotent groups of a varietyV forms a variety if and only ifV ∩N ⊆ (

Nc′Be′
)∩ (
Be′Nc′

)

for some integersc′; e′.

2000Mathematics subject classification: primary 20E10, 20F18.

1. Introduction

If c ande are positive integers, we denote byBe the variety of groups of exponent
dividing e and byNc the variety of nilpotent groups of class at mostc. Also,
N = ⋃

c≥0Nc denotes the class of nilpotent groups andF denotes the class of finite
groups. Recall thatFN is included inN F . More precisely,FNc is included in
Nc+1F for anyc ≥ 0. Indeed, ifG contains a finite normal subgroupH such that
G=H ∈ Nc, it is easy to see that the centralizer ofH in G has finite index and belongs
toNc+1. Moreover, it is not difficult to show that any finitely generated group inFNc

belongs toNcF [9, Section 1.5].
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Let F be the free group of countably infinite rank. IfW is a subset ofF , we denote
by V .W/ the variety of groups defined by the set of lawsw = 1, withw ∈ W.

First suppose thatW is not included inF ′′. By a result due to Kargapolov andČurkin
[10] and independently to Groves [8], for every integerr ≥ 0, there exist integers
c;edepending onV .W/ andr such that each soluble groupG ∈ V .W/ with derived
lengthr belongs toBeNcBe. We do not know ifc ande can be chosen depending
onV .W/ only (Proposition2 and Theorem2 below will give partial answers to this
problem). Observe that each polycyclic groupG ∈ V .W/ is nilpotent-by-finite since
FN ⊂ N F .

Conversely, consider a varietyV .W/ in which each polycyclic group is nilpotent-
by-finite. Since there exist metabelian polycyclic groups which are not nilpotent-
by-finite, the variety of metabelian groups is not included inV .W/; thus W is not
included inF ′′. So we have:

PROPOSITION1. For a varietyV .W/ defined by a set of lawsw = 1 .w ∈ W/, the
following assertions are equivalent:

.i/ each polycyclic group inV .W/ belongs toN F ;
.ii/ W 6⊆ F ′′.

This result leads to the following questions for a varietyV .W/ satisfying one of
the previous assertions:

.1/ Does there exist an integerc such that each polycyclic group inV .W/ belongs
toNcF?
.2/ Does there exist an integere such that each polycyclic group inV .W/ belongs
toN Be?

In the next section we shall see that the first question has a positive answer (Theo-
rem1). It is not always the case for the second question but it is possible to characterize
the varieties in which the answer is positive; furthermore, in this case, we shall show
that each polycyclic group inV .W/ belongs in fact toNc′Be′ for some integersc′;e′

(Theorem2). Such bounds areglobal bounds, namely they are independant of the
number of generators of considered groups. In Section3 we shall seelocal bounds,
that is, depending on the number of generators.

REMARK. Instead of question (2), one can put the following question (for a variety
V .W/ such thatW 6⊆ F ′′):

(2′) Does there exist an integerm such that each polycyclic group inV .W/ belongs
toN Fm, whereFm is the class of finite groups of order at mostm?

Suppose that such am exists and consider a polycyclic groupG ∈ V .W/. Denote
by Fit.G/ the Fitting subgroup ofG and puta = |G : Fit.G/|. For any integern > 0,
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the cartesian productGn = G × · · · × G is polycyclic and belongs toV .W/; thus
|Gn : Fit.Gn/| ≤ m. Since Fit.Gn/ = Fit.G/n, we obtainan ≤ m (for any integer
n > 0) and soa = 1. Therefore, the previous question has a positive answer if and
only if each polycyclic group inV .W/ is nilpotent (and so we can takem = 1).

2. Global bounds

Recall that ann-Engel group is a group satisfying the law[x;n y] = 1, where
[x;n y] is defined by[x;0 y] = x and [x;k y] = [[x;k−1 y]; y] for all k > 0, with
[x; y] = x−1y−1xy. If 5 is a set of primes, a5-free group is a group without
elements of orderp ∈ 5. We shall denote by
 j .G/ the j th term of the lower central
series of a groupG.

LEMMA 1. LetV .W/ be a variety such thatW 6⊆ F ′′. Then there exist a finite set
of prime numbers5 and an integern (depending on the variety only) such that each
5-free nilpotent group inV .W/ is n-Engel.

PROOF. By [6, Lemma 4],V .W/ has a law of the form

[x;m y]e1[x;m+1 y]e2 · · · [x;m+k−1 y]ekv.x; y/ = 1 .m; k ≥ 1; v.x; y/ ∈ F′′/;

where the exponentse1; : : : ;ek are not all zero (we may assume thate1 6= 0). Let5
be the set of prime numbers dividinge1 and letG be a 2-generated5-free nilpotent
group inV .W/. It suffices to prove that the nilpotency class ofG is bounded by
an integern depending only onV .W/. Let ¼ be the nilpotency class ofG. Put
A = 
s.G/, wheres is the least integer≥ .¼+ 1/=2. Notice thats< 1 + .¼+ 1/=2
and thatA is abelian. For anya ∈ A, y ∈ G, we have

[a;m y]e1[a;m+1 y]e2 · · · [a;m+k−1 y]ekv.a; y/ = 1:

But v.a; y/ belongs to〈a; y〉′′ = {1}, so

[a;m y]e1[a;m+1 y]e2 · · · [a;m+k−1 y]ek = 1:

Notice that [a;m y] belongs to
m+s.G/. Now suppose that[a;m y]ej
1 belongs to


m+s+ j .G/ for some integerj ≥ 0. By raising to theej
1th power, the previous

relation gives

[a;m y]ej+1
1 [a;m+1 y]e2ej

1 · · · [a;m+k−1 y]ekej
1 = 1:

Since[a′e; y] = [a′; y]e for anya′ ∈ A, we may write

[a;m y]ej+1
1 [[a;m y]ej

1; y]e2 · · · [[a;m y]ej
1;k−1 y]ek = 1
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and so[a;m y]ej+1
1 belongs to
m+s+ j +1.G/. Therefore, it follows by induction that

[a;m y]ej
1 belongs to
m+s+ j .G/ for any integerj ≥ 0. By taking j such thatm +

s + j > ¼, we obtain[a;m y]ej
1 = 1 and so[a;m y] = 1 sinceG is 5-free. Hence,

by [15, Proposition D], there exists an integert depending only onm such that
[a; y1; : : : ; yt ] = 1 for all a ∈ A and all y1; : : : ; yt ∈ G. In particular, we have
[x1; : : : ; xs; y1; : : : ; yt ] = 1 for all x1; : : : ; xs; y1; : : : ; yt ∈ G; thus¼+ 1 ≤ s + t .
Sinces< 1+.¼+1/=2, we obtain¼ < t +.¼+1/=2 and so¼ ≤ 2t , as required.

Aplying Lemma1 and [3, Corollary 1] we may state

COROLLARY 1. LetV .W/ be a variety such thatW 6⊆ F ′′. Then there exist a finite
set of prime numbers5 and an integerc (depending on the variety only) such that
each5-free nilpotent group inV .W/ belongs toNc.

As a consequence we obtain

PROPOSITION2. Let V .W/ be a variety such thatW 6⊆ F ′′. Then there exists
an integerc (depending on the variety only) such that each soluble group inV .W/

belongs toPNcBe, whereP is the class of periodic groups and whereeis an integer
depending onV .W/ and on the derived length ofG.

PROOF. Let G be a soluble group inV .W/. By the result of Kargapolov,̌Curkin
and Groves quoted above, there exist normal subgroupsK E H E G such thatK and
G=H belong toBe (whereedepends onV .W/ and on the derived length ofG), H=K
being nilpotent. Denote byL the normal subgroup ofH containingK such thatL=K
is the torsion subgroup ofH=K ; thus H=L is a torsion-free nilpotent group. Hence,
by Corollary1, H=L belongs toNc, wherec is an integer depending only onV .W/.
SinceL is periodic, the proposition is established.

Now suppose thatG is polycyclic in the preceding proof. ThenL andG=H are
finite. ThusH ∈ FNc and soH ∈ NcF since any finitely generated group ofFNc

belongs toNcF [9, Section 1.5]. Therefore,G is inNcF and we can state

THEOREM 1. Let V .W/ be a variety such thatW 6⊆ F ′′. Then there exists an
integerc (depending on the variety only) such that each polycyclic group inV .W/

belongs toNcF .

Theorem2 below shows that Theorem1 fails if ‘polycyclic’ is replaced by ‘finitely
generated soluble’; in fact, Theorem2 characterizes the varieties such that Theorem1
remains true after this replacement. Before stating this theorem, we define the notion
of efficientword, introduced by Black.

Let F2 denote the free group of rank 2 generated byx and y; this group will be
considered as a subgroup of the free groupF of countably infinite rank. We shall write
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〈xF2〉 (respectively〈yF2〉) the normal closure of{x} (respectively{y}) in F2. Clearly,
sinceF ′

2 = 〈xF2〉 ∩ 〈yF2〉, each elementw ∈ F ′
2 may be written in the forms

w = w′
i =s∏

i =r

y−i xÞi yi = w′′
i =u∏

i =t

x−i yþi xi
(
w′ ∈ 〈xF2〉′; w′′ ∈ 〈yF2〉′);

wherer , s, t , u, Þi , þ j are integers (r ≤ 0 ≤ s, t ≤ 0 ≤ u). In [1], Black says that a
wordw ∈ F ′

2 is efficientif w =∈ 〈xF2〉′ ∩ 〈yF2〉′ and if the set{Þr ; : : : ; Þs; þt; : : : ; þu}
generates the ring of integers (that is,Þr ; : : : ; Þs; þt; : : : ; þu are coprime). Note
that the first condition is redundant: ifw ∈ 〈xF2〉′ ∩ 〈yF2〉′, it follows easily from
the independence of left-normed basic commutators inF ′

2=F ′′
2 that Þi = þ j = 0

(for all i; j ) and soÞr ; : : : ; Þs; þt; : : : ; þu cannot be coprime. The independence of
left-normed basic commutators shows also the uniqueness of the expressionsw =
w′ ∏i =s

i =r y−i xÞi yi (w′ ∈ 〈xF2〉′) andw = w′′ ∏i =u
i =t x−i yþi xi (w′′ ∈ 〈yF2〉′).

We shall say thatw = 1 is anefficient lawif and only ifw is an efficient word. A
characterization of varieties satisfying an efficient law is given by the following

PROPOSITION3. For a varietyV .W/, the following assertions are equivalent:

.i/ W 6⊆ F ′p F ′′ for any primep.
.ii/ There exists inV .W/ an efficient law.

PROOF. (i) implies (ii). By [6, Lemma 4], there exists inV .W/ a law of the form

w = [x;m y]e1[x;m+1 y]e2 · · · [x;m+k−1 y]ekv = 1 .m; k ≥ 1; v ∈ F ′′
2 /;

where the exponentse1; : : : ;ek are coprime. In the usual way, consider〈xF2〉=〈xF2〉′

as a module over the polynomial ringZ[T]; namely, foru ∈ 〈xF2〉 and P = ½nT n +
· · · + ½1T + ½0 ∈ Z[T], we put

Pu = y−nu½n yn · · · y−1u½1 yu½0 :

In particular, we have

w = (
e1.T − 1/m + e2.T − 1/m+1 + · · · + ek.T − 1/m+k−1

)
x:

The polynomialQ = e1.T − 1/m + e2.T − 1/m+1 + · · · + ek.T − 1/m+k−1 may be
written in the form

Q = e′
m+k−1Tm+k−1 + · · · + e′

1T + e′
0;

wheree′
m+k−1; : : : ;e′

1;e′
0 are coprime integers. In other words,

w = y−.m+k−1/xe′
m+k−1 ym+k−1 : : : y−1xe′

1 yxe′
0v′;
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with v′ ∈ 〈xF2〉′. Clearly, it follows thatw is an efficient word.
(ii) implies (i). Suppose thatW ⊆ F ′pF ′′ for some primep. Since F ′p F ′′

is a fully-invariant subgroup ofF , we havew ∈ F ′p F ′′ for each laww = 1 of
V .W/. Therefore, ifw ∈ F ′

2, then we have necessarilyw = w′ ∏i =s
i =r y−i xÞi yi , with

w′ ∈ 〈xF2〉′ (respectivelyw = w′′ ∏i =u
i =t x−i yþi xi , with w′′ ∈ 〈yF2〉′), wherep divides

each exponentÞr ; : : : ; Þs (respectivelyþt; : : : ; þu). Hencew cannot be an efficient
word.

REMARK. We have a similar result for a Milnor law, a concept introduced by Point
[13]: W 6⊆ F ′pF ′′ (for any primep) if and only if there exists a Milnor law inV .W/

[7, Proposition].

The next result gives various characterizations of varieties in which every polycyclic
group is inN Be, for some fixed integere.

THEOREM 2. For a varietyV .W/, the following assertions are equivalent:

.i/ There exists a positive integere such that each polycyclic group inV .W/

belongs toN Be.
.ii/ There exists a positive integeresuch that each finitely generated soluble group

in V .W/ belongs toN Be.
.iii / Each finitely generated soluble group inV .W/ belongs toN F .
.iv/ W 6⊆ F ′p F ′′ for any primep.
.v/ There exist positive integersc′;e′ such that each soluble group inV .W/

belongs toNc′Be′.
.vi/ There exist positive integersc′′;e′′ such that each finite group inV .W/ belongs

toNc′′Be′′ .

PROOF. (i) implies (ii). This is a consequence of [12, Theorem 1].
(ii) implies (iii). This is obvious.
(iii) implies (iv). Suppose thatW is included inF ′pF ′′ for some primep and

consider the restricted wreath productG = .Z=pZ/ o Z. This group is metabelian and
satisfies the law[x; y]p = 1; thusG lies inV .W/. Moreover,G is finitely generated
but G is not nilpotent-by-finite (in fact, it is not polycyclic). ThereforeV .W/ does
not satisfy (iii).

(iv) implies (v). [7, Proposition].
(v) implies (vi). In fact, we know that (iv) and (v) are equivalent [7, Proposition].

Hence we may assume thatW 6⊆ F ′pF ′′ for any primep. By Proposition3, there
exists an efficient law inV .W/ and so the result follows from a theorem of Black [1].

(vi) implies (i). Since a polycyclic group is residually finite, the implication is
clear.
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Among the varieties satisfying some assertions of Theorem2, one can quote the
varieties defined by a non-trivial monoidal law, namely a law of the form

u.x1; : : : ; xn/ = v.x1; : : : ; xn/;

whereu.x1; : : : ; xn/ andv.x1; : : : ; xn/ are distinct elements of the monoid freely
generated byx1; : : : ; xn (see [3] or [11]).

In general, the integerseande′ occuring in Theorem2 are distinct. In other words,
if Ge is nilpotent for each polycyclic groupG of a variety (for some fixed integere), it
is not always possible to bound the nilpotency class ofGe by an integerc depending
on the variety only. For example, ifq is a prime-power, the varietyV defined by the
law xq = 1 satisfies the first assertion of Theorem2 (with e = 1); nevertheless, by
Razmyslov’s Theorem [16], there is no bound for the nilpotency class of finite groups
of V if q > 3.

However, as we shall see in the next section (Theorem3), if G is generated byd
elements, the nilpotency class ofGe may be bounded by a function ofd. Whene = 1,
this question is clearly connected with the restricted Burnside problem.

3. Local bounds and restricted Burnside problem

In 1989, Zel’manov [19, 20] solved the restricted Burnside problem. More pre-
cisely, he proved that for any prime-powerq = pÞ , there exists a functionf such
that, for any positive integerd, the nilpotency class of everyd-generated finite group
satisfying the lawxq = 1 is at mostf .d/. By reduction theorems, the solution of the
restricted Burnside problem follows, namely: up to isomorphism, for any fixed inte-
gersd;e> 0, there are only a finite number ofd-generated finite groups of exponent
dividing e.

Zel’manov’s proof also affords a solution of a problem posed in [18] (see [15,
Proposition D]): foreach positive integern, there exists a functionf such that, for any
positive integerd, the nilpotency class of everyd-generated nilpotentn-Engel group
is at most f .d/.

Notice that each polycyclic group satisfying the lawxq = 1 (whereq is a prime-
power) or the law[x;n y] = 1 is nilpotent (the second case is a consequence of a
well-known result of Gruenberg [14, Result 12.3.3]).

More generally, consider a variety of groupsV in which every polycyclic group is
nilpotent. A finitely generated non-nilpotent soluble group has a finite non-nilpotent
homomorphic image [14, Result 15.5.3]; hence each finitely generated soluble group
of V is nilpotent (this also can be deduced from Theorem2). So the previous
statements lead to the following question: does there exist a functionf (depending
onV ) such that, for any positive integerd, the nilpotency class of eachd-generated
soluble group ofV is at most f .d/?
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As a consequence of Theorem3 below, Corollary2 will give an affirmative answer
to this question.

THEOREM 3. Let e be a positive integer and letV be a variety of groups such that
every polycyclic group ofV is inN Be. Then there exists a functionf such that, for
any positive integerd, everyd-generated soluble group ofV belongs toN f .d/Be.

In order to prove this theorem, we need a preparatory lemma.

LEMMA 2. Let e be a positive integer and letV be a variety of groups such that
every polycyclic group ofV is inN Be. Then there exists a functiong such that, for
any positive integerd, the derived length of everyd-generated soluble group ofV is
at mostg.d/.

PROOF. Consider ad-generated soluble groupG ∈ V . By Theorem2, there exist
positive integersc′;e′ depending onV only such thatG ∈ Nc′Be′. HenceG contains
a normal subgroupH ∈ Nc′ with G=H ∈ Be′. By Zel’manov’s solution of the
restricted Burnside problem, the derived length ofG=H is bounded by an integer
g1.d;e′/ (depending only ond ande′). Since the derived length ofH is bounded by
[log2 c′] + 1, the derived length ofG is at most[log2 c′] + 1+ g1.d;e′/.

PROOF OFTHEOREM 3. LetV be a variety satisfying the hypothesis of the theorem
and letd be a positive integer. LetRg.d/ be the variety of all soluble groups of derived
length at mostg.d/, whereg is the function defined in Lemma2. Consider the
relatively free group0d of rankd of the varietyV ∩Rg.d/. It follows from Theorem2
that0d belongs toN Be; so there exists a positive integerc such that0d belongs
to the varietyNcBe. By Lemma2, eachd-generated soluble groupG ∈ V lies in
V ∩ Rg.d/. HenceG is a homomorphic image of0d, and soG ∈ NcBe. Sincec
depends only onV andd, the theorem is proved.

In the particular case wheree = 1, Theorem3 yields

COROLLARY 2. Let V be a variety of groups in which every polycyclic group is
nilpotent. Then there exists a functionf such that, for any positive integerd, every
d-generated soluble group ofV is nilpotent of class at mostf .d/. In particular, there
exists an integern depending only onV such that every soluble group ofV is n-Engel
(we can taken = f .2/).

In [4], Burns and Medvedev prove for eachn > 0 the existence of integersc′;e′

such that.Nc′Be′/ ∩ .Be′Nc′/ contains everyn-Engel soluble group. Therefore, by
using this result and the second part of Corollary2, we obtain
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COROLLARY 3. Let V be a variety of groups in which every polycyclic group is
nilpotent. Then there exist positive integersc′, e′ such that every soluble group ofV
belongs to.Nc′Be′/ ∩ .Be′Nc′/.

Notice that for a varietyV and for an arbitrary positive integere, the condition
‘every finite soluble group ofV is inN Be’ does not imply the condition ‘every finite
group ofV is inN Be’ [ 5]. On the other hand, the conditions ‘every finite soluble
group ofV is nilpotent’ and ‘every finite group ofV is nilpotent’ are equivalent: this
follows from Schmidt’s Theorem [14, Result 9.1.9]. Hence, as another consequence
of Corollary2, we have

COROLLARY 4. In a variety in which every polycyclic group is nilpotent, each
finitely generated residually finite group is nilpotent.

This result may be considered as an extension of a theorem of Wilson [17], stating
that eachn-Engel finitely generated residually finite group is nilpotent.

4. Locally nilpotent groups of a variety

For convenience, denote byYe the class of varieties in which every polycyclic
group belongs toN Be. Furthermore, letX be the class of varietiesV in which, for
any positive integerd, the nilpotency class ofd-generated nilpotent groups is bounded
(the bound depending ond andV only). It is easy to see that a varietyV belongs to
X if and only if the class of locally nilpotent groups ofV is a variety.

By Corollary2, X containsY1. However, these classes are distinct: for example,
if m > 1 is a fixed odd integer, the dihedral groupD2×m satisfies a law of the form
[x;2 y] = [x;k y], with k > 2 [2, Proposition 1]. Clearly, a nilpotent group satisfying
this law is 2-Engel, and so of nilpotency class at most 3 [14, Result 12.3.6]. Thus the
variety defined by the law[x;2 y] = [x;k y] belongs toX; but since the dihedral group
D2×m is not nilpotent, this variety is not inY1.

Now consider a varietyV , defined by a set of lawsw = 1 (w ∈ W, whereW is a
subset of the free groupF), and suppose thatW is included inF ′pF ′′ for some prime
p. Since the wreath productG = .Z=pZ/ o .Z=pn

Z/ is a metabelian group satisfying
the law[x; y]p = 1, this group is inV for all positive integersn. Moreover,G is a
2-generatednilpotent group of class> pn −1 [17, Result 2.2]. HenceV is not inX. In
other words, we have proved that ifV belongs toX, thenW is not included inF ′p F ′′

for any primep; it follows from Theorem2 thatV belongs toYe for some integer
e. ThusX is included in

⋃
e>0Ye. In fact,X is a strictly smaller class than

⋃
e>0Ye.

Indeed the varietyN1B2 belongs toY2. This variety contains all dihedral groups, in
particularD2×2n . But since the nilpotency class of these groups is not bounded, the
varietyN1B2 is not inX.
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In short, we haveY1 ⊂ X ⊂ ⋃
e>0Ye, the inclusions being strict. The following

result gives a characterization of varietiesV ∈ X

THEOREM 4. For a varietyV , the following assertions are equivalent:

.i/ V belongs toX.
.ii/ There exist positive integersc′;e′ (depending onV ) such that every nilpotent

group ofV belongs to.Nc′Be′/ ∩ .Be′Nc′/.

Before proving this theorem, we establish two lemmas.

LEMMA 3. Letx be a nilpotent element of a ringA. Suppose that for some integers
Þ; ½; þ0; : : : ; þk (Þ; ½ > 0), we have the relations

Þx½ = þ0x½ + þ1x½+1 + · · · + þkx½+k = 0:

Let Þ = pž1
1 : : : pžt

t be the factorization ofÞ into a product of distinct prime powers
and putž = ž1 + · · · + žt . Then, if there exists an integerj ∈ {0; : : : ; k} such thatÞ
andþ j are coprime, we havex½+žk = 0.

PROOF. The result is obvious ifÞ = 1.
Suppose thatÞ = p is prime (and sož = 1). Let j be the least integer of{0; : : : ; k}

such thatÞ andþ j are coprime. Thus we have the relation

þ j x
½+ j + þ j +1x½+ j +1 + · · · + þkx½+k = 0:

For any integerþ ′
j such thatþ jþ

′
j ≡ 1 .mod p/, it follows that

x½+ j + þ j +1þ
′
j x
½+ j +1 + · · · + þkþ

′
j x
½+k = 0:

By a standard argument, sincex is nilpotent, we obtainx½+ j = 0 and sox½+k = 0.
Now suppose thatž > 1 and proceed by induction onž. Consider a primep

dividing Þ and denote byAp the set of elementsa ∈ A such thatpa = 0. Clearly,Ap

is an ideal ofA. Writing Þ′ = Þ=p, we have in the ringA=Ap the relations:

Þ′x½ = þ0x½ + þ1x½+1 + · · · + þkx½+k = 0:

It follows from the inductive hypothesis that the equalityx½+.ž−1/k = 0 holds inA=Ap.
Therefore, we have inA the relations

px½+.ž−1/k = þ0x½+.ž−1/k + þ1x½+.ž−1/k+1 + · · · + þkx½+.ž−1/k+k = 0:

Since in this case the result is established, we obtainx½+.ž−1/k+k = x½+žk = 0, as
required.
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LEMMA 4. Letc′;e′ be positive integers. Then, there exists an integerm = m.c′;e′/
such that, for any nilpotent groupG ∈ (

Nc′Be′
) ∩ (

Be′Nc′
)

and for anyH E G, we
have[h;m y] ∈ H ′ for all h ∈ H; y ∈ G.

PROOF. Let H be a normal subgroup of a nilpotent groupG ∈ (
Nc′Be′

)∩(
Be′Nc′

)
.

Denote byA the ring of all endomorphisms of the abelian groupH=H ′. Fory ∈ G, the
endomorphism̂y ∈ A is defined byŷ.h/ = y−1hy (h ∈ H ); thus.ŷ − 1/.h/ = [h; y].
Notice that,G being nilpotent,ŷ − 1 is nilpotent. Moreover, sinceG belongs to(
Nc′Be′

) ∩ (
Be′Nc′

)
, we have the relations[h;c′+1 ye′ ] = [h;c′ y]e′ = 1. Thus, we

obtain in A:

.ŷe′ − 1/c
′+1 = 0 = e′.ŷ − 1/c

′
:

By using the relation.ŷe′ −1/c
′+1 = ...ŷ−1/+1/e

′ −1/c
′+1, the first of these equations

can be written in the form

þ0.ŷ − 1/c
′ + þ1.ŷ − 1/c

′+1 + · · · + þk.ŷ − 1/c
′+k = 0;

wherek = e′.c′ + 1/ − c′ and whereþ0; : : : ; þk are integers, withþk = 1 (and
þ0 = 0). Hence we may apply Lemma3: there exists an integerm = m.c′;e′/ such
that.ŷ − 1/m = 0. In other words,[h;m y] belongs toH ′, as required.

PROOF OFTHEOREM 4. (i) implies (ii). If V belongs toX, the nilpotency class of
each 2-generated nilpotent group ofV is bounded by an integern. In particular, each
nilpotent group ofV is n-Engel. Hence the conclusion follows from the result of
Burns and Medvedev [4] already used in the proof of Corollary3.

(ii) implies (i). By [15, Proposition D], it is enough to prove that each nilpotent
group ofV is n-Engel for some integern depending only onV . Consider a 2-
generated nilpotent groupG ∈ V . SinceG belongs toNc′Be′, the derived length
of this group is bounded by an integerr = r .c′;e′/. Denote byG. j / the j th term of
the derived series ofG and apply Lemma4; so there existsm = m.c′;e′/ such that
[h;m y] ∈ G. j +1/ for all h ∈ G. j /; y ∈ G. From an immediate induction, it follows that
[x;1+.r −1/m y] belongs toG.r / for all x; y ∈ G, and so[x;1+.r −1/m y] = 1. Therefore,
each nilpotent group ofV is n-Engel (forn = 1 + .r − 1/m), and the theorem is
proved.
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